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(Revised Version June 14, 1994) 

Abstract. In this paper we study the Grothendieck spaces among the operator spaces L,(E:, F). 
Conditions under which L,(E:, F) contains complemented copy of c,, are given. We apply these results 
to spaces of the type C,(X; F) endowed with strict topologies. 

1. Introduction 

Let E and F be two locally convex spaces. The &-product EEF is the space L,(EL, F) of 
all a(E',E) - a(F,F')  continuous linear operators from E' into F which transform 
equicontinuous subsets of E' into relatively compact subsets of F, endowed with the topology 
of uniform convergence on the equicontinuous subsets of E' [20]. It is well known that when 
E and F are complete locally convex spaces, then E Se F 4 L,(Ei, F). Recently various 
properties of L,(E:, F )  have been widely studied, see for example [3, 4, 6, 7, 12, 171, and 
the reader is referred to the survey article [17] for the basic information about this important 
space of operators. FRENICHE [l 11, has extended the definition of Grothendieck space to 
the locally convex setting. A locally convex space E is said to be Grothendieck if the a@', 
E) and a(E', E") sequential convergences coincide on equicontinuous subsets of E'. 

We now recall a few definitions. If X is a Hausdorff completely regular space, then 
C ( X ;  P) denotes the vector space of the continuous functions on X with values in F, and 
cb(x; F) denotes the vector subspace of bounded continuous functions. If F is the scalar 
field, we simply write C ( X )  and cb(x), respectively. Let 8 be a directed family of compact 
subsets of X which covers X .  Then we denote by L% the set of all bounded functions 
u :  X + R+ which 8-vanish at infinity (i.e., for every E > 0, there is a K E 8 such that 
JIuJIx, 5 E).  The notation ?,(resp. rl) stands for the locally convex topology on cb(x; F)  
of uniform convergence on X(resp. on the elements of 9). The strict topology Pl is defined 
in [21] as the locally convex topology on cb(x; F) described by the system of semi-norms 
{ I1 . II ,,. : P E cs(F), v E 91, where 

Ilf I l u . p  = SUP {W PCf(4): x E x1 
for each f in cb(x; F )  . 
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It is well known that the space (C, (X;  F), z,) and the space (Cb(X;  F), f l B )  have the same 
bounded subsets and that on the bounded sets, the topologies zrp and fls coincide. If A is 
a subset of X and B is an absolutely convex subset of F ,  then 

C(A,  B) := {f E C(X; F )  :f(A) c B}  . 

A topological space X is angelic [9], if the following two conditions are satisfied by any 
relatively countably compact subset K of X : (1) K is compact; (2) every x E K is the limit 
of some sequence in K. A locally convex space E is c,-barrelled if every a(E', E)-null sequence 
in E is equicontinuous, and E is a Mazur space if sequentially continuous elements in the 
algebraic dual E* of E are continuous, i.e., in E'. 

2. Main results 

The following characterization of the Grothendieck spaces which are c,-barrelled in terms 
of linear continuous operators and its proof were inspired by Theorem 3.1 in [8]. 

Theorem 2.1. For a c,-barrelled space E, the following are equivalent: 
(i) E is a Grothendieck space. 
(ii) For each locally convex space F for which (F', a(F', F ) )  is a Mazur space, every con- 

tinuous linear operator T :  E -+ F carries bounded sets into weakly relatively compact sets. 
(ui) For each complete locally convex space F with a countable family {K,: n E N} of 

relatively a(F, F')-countably compact sets such that u K ,  is a(F, F')-dense in F, every con- 

tinuous linear operator T :  E -+ F carries bounded sets into weakly relatively compact sets. 

compact sets. 

m 

n =  I 

(iv) Every continuous linear operator T : E + c, carries boundedsets into weakly relatively 

Proof. (i) =- (ii): By the result 42.2.1 of [15], it is enough to show that T"(E'') c F. For 
every sequence cf,) in F which a(F, F) converges to zero, (T'cf,)) is a(E', E)-convergent 
to zero. Since E is c,-barrelled, it follows that { T'cf.')} is an equicontinuous subset of E 
and consequently (T'u,))  is u(E, E")-convergent to zero. For each e" E E" we have 

(T"(e")) cf b) = e"( T'cf,)) -+ 0 . 

Thus, T"(e") is a(F, F )  sequentially continuous and our assumption on F implies that 
T"(e") E F. 

(ii) * (iii): By the Eberlein-Smulian Theorem 3.10.5 of [9], one can show that (F, a(F, F))  
in an angelic space. In particular, every equicontinuous subset of F' is relatively a(F, F)- 
sequentially compact. Therefore by Theorem 1.5 of [ S ]  it follows that (F', a(F', F))  is a Mazur 
space. 

(iii) 
(iv) 

(iv): The proof of it is trivial. 
(i): If (eb) is a u(E, E)-null sequence, then by our hypothesis on E, {eb} is equi- 

continuous and T : E  + c, defined by T(e) = (e:(e)) is a continuous linear operator. It 
follows from 42.2.1 of [15] that T"(E") c c,. This implies that T"(e") = (e''(e;)) E c, for 
each e" E E". Thus the sequence (eb), a(E', E")-converges to zero, and E is a Grothendieck 
space. 0 
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We denote by a0, the subspace of co whose elements have only finitely many non-zero 
coordinates. Let El be a subspace of E so that there exists a topological isomorphism 
T:El -+ a,. We identify 1’ with the dual space Po and define 

where (u,) and (ub) are the standard Schauder bases of co and 1’ respectively. If B is the 
closed unit ball of a0, then there exists an absolutely convex zero-neighbourhood U1 in E 
such that U ,  n El = T-’(B).  If p is the gauge of U , ,  then le:(e)l I p(e) for every e E E 
and every n E N. The following theorem is related to a result of FRENICHE [lo]. Here we give 
acharacterization ofthe a(F’, F)-null sequences in F’ when L,(E:, F) is a Grothendieck space. 

Theorem 2.2. Let E and F be two locally convex spaces and suppose that E contains a 
subspace topologically isomorphic to Qr,. IfL,(EL, F) is a Grothendieck space, then the o(F, F) 
and P(F, F) sequential convergence coincide in the equicontinuous subsets of F’. 

Proof.  We preserve the notation introduced in the above paragraph and proceed by 
contradiction. If this is not the case, there exist a zero-neighborhood V, in F and a sequence 
cfn) in Vy such that cfn) is a(F‘, F)-null but it is not P(F‘, F)-null. Thus there exist u > 0 
and a bounded sequence (f,) in F such that If’,Cf,)l 2 ~1 for every n (by passing to a sub- 
sequence if necessary). Let H = L,(E:, F) and let h:, = ek @ f’, E H’, where K(h)  = (h(eA),f’,) 
for every h E H ,  n 2 1; we now show that the sequence (W,) is (T(H’, H)-null. But (eb) is 
in Uy and therefore h(eb) is a relatively compact subset of F. Thus K(h)  tends to zero for 
each h E H; {K} is an equicontinuous subset of H’ [Proposition 2.1 of [3]]. Since Ce, is a 
weakly unconditionally Cauchy series and (f,) is a bounded sequence in F ,  by Theorem 
2.4 of [3] the series Ce, @ f, is weakly unconditionally Cauchy in H. Thus it converges to 
an element h” E H”. Since 

for every n, the sequence (K) is not o(H’, H”)-null, and this is a contradiction, 

Remarks. 
(a). The above theorem is also valid for L,(F:, E). In fact, the map h -+ h’ is a topological 

isomorphism of L,(Eh, F) onto L,(F:, E). 
(b). If F is a Frtchet space, then by the Josefson-Nissenzweig theorem for Frtchet spaces 

[BONET-LINDSTROM-VALDIVIA [ 111, a(F‘, F) and P(F‘, F) converging sequences coincide if and 
only if F is a Montel space, and we have the following corollary. 

Corollary 2.1. Let E be a locally convex space containing a subspace isomorphic to co and 
let F be a Frtchet space. IfL,(E:, F) is a Grothendieck space, then F is a Montel space. 

(c). When F is an infinite dimensional Banach space, the above corollary shows that 
L,(EL, F) is not a Grothendieck space. 

CEMBRANOS [2] has shown that if K is an infinite compact Hausdorff space and if E is 
an infinite dimensional Banach space, then C(K; E )  contains a complemented copy of co. 
This result has been generalized to  the injective tensor products by SAAB and SAAB [18]: If 
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E and Fare two infinite dimensional Banach spaces and E contains a subspace isomorphic 
to co, then E 8, F contains a complemented subspace isomorphic to co. FRENICHE [ 101 has 
independently proven that if a locally convex space E has an isomorphic subspace to @, 
and F is an infinite dimensional normed space, then E 0, F contains a complemented 
subspace isomorphic to co. Recently RYAN [16] has obtained a simple proof of SAAB and 
SAAB'S result and has shown that a co copy in E 5, F is in fact complemented in K(E', F),  
where K(E', F )  is the space of all compact operator from E' into F. The following theorem 
is an analogous result for the space L,(E:, F) .  

Theorem 2.3 r f  E is a complete locally convex Hausdorff space containing a copy El  of 
c, and i f  F is an infinite dimensional Banach space, then E && F has a copy of co which is 
complemented in L,(E:., F ) .  

Proof. By the Josefson-Nissenzweig theorem [5, page 2191, there exists a sequence (f,) 
in F' such that (f,) is g(F', F)-null and l/f,ll = 1 for n 2 1. Let (f,) c F be such that 
1/2 5 llf,li 5 2 and f,(f,) = 1 for n 2 1. Suppose that the sequence (en) is equivalent to 
the unit vector basis of co in E l ,  and suppose that (el) is the corresponding orthogonal 
sequence in El. We will show that the closed linear span H := [e, @ f.] in L,(E:, F )  is 
isomorphic to co. We first show that H in the induced topology is isomorphic to a Banach 
space. To this end, as in Theorem 2.2 and its preceeding paragraph, we let U ,  be an 
absolutely convex zero-neighborhood in E such that U1 n E l  = T - ' ( B )  and let V, be the 
unit ball of F. Since U ,  n E ,  is bounded, for any absolutely convex zero-neighborhood U 

in E there exist CI > 0 such that the restriction of the zero-neighborhood N Uy, - V, in 

L,(E:, F )  to H is contained in the zero-neighborhood N(Uo, V,) in L,(E:, F) .  Recall that 
N(Uo, V )  denotes the set of all h t L,(E:, F )  such that h(Uo) c I/: Thus H is isomorphic 
to a Banach space. 

Moreover, as in the proof of Theorem 2.2, Ce, @ f, is weakly unconditionally Cauchy 
series and in inf lie, @ f,/l > 0, therefore an appeal to Corollary 7 of [5, page 451 shows 

that the sequence (en @ f,) is equivalent to a c,-basis in E 0, F and consequently in L,(E:, F). 
We define now the map 

( 3  

n 

p :  L,(E:,  F )  H H 

A h )  = W ( e b ) ,  f,> e, 0 f, , 
by 

h E L,(E:., F ) .  

Since {e;} is an equicontinuous subset of E', (h(eb), f,) - 0. One can now easily show that 
p is in fact a continuous linear projection from L,(E:, F )  onto H .  0 

By Ki(E, F )  we mean the space of all weakly continuous linear operators which transform 
bounded sets into relatively compact subsets of F ,  endowed with the topology of uniform 
convergence on bounded sets in E.  The following corollary offers a refinement of a result 
in [16]. 

Corollary 2.2. Zf E is u locally convex metric space such that EL contains a copy of co and 
if F is an infinite dimensional Banach space, then K:(E, F )  contains a complemented sub- 
space isomorphic to co. 
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Proof. If E is metrizable, then by the result 21.6.4 of [14], Eb is a complete space. The 
example 0.2 of [3] shows that Kt(E, F )  is topologically isomorphic to L,((Eb):, F),  which 
completes the proof. 0 

3. Applications 

FRENICHE [l 11 has shown that C ( X ;  F )  equipped with the compact-open topology is a 
Grothendieck space if and only if C ( K ;  F )  is a Grothendieck space for every compact subset 
K of X .  The following result is analogous to one direction of FRENICHE’S result. 

Theorem 3.1. Let X be a completely regular Hausdorffspace and let F be a locally convex 
space. If (cb(x; F),  PB) is a Grothendieck space, then for any K E 9, ( C ( K ;  F), z,) is a 
Grothendieck space. 

Proof.  Let K E B and let T be the restriction operator from (cb(x; F),  f19) into 

C(K, B) E C ( X ,  B) + C(K,  V )  

( C ( K ;  F) ,  zu). For each absolutely convex bounded subset B of F one has 

for every closed and absolutely convex zero-neighborhood V in F [19]. It is a well known 
fact that C ( X ,  B)  is a P,-bounded subset of C b ( X ;  F).  Thus the closure of T ( C ( X ,  B)) contains 
the bounded set C ( K ,  B) of (C(K ,  F) ,  z,,) and by Proposition 2.3(b) of [ll], (C(K ,  F) ,  7,) is 
a Grothendieck space. 0 

KHURANA and VIELMA [13] have shown that if X has an infinite compact subset and F is 
a Banach space, then (C,(X; F) ,  Po) is a Grothendieck space if and only if F is finite 
dimensional and (cb(x), Po) is a Grothendieck space. Let us recall that if 9 is the family 
of all compact subsets of X ,  then p9 is the strict topology Po on cb(x; F). The following 
corollary offers a refinement of one direction of this result. 

Corollary 3.1. I f (C, (X;  F) ,  P9) is a Grothendieck space, F is a quasicomplete locally convex 
space and X has an infinite compact subset K E 8, then the u (F ,  F )  and P(F, F )  sequential 
convergence coincide in the equicontinuous subsets of F ’ .  

Proof.  By Theorem 3.1, ( C ( K ;  F) ,  7,) is a Grothendieck space, and Example 0-5 of [3] 
shows that ( C ( K ;  F) ,  z,) is topologically isomorphic to L,(C(K)’, F). By theorem 2.2. the 
proof is ocmpleted. 0 

Remarks. (a) In the case that F is a Frkchet space, by a result in [l], F must be a Monte1 

(b) When F is a Banach space, we obtain Theorem 3 of [13]. 
space, thus we have a refinement of the Corollary 3.3. of 1111. 
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