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Abstract. In this paper, we introduce and investigate a subclassHh,p
Σ (β)
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1. Introduction

Let A be a class of analytic functions in the open unit disk U = {z ∈ C :
|z| < 1}, of the form

f(z) = z +
∞∑

n=2

anz
n.(1.1)

We also denote by S the class of functions f ∈ A which are univalent in
U. Since univalent functions are one-to-one, they are invertible and the inverse
functions need not be defined on the entire unit disk U. The Koebe one-quarter
theorem [3] ensures that the image of U under every univalent function f ∈ S
contains a disk of radius 1

4 . Hence every function f ∈ S has an inverse f−1,
which is defined by

f−1(f(z)) = z (z ∈ U),
and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥

1

4

)
,
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where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · ·.

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are
univalent in U. The class consisting of bi-univalent functions are denoted by
Σ.
Determination of the bounds for the coefficients an is an important problem
in geometric function theory as they give information about the geometric
properties of these functions. For example, the bound for the second coefficient
a2 of functions f ∈ S gives the growth and distortion bounds as well as covering
theorems.
Lewin [9] investigated the class Σ of bi-univalent functions and showed that
|a2| < 1.51 for the functions belonging to Σ. Subsequently, Brannan and

Clunie [2] conjectured that |a2| ≤
√
2. Kedzierawski [8] proved this conjecture

for a special case when the function f and f−1 are starlike functions. Tan [12]
obtained the bound for |a2| namely |a2| ≤ 1.485 which is the best known
estimate for functions in the class Σ. Recently there interest to study the bi-
univalent functions class Σ (see [4, 5, 13, 14]) and obtain non-sharp estimates
on the first two Taylor-Maclaurin coefficients |a2| and |a3|. The coefficient
estimate problem i.e. bound of |an| (n ∈ N−{1, 2}) for each f ∈ Σ given by [1]
is still an open problem.

Recently, Frasin [6] introduced two subclasses of class Σ and obtained es-
timates on the coefficients |a2| and |a3| for functions in these subclasses as
follow.

Definition 1.1 ( [6]). A function f(z) given by (1.1) is said to be in the class
HΣ(α, β) if the following conditions are satisfied:

f ∈ Σ and |arg(f ′(z) + βzf ′′(z))| < απ

2
(z ∈ U),

and

|arg(g′(w) + βwg′′(w))| < απ

2
(w ∈ U),

where, β > 0, 0 < α < 1, 2(1− α)
∞∑

m=1

(−1)m−1

βm+1 ≤ 1, and the function g is the

extension of f−1 to U, which

g(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · .(1.2)

Theorem 1.2 ( [6]). Let f(z) given by (1.1) be in the class HΣ(α, β) where

β > 0, 0 < α < 1, 2(1− α)
∞∑

m=1

(−1)m−1

βm+1 ≤ 1. Then

|a2| ≤
2α√

2(α+ 2) + 4β(α+ β + 2− αβ)
,
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and

|a3| ≤
α2

(1 + β)2
+

2α

3(1 + 2β)
.

Definition 1.3 ( [6]). A function f(z) given by (1.1) is said to be in the class
HΣ(γ, β) if the following conditions are satisfied:

f ∈ Σ and Re(f ′(z) + βzf ′′(z)) > γ (z ∈ U),

and

Re(g′(w) + βwg′′(w)) > γ (w ∈ U),

where, β > 0, 0 ≤ γ < 1, 2(1− γ)
∞∑

m=1

(−1)m−1

βm+1 ≤ 1, and g is given by (1.2).

Theorem 1.4 ( [6]). Let f(z) given by (1.1) be in the class HΣ(γ, β) where

β > 0, 0 ≤ γ < 1, 2(1− γ)
∞∑

m=1

(−1)m−1

βm+1 ≤ 1. Then

|a2| ≤

√
2(1− γ)

3(1 + 2β)
,

and

|a3| ≤
(1− γ)2

(1 + β)2
+

2(1− γ)

3(1 + 2β)
.

The purpose of our study is to obtain estimates of coefficients |a2| and |a3| for
functions in subclasses Hh,p

Σ (β) which improve Theorem 1.2 and Theorem 1.4.

2. Coefficient Estimates

In this section, we introduce and investigate the general subclass Hh,p
Σ (β)

where β ≥ 0.

Definition 2.1. Let h, p : U → C be analytic functions and

min{Re(h(z)),Re(p(z))} > 0 (z ∈ U) and h(0) = p(0) = 1.

A univalent function f ∈ S given by (1.1) is said to be in the class Hh,p
Σ (β) if

the following conditions are satisfied:

f ∈ Σ and f ′(z) + βzf ′′(z) ∈ h(U) (z ∈ U),(2.1)

and

g′(w) + βwg′′(w) ∈ p(U) (w ∈ U),(2.2)

where, β ≥ 0 and the function g is given by (1.2).

Remark 2.2. There are many choices of h, p and β which would provide

interesting subclasses of class Hh,p
Σ (β). For example,
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(1) For β > 0 and h(z) = p(z) =
(

1+z
1−z

)α

where 0 < α ≤ 1, it can be

directly verified that the functions h(z) and p(z) satisfy the hypotheses

of Definition 2.1. Now if f ∈ Hh,p
Σ (β) then

|arg(f ′(z) + βzf ′′(z))| < απ

2
and |arg(g′(w) + βwg′′(w))| < απ

2
.

Therefore in this case, the class Hh,p
Σ (β) reduces to class HΣ(α, β)

in Definition 1.1.
(2) For β > 0 and h(z) = p(z) = 1+(1−2γ)z

1−z , where 0 ≤ γ < 1, the functions

h(z) and p(z) satisfy the hypotheses of Definition 2.1. Now if f ∈
Hh,p

Σ (β), then

Re(f ′(z) + βzf ′′(z)) > γ and Re(g′(w) + βwg′′(w)) > γ.

This means that the class Hh,p
Σ (β) reduces to class HΣ(γ, β) in Defini-

tion 1.3.

(3) For β = 0 and h(z) = p(z) =
(

1+z
1−z

)α

where 0 < α ≤ 1, the class

Hh,p
Σ (0) reduces to the classHα

Σ which is defined by Srivastava et al. [10,
Definition 1].

(4) For β = 0 and h(z) = p(z) = 1+(1−2γ)z
1−z , where 0 ≤ γ < 1, the class

Hh,p
Σ (0) reduces to the class HΣ(γ) which is defined by Srivastava et

al. [10, Definition 2].

Now, we derive the estimates of the coefficients |a2| and |a3| for classHh,p
Σ (β).

Theorem 2.3. If f ∈ Hh,p
Σ (β) where β ≥ 0, then

|a2| ≤ min

{√
|h′(0)|2 + |p′(0)|2

8(1 + β)2
,

√
|h′′(0)|+ |p′′(0)|

12(1 + 2β)

}
,(2.3)

and

|a3| ≤ min

{
|h′(0)|2 + |p′(0)|2

8(1 + β)2
+

|h′′(0)|+ |p′′(0)|
12(1 + 2β)

,
|h′′(0)|

6(1 + 2β)

}
.(2.4)

Proof. Since f ∈ Hh,p
Σ (β) and g = f−1, from relations (2.1) and (2.2) we have,

f ′(z) + βzf ′′(z) = h(z) (z ∈ U),(2.5)

and

g′(w) + βwg′′(w) = p(w) (w ∈ U),(2.6)

respectively, where functions h and p satisfy the conditions of Definition 2.1.
Also, functions h and p have the following Taylor-Maclaurin series expansions:

h(z) = 1 + h1z + h2z
2 + h3z

3 + · · ·,(2.7)
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and

p(w) = 1 + p1w + p2w
2 + p3w

2 + · · ·.(2.8)

Now, by substituting (2.7) and (2.8) into (2.5) and (2.6), respectively, and
equating the coefficients, we get

2(1 + β)a2 = h1,(2.9)

3(1 + 2β)a3 = h2,(2.10)

−2(1 + β)a2 = p1,(2.11)

and

6(1 + 2β)a22 − 3(1 + 2β)a3 = p2.(2.12)

From (2.9) and (2.11), it yields

h1 = −p1,(2.13)

and

8(1 + β)2a22 = h2
1 + p21.(2.14)

Adding (2.10) and (2.12), gives

6(1 + 2β)a22 = p2 + h2.(2.15)

Consequently, from (2.14) and (2.15), we have that

a22 =
h2
1 + p21

8(1 + β)2
,(2.16)

and

a22 =
p2 + h2

6(1 + 2β)
,(2.17)

respectively. Therefore, we find from the equations (2.16) and (2.17), that

|a2|2 ≤ |h′(0)|2 + |p′(0)|2

8(1 + β)2
,

and

|a2| ≤
|h′′(0)|+ |p′′(0)|

12(1 + 2β)
.

Thus, the desired estimate on the coefficient |a2| as asserted in (2.3).
Next, in order to find the bound of the coefficient |a3|, by subtracting (2.12)

from (2.10), we get

6(1 + 2β)a3 − 6(1 + 2β)a22 = h2 − p2.(2.18)

Upon substituting the value of a22 from (2.16) into (2.18), it follows that

a3 =
h2
1 + p21

8(1 + β)2
+

h2 − p2
6(1 + 2β)

,
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Therefore, we obtain

|a3| ≤
|h′(0)|2 + |p′(0)|2

8(1 + β)2
+

|h′′(0)|+ |p′′(0)|
12(1 + 2β)

.(2.19)

On the other hand, by substituting the value of a22 from (2.17) into (2.18),
it follows that

a3 =
p2 + h2)

6(1 + 2β)
+

h2 − p2)

6(1 + 2β)
=

h2

3(1 + 2β)
.

Hence

|a3| ≤
|h′′(0)|

6(1 + 2β)
.(2.20)

The desired estimate of the coefficient |a3| as asserted in (2.4) will be obtained
from (2.19) and (2.20). □

By choosing

h(z) = p(z) =

(
1 + z

1− z

)α

(0 < α ≤ 1, z ∈ U),

in Theorem 2.3, we have the following result.

Corollary 2.4. Let the function f be given by (1.1) in the class Hh,p
Σ (β) where

β ≥ 0. Then

|a2| ≤ min

{
α

1 + β
,

√
2α√

3(1 + 2β)

}
,

and

|a3| ≤
2α2

3(1 + 2β)
.

Remark 2.5. Corollary 2.4 is an improvement of estimates obtained by Frasin
[6] in Theorem 1.2. To see this, for the coefficient |a2|, we have that

(i) If β ≥ 1
2 +

√
3
2 , then min

{
α

1+β ,
√
2α√

3(1+2β)

}
= α

1+β , and

α

1 + β
≤ 2α√

2(α+ 2) + 4β(α+ β + 2− αβ)
.

(ii) If β ≤ 1
2 +

√
3
2 , then min

{
α

1+β ,
√
2α√

3(1+2β)

}
=

√
2α√

3(1+2β)
, and

√
2α√

3(1 + 2β)
≤ 2α√

2(α+ 2) + 4β(α+ β + 2− αβ)
.
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Also for the coefficient |a3|, it can be concluded that

2α2

3(1 + 2β)
≤ α2

(1 + β)2
+

2α

3(1 + 2β)
.

Therefore the bounds obtained in Corollary 2.4 is a refinement of the estimates
obtained in Theorem 1.2.

If we take β = 1 in Theorem 2.3, then we have the following result.

Corollary 2.6. Let the function f be given by (1.1) in the class Hh,p
Σ (1). Then

|a2| ≤ min

{√
|h′(0)|2 + |p′(0)|2

32
,

√
|h′′(0)|+ |p′′(0)|

36

}
,(2.21)

and

|a3| ≤ min

{
|h′(0)|2 + |p′(0)|2

32
+

|h′′(0)|+ |p′′(0)|
36

,
|h′′(0)|
18

}
.(2.22)

By taking

h(z) = p(z) =

(
1 + z

1− z

)α

(0 < α ≤ 1, z ∈ U),

in Corollary 2.6, the following result will be concluded.

Corollary 2.7. Let the function f be given by (1.1) in the class Hh,p
Σ (1). Then

|a2| ≤ min

{
α

2
,

√
2α

3

}
=

√
2α

3
,

and

|a3| ≤
2α2

9
.

By setting β = 0 in Corollary 2.4, we obtain the following consequence
which is an improvement of the estimates obtained by Srivastava et al. in [10,
Theorem 1].

Corollary 2.8. Let the function f be given by (1.1) in the class HΣ(α). Then

|a2| ≤
√

2

3
α,

and

|a3| ≤
2α2

3
.

By letting

h(z) = p(z) =
1 + (1− 2γ)z

1− z
(0 ≤ γ < 1, z ∈ U),

in Theorem 2.3, we deduce the following corollary.
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Corollary 2.9. Let the function f be given by (1.1) in the class Hh,p
Σ (β) where

β ≥ 0. Then,

|a2| ≤ min

{
1− γ

1 + β
,

√
2(1− γ)

3(1 + 2β)

}
,

and

|a3| ≤
2(1− γ)

3(1 + 2β)
.

Remark 2.10. Corollary 2.9 is an improvement of the estimates obtained by
Frasin [6] in Theorem 1.4. To see this,

for the coefficient |a2|, if β >
3δ−2+

√
3δ(3δ−2)

2 and δ > 2
3 , then

min

{
1− γ

1 + β
,

√
2(1− γ)

3(1 + 2β)

}
<

√
2(1− γ)

3(1 + 2β)
.

Also for the coefficient |a3|, we have

2(1− γ)

3(1 + 2β)
<

(1− γ)2

(1 + β)2
+

2(1− γ)

3(1 + 2β)
.

Therefore the bounds obtained in Corollary 2.9 is a refinement of the estimates
obtained in Theorem 1.4.

If we take β = 1 and

h(z) = p(z) =

(
1 + z

1− z

)α

(0 < α ≤ 1, z ∈ U),

in Theorem 2.3, we have the following result.

Corollary 2.11. Let the function f be given by (1.1) in the class Hh,p
Σ (1).

Then,

|a2| ≤ min

{
1− γ

2
,

√
2(1− γ)

3

}
,

and

|a3| ≤
2(1− γ)

9
.

By setting β = 0 in Corollary 2.9, we obtain the following result which is an
improvement of the estimates obtained by Srivastava et al. [10, Theorem 2].

Corollary 2.12. Let the function f be given by (1.1) in the class HΣ(γ). Then

|a2| ≤ min

{
1− γ,

√
2(1− γ)

3

}
,

and

|a3| ≤
2(1− γ)

3
.
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