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Abstract We define an m-involution to be a matrix K ∈ C
n×n for which Km = I .

In this article, we investigate the class Sm (A) of m-involutions that commute with a

diagonalizable matrix A ∈ C
n×n. A number of basic properties of Sm (A) and its related

subclass Sm (A, X) are given, where X is an eigenvector matrix of A. Among them, Sm (A)

is shown to have a torsion group structure under matrix multiplication if A has distinct

eigenvalues and has non-denumerable cardinality otherwise. The constructive definition of

Sm (A,X) allows one to generate all m-involutions commuting with a matrix with distinct

eigenvalues. Some related results are also given for the class S̃m (A) of m-involutions that

anti-commute with a matrix A ∈ C
n×n.
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1 Introduction

Let J represent the exchange matrix of order n, defined by Ji,j = δi,n−j+1 for 1 ≤ i, j ≤ n,

where δi,j is the Kronecker delta. If A ∈ Cn×n commutes with J , then A is called centrosym-

metric. Centrosymmetric matrices, which appear in numerous applications, include the class

of symmetric Toeplitz matrices and the class of bisymmetric matrices. A number of articles

(among them, [1, 2, 5, 6], and [9]) investigated the generalization, where J is replaced by an

involutory matrix K.

More recently, W. F. Trench (in [7, 8]) investigated the set of complex matrices A that

satisfy AK = ζjKA, where ζ is an m-th root of unity, 0 ≤ j ≤ m − 1, and K’s minimal

polynomial is xm − 1 for an integer m > 1. Trench referred to such K as m-involutions, but in

this article, we use the term m-involution to refer to any matrix K for which Km = I. We refer

to the set of matrices whose minimal polynomial is xm−1 as the non-trivial m-involutions. This

terminology is consistent with usage in the case m = 2, where the matrices ±I are regarded as

trivial involutions.
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In this article, we define a Km-symmetric matrix to be a complex matrix A that commutes

with an m-involutory matrix K. In articles studying K2-symmetric and Km-symmetric matri-

ces, the matrix K is usually considered fixed and the properties of the matrix A are studied.

One difficulty in applying results of this nature is that, except in special cases, it is typically not

easy to discern the Km-symmetry of a matrix A by mere inspection. In this article, we take a

somewhat different approach by fixing A and studying the class Sm (A) of m-involutory matri-

ces K that commute with it. To begin the investigation, we introduce a constructive subset of

Sm (A) that enables the easy generation of m-involutions that commute with A. Now, the task

of identifying the Km-symmetry of a matrix A can, to some extent, be reduced to a relatively

straightforward computation. We also show that Sm (A) has a torsion group structure under

matrix multiplication if A has distinct eigenvalues and is infinite cardinality otherwise.

If A ∈ Cn×n anti-commutes with the exchange matrix J , then A is called either skew-

centrosymmetric or centroskew per reference [4]. As in the centrosymmetric case, the articles

[5, 6, 9] investigated the case where J is replaced by a general involution, while [7] looked at

a broader generalization (mentioned above) that includes the commuting and anti-commuting

cases. This motivates a study of the anti-commuting case, and so we close this article by

establishing some related results for the class S̃m (A) of m-involutory matrices K which anti-

commute with A.

2 Preliminaries

In [5, 6, 9], several K2-symmetric matrix analogs to well-known results for centrosymmetric

matrices were established. For example, during the 1960s and 1970s, Collar [4], Andrew [2], and

Cantoni and Butler [3] each noted (in slightly different contexts) that the eigenbasis {xi}
n
i=1 of

an n× n centrosymmetric matrix A is composed of
⌈

n
2

⌉
symmetric eigenvectors (that is, xi =

Jxi) and
⌊

n
2

⌋
skew-symmetric eigenvectors (that is, xi = −Jxi). In [5], this observation was

extended Tao and Yasuda to the situation where J is replaced by a non-trivial involutory matrix

K and both A and K are real symmetric ([5, Lemma 3.11]). This was a direct generalization

of the context considered in [3]. The article [9] extended this to the Hermitian case for A and

K ([8, Propositions 3.5 and 4.1]). In [6], W. F. Trench strengthened this result ([6, Theorem

7]) by showing that K2-symmetric matrices A have a basis consisting of K-symmetric (that is,

xi = Kxi) and K-skew-symmetric eigenvectors (that is, xi = −Kxi) without the Hermitian

condition assumed in [9]. Trench also established the converse, thereby generalizing a result of

Andrew for centrosymmetric matrices ([2, Theorem 2]). We will refer to these two results of

Trench collectively as the Eigenbasis Theorem for K2-symmetric matrices.

More recently, in [7], Trench extended this result to the class of complex matrices A which

commute with a non-trivial m-involutory matrix K. Let ζ = e2πi/m. His result ([7, Theorem

13]) states that if K ∈ Cn×n is non-trivial m-involutory, A ∈ Cn×n is Km-symmetric, and

λ is an eigenvalue of A, then the λ-eigenspace of A has a basis in QA =
m−1⋃
j=0

{
x|Kx = ζjx

}
.

Conversely, he showed that if a matrix A has n linearly independent vectors in QA, then A is

Km-symmetric. Accordingly, we will collectively refer to these two more general statements as

the Eigenbasis Theorem for Km-symmetric matrices. Following Trench, we will refer to vectors
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satisfying Kx = ζrx as (K, r)-symmetric vectors.

In this article, we use the notation Sm (A) to denote the set of complex m-involutory

matrices K that commute with a complex matrix A. We use the notation Tp(x) (A) to denote

the set of complex m-involutory matrices with minimal polynomial p(x) that commute with A.

Note that

Sm (A) =
⋃

p(x)|xm−1
p(x)∈C[x]
p(x)monic

Tp(x) (A).

Let α, μ ∈ {0, 1, · · · , k − 1} and let R and S be non-trivial m-involutions. In Trench’s

articles [7, 8], the class of matrices A satisfying the equation

RAS−α = ζμA (1)

are studied. When α = 1, μ = 0, and R = S, the matrices R and S belong to the set Tp(x) (A)

where p(x) = xm − 1. Trench’s focus is on the class of matrices A satisfying (1), and while he

does provide some general results concerning non-trivial m-involutions, he does not attempt to

investigate the collective properties of either the set Tp(x) (A) or its superset Sm (A).

3 Construction and Properties of Sm (A, X)

In what follows, we assume that A is diagonalizable. Let A = XΛX−1, where X is an

eigenvector matrix of A and Λ is the diagonal eigenvalue matrix of A. For convenience, we

will assume that all the columns of X are normalized and that there is a fixed ordering for the

eigenvalues in Λ.

If we wish to construct a non-trivial subset of Sm (A), consideration of simultaneous di-

agonalization and familiarity with the Eigenbasis Theorem for Km-symmetric matrices leads

naturally to the investigation of matrices of the form K = XDX−1, where D is a diagonal

matrix whose diagonal elements belong to the set of the m-th roots of unity.

Definition 3.1 For a fixed eigenvector matrix X of A ∈ Cn×n, we define

Sm (A, X) =
{

XDX−1|D diagonal with Di,i ∈
{
ζj

}m−1

j=0

}
,

where ζ = e2πi/m.

The following theorem lists some of the more elementary properties concerning the set

Sm (A, X) and its relationship to Sm (A).

Theorem 3.2 For a fixed eigenvector matrix X of A ∈ Cn×n, we have

Sm (A, X) ⊆ Sm (A) , (2)

|Sm (A, X) | = mn, (3)

and

S2 (A) =
⋃
X

S2 (A, X) (4)

where the union ranges over all possible eigenvector matrices X of A.

Proof (2) and (3) follow easily from the definition of Sm (A, X).



634 ACTA MATHEMATICA SCIENTIA Vol.32 Ser.B

To show (4), we first note that the trivial involutions ±I in S2 (A) are obtained using

D = ±I for any eigenvector matrix X of A. For any non-trivial involution K, the Eigenbasis

Theorem for K2-symmetric matrices states that there exists an eigenbasis for A consisting

of K-symmetric and K-skew-symmetric eigenvectors. Let X =
(
x1 x2 · · · xn

)
have columns

comprised of such a basis. If we choose D = (di,j)1≤i,j≤n to be the diagonal matrix having

dj,j = −1 for each K-skew-symmetric eigenvector xj and 1 for the remaining diagonal elements,

then K = XDX−1. That is, we recover K with this choice of D.

So, for any non-trivial involutory K ∈ S2 (A), there exists an eigenvector matrix X of A

and a choice of D such that K = XDX−1. This shows that S2 (A) ⊆
⋃
X

S2 (A, X), and (2)

shows the reverse inclusion.

In the proof of the third assertion of 3.2, we showed how one could choose the elements of

a diagonal matrix D to recover a matrix K ∈ S2 (A), given an eigenvector matrix for A consist-

ing of K-symmetric and K-skew-symmetric columns. We now state the analogous “recovery”

theorem for a nontrivial m-involution K ∈ Sm (A). The proof follows along the same lines as

that for the S2 (A) case so we omit it.

Theorem 3.3 Let A ∈ C
n×n be Km-symmetric, where K is a non-trivial m-involution.

Suppose that X =
(
x1 x2 · · · xn

)
is an eigenvector matrix for A, where each column xj is

(K, rj)-symmetric for some 0 ≤ rj ≤ m − 1. As A is Km-symmetric, such an X is guaranteed

to exist by the Eigenbasis Theorem for Km-symmetric matrices. Then, there exists a diagonal

matrix D = (di,j)1≤i,j≤n, such that K = XDX−1 and whose diagonal elements d(j, j) satisfy

dj,j = ζn−rj . As usual, ζ = e2πi/m.

The following corollary is immediate from 3.3.

Corollary 3.4 Let A ∈ C
n×n be Km-symmetric, where K is a non-trivial m-involution.

If Xa and Xb are eigenvector matrices of A, each of whose columns is (K, rj)-symmetric for

some 0 ≤ rj ≤ m− 1, then K ∈ Sm (A, Xa) ∩ Sm (A, Xb)

Example If A is a centrosymmetric matrix and X is any eigenvector matrix of A com-

prised of symmetric and skew-symmetric vectors, then the exchange matrix J is guaranteed to

be found in S2 (A, X).

Equations (2) and (3) of 3.2 show that after one determines an eigenvector matrix X and its

inverse X−1 for a diagonalizable matrix A, one can then identify mn different Km-symmetries

of A by simply computing the matrix products XDX−1, where one varies the diagonal elements

of the matrix D over the different combinations of m-th roots of unity. This computation can

be further made more efficient by making the following observations.

1. Let K = XDX−1 and K̃ = XD̃X−1 be members of Sm (A, X), where the diagonal

matrices D = diagonal(dii) and D̃ = diagonal(d̃ii) differ only by a factor of ζ in their kth

diagonal elements. If d̃kk = ζdkk, and we denote the (i, j)-th element of X−1 by yij , then

element k̃ij of K̃ is related to element kij of K by

k̃ij = kij + (ζ − 1)dkkxikykj .

So, as one iterates through the products XDX−1 by varying D, if an update to D only involves

a ζ-scaling of a single diagonal element, then deriving an updated K̃ from K requires just 3n2

multiplications and n2 + 1 additions.
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2. If K ∈ Sm (A, Xj), then ζrK ∈ Sm (A, Xj) for 0 ≤ r ≤ m−1. To avoid the unnecessary

computation of these scalar multiples of K, we can simply fix a diagonal element of D (say

d11) at 1 and vary the other diagonal elements over the m-th roots of unity. To see this, let

K = XDX−1 be an element of Sm (A, Xj) for some D = diagonal
(
ζr1 ζr2 · · · ζrn

)
. Then,

ζ−r1KX =
(

x1 ζr2−r1x2 · · · ζ
rn−r1xn

)
.

This shows that there exists a matrix K̃ ∈ Sm (A, Xj), such that K = ζrK̃, where K̃ = XD̃X−1

and D̃ has the value 1 for its d1,1 element. Employing this observation reduces the number of

matrix product computations needed to enumerate the elements of Sm (A, Xj) by a factor of

m.

After generating the elements of Sm (A, X), one can then select distinguished elements K

from the set and apply known theoretical results for Km-symmetric matrices to a particular

study involving A.

As Sm (A, X) is finite, it is not surprising that one can make some fairly strong statements

about its elements. The next theorem lists two such statements and shows that, when a matrix

A ∈ Cn×n has distinct eigenvalues, these statements apply to Sm (A) itself.

Theorem 3.5 If A ∈ Cn×n is diagonalizable with an eigenvector matrix X , then

1. If A has distinct eigenvalues (hence, is diagonalizable), then

Sm (A) = Sm (A, X) , (5)

2. The number of non-trivial m-involutory matrices in Sm (A, X) is

m∑
j=0

(−1)j

⎛
⎝m

j

⎞
⎠ (m− j)n

. (6)

Proof The proof of the first assertion (5) is elementary and has been omitted.

For the second assertion (6), we wish to compute the cardinality of Tp(x) (A) when p(x) =

xm − 1 and p(x) has distinct roots. To determine this, one simply needs to count the number

of diagonal matrices D whose set of diagonal elements contain at least one of each of the m-th

roots of unity. This can be performed by a standard inclusion-exclusion enumeration.

We now characterize the algebraic structure of Sm (A, X), which, as we have shown in

Theorem 3.5, equals Sm (A) when A has distinct eigenvalues.

Theorem 3.6 Let A ∈ Cn×n be diagonalizable with an eigenvector matrix X . Then, the

set Sm (A, X) under matrix multiplication forms a torsion group Gm (A, X) that is isomorphic

to
n⊕

i=1

Zm.

Proof That Sm (A, X) is an abelian group follows easily from its definition. The mapping

X

⎛
⎜⎜⎜⎝

ζj1 0

. . .

0 ζjn

⎞
⎟⎟⎟⎠X−1 �→ (j1)⊕ · · · ⊕ (jn)

is clearly a group homomorphism from Gm (A, X) to
n⊕

i=1

Zm with a trivial kernel, thereby

establishing the isomorphism.
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Corollary 3.7 If A is centrosymmetric with distinct eigenvalues, then the involutory

matrices that commute with it are centrosymmetric.

Proof This follows from equation (5) and Theorem 3.6 because the exchange matrix J

is a member of the abelian group G2 (A, X).

It is easy to produce examples that show that Corollary 3.7 fails if the restriction that A

has distinct eigenvalues is violated. However, it is also not hard to show that Corollary 3.7

holds without the restriction to involutory matrices. We start by defining the simultaneously

diagonalizable family R (A, X).

Definition 3.8 For a fixed eigenvector matrix X of A ∈ C
n×n, let

R (A, X) =
{
XDX−1|D ∈ C

n×n diagonal
}

.

It is clear that R (A, X) is a superset of Sm (A, X) for every m, and that R (A, X) is a

commutative monoid under matrix multiplication.

Lemma 3.9 Suppose A ∈ Cn×n has distinct eigenvalues. If B ∈ Cn×n commutes with

A, then B ∈ R (A, X).

Proof As Λ = X−1AX has distinct entries and B commutes with A, it follows that

X−1BX commutes with Λ. The only matrices which commute with diagonal matrices with

distinct entries are diagonal matrices. Therefore X−1BX is diagonal, and so B ∈ R (A, X).

Theorem 3.10 If A is centrosymmetric with distinct eigenvalues, then the matrices that

commute with it are centrosymmetric.

Proof Suppose that matrices Bi and Bj commute with A. From Lemma 3.9, we verify

that Bi commutes with Bj . Letting Bi = J shows that Bj is centrosymmetric.

Corollary 3.11 If A is real, bisymmetric and has distinct eigenvalues, then the matrices

that commute with it are bisymmetric.

Proof If A has real entries and A = AT , then X can be taken to be a matrix with real

entries and X−1 = XT . If B commutes with A, then XT BX must be a diagonal matrix by

Lemma 3.9. Hence,

XT BT X = (XT BX)T = DT = D = XT BX.

Multiplying the left side by X and the right side by XT gives BT = B. This and Theorem 3.10

yield the result.

4 Sm (A, X) and the Non-Distinct Eigenvalue Case

When a diagonalizable matrix A has distinct eigenvalues, equation (5) implies that Theo-

rem 3.6 is a result about Sm (A) itself. If, in contrast, A has at least one eigenvalue with multi-

plicity greater than one, several of the nice algebraic properties of Theorem 3.6 no longer hold.

In particular, commutativity and closure do not hold in general for Sm (A), and the cardinality

of Sm (A) will be infinite. The underlying reasons for the latter are that
⋃
X

Sm (A, X) ⊆ S2 (A)

from (2), that there are now infinitely many choices for the normalized columns of A’s eigen-

vector matrix X , and that Sm (A, Xi) and Sm (A, Xj) can differ when Xi and Xj differ. We

will be more precise about this in what follows.

First, however, we prove a statement about the commonality between the sets Sm (A, Xi)

and Sm (A, Xj). As the identity matrix belongs to every set Sm (A, X), they are clearly not
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disjoint. In fact, one can always find at least m elements in common between any pair of these

sets, and when A does not have distinct eigenvalues a larger lower bound can be established.

We begin by establishing a preliminary lemma.

Lemma 4.1 Let Xi ∈ Cn×n and Xj ∈ Cn×n be nonsingular matrices, where the first

0 ≤ r ≤ n columns of Xj are a linear combination of the first r columns of Xi arising from

right multiplication by a nonsingular linear transformation which leaves the remaining columns

of Xi fixed. Let D ∈ Cn×n be a diagonal matrix of the form

D =

⎛
⎝αIr 0

0 D22

⎞
⎠ ,

where Ir is the r × r identity matrix and α is a fixed complex number. Then, XiDX−1
i =

XjDX−1
j .

Proof By hypothesis, Xj = XiM , where

M =

⎛
⎝M11 0

0 In−r

⎞
⎠ , (7)

with M11 ∈ Cr×r nonsingular and In−r is the (n− r)× (n− r) identity matrix.

Let

Xi =

⎛
⎝X11 X12

X21 X22

⎞
⎠ and X−1

i =

⎛
⎝Y11 Y12

Y21 Y22

⎞
⎠ (8)

under the same partitioning as D and M . If we write D11 in place of αIr to allow us to express

the forthcoming equalities more generally, then we see that K = XjDX−1
j = XiMDM−1X−1

i

is comprised of the blocks

K11 = X11M11D11M
−1
11 Y11 + X12D22Y21, (9)

K12 = X11M11D11M
−1
11 Y12 + X12D22Y22, (10)

K21 = X21M11D11M
−1
11 Y11 + X22D22Y21, (11)

K22 = X21M11D11M
−1
11 Y12 + X22D22Y22. (12)

This is easily shown to equal XiDX−1
i .

Theorem 4.2 Let A ∈ C
n×n be diagonalizable and let its eigenvalues of multiplicity

greater than one comprise a set of values V = {vk}
s
k=1 where 0 ≤ s < n (V may be empty).

Let μk > 1 be the multiplicity of A’s eigenvalue with value vk for 1 ≤ k ≤s. Then, if Xi and Xj

are eigenvector matrices of A, we have |Sm (A, Xi)
⋂

Sm (A, Xj)| ≥ mn−r+s where r =
s∑

i=1

μi.

Proof Recall that the eigenvector matrices Xi and Xj of A are assumed to have normal-

ized columns. So, aside from scalar multiples of magnitude one, the columns of Xi and Xj can

only differ in the columns corresponding to the eigenvalues of multiplicity greater than one.

For convenience, we will assume that the diagonal elements of the eigenvalue matrix Λ =

diag (λk)1≤k≤n are arranged so that the distinct eigenvalues λi are positioned in the last n− r
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diagonal elements and the eigenvalues of multiplicity greater than one are set up consecutively

in the first r diagonal elements as

Λjj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v1 for 1 ≤ j ≤ μ1,

v2 for 1 + k1 ≤ j ≤ μ1 + μ2,

...

vs for 1 +
s−1∑
i=1

μi ≤ j ≤ r.

This establishes an ordering for the columns of the matrices Xi and Xj .

Consider XiDX−1
i ∈ Sm (A, Xi) and XjDX−1

j ∈ Sm (A, Xj), where D has the form

D =

⎛
⎝ ζkI11 0

0 D22

⎞
⎠ , (13)

ζ = e2πi/m, and k is an integer in the range 0 ≤ k ≤ m− 1. Application of Lemma 4.1 shows

that XiDX−1
i = XjDX−1

j . As there are m choices for ζkI11 and mn−r choices for D22, we

have mn−r+1 matrices D of the form (13) for which XiDX−1
i = XjDX−1

j .

We now consider the 2 × 2 block repartitioning of D, where the new upper-left block is

the upper-left (r − μs) × (r − μs) portion of the previous r × r upper-left block ζkI11. This

new partitioning effectively means that the last μs elements of D11 in the previous partitioning

have been transferred to the D22 block of the new partitioning. Another application of Lemma

4.1 shows that if D has the form (13) under the new partitioning, then here too XiDX−1
i =

XjDX−1
j . The number of choices for D under this partitioning that are distinct from that

found in the previous partitioning is (m − 1)mn−r+1. So, the number of choices for D under

the two partitionings is mn−r+1 + (m− 1)mn−r+1 = mn−r+2.

We can now proceed inductively, reducing the upper-left block’s size by μj at each stage,

for j = s− 1 through j = 1.

Corollary 4.3 Let Xi and Xj be any two eigenvector matrices of A.

1. In the case where all eigenvalues of A are the same (that is, multiplicity n),

∣∣Sm (A, Xi)
⋂

Sm (A, Xj)
∣∣ ≥ m.

2. In the case where all eigenvalues of A are distinct,

Sm (A, Xi) = Sm (A, Xj) .

Proof For the first assertion, apply Theorem 4.2 with r = n and s = 1. The m elements

found between any pair of Sm (A, Xi) and Sm (A, Xj) are precisely the matrices ζjI for 0 ≤

j ≤ m− 1.

For the second assertion, apply Theorem 4.2 with r = 0 and s = 0 together with equation

(3).

A cursory study of the situation where A is a multiple of the identity matrix In for n > 1

is sufficient to generate examples where commutativity and closure fail for elements of Sm (A)

under matrix multiplication. It is also not hard to show that there are infinitely many m-

involutions of every dimension greater than one, thereby showing that |Sm (αIn) | is infinite for
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every n > 1. The latter statement, in fact, holds for Sm (A), where A is any diagonalizable

matrix in Cn×n with an eigenvalue of multiplicity greater than one.

Theorem 4.4 Suppose that A ∈ Cn×n is diagonalizable and has at least one eigenvalue

of multiplicity greater than one. Then, the cardinality of the set Sm (A) is non-denumerable.

Proof As in the proof of Theorem 4.2, we assume that the elements of the diagonal

eigenvalue matrix Λ = (Λij)1≤i,j≤n are arranged so that any eigenvalues of multiplicity greater

than one are placed consecutively in the upper-left. Let us reuse partitions (7) and (8), where

we take the size of the upper-left block to be 2 × 2. We will also use the diagonal matrix

partition

D =

⎛
⎝D11 0

0 D22

⎞
⎠ ,

where we take

D11 =

⎛
⎝1 0

0 ζ

⎞
⎠

with ζ = e2πi/m and consider D22 to be fixed.

Let

M11 =

⎛
⎝m11 m12

m21 m22

⎞
⎠

and define M̃ = M11D11M
−1
11 .

Our expression for K ∈ Sm (A) is comprised of the block equations (9), (10), (11), and

(12). As the only degrees of freedom in these equations are the elements m11, m12, m21, and

m22, we may confine our attention to the products

X11M̃Y11, (14)

X11M̃Y12, (15)

X21M̃Y11, (16)

X21M̃Y12. (17)

Computing M̃ = M11D11M
−1
11 , we find

M̃ = μ

⎛
⎝m11m22 − ζm12m21 (ζ − 1)m11m12

(1− ζ)m21m22 −m12m21 + ζm11m22

⎞
⎠ , (18)

where μ = (m11m22 −m12m21)
−1. For convenience, assume the partitioning

M̃ =

⎛
⎝ m̃11 m̃12

m̃21 m̃22

⎞
⎠ .

In (18), we note that the magnitude of the complex number m̃12 ranges continuously over

[0,∞) by (for example) setting m22 = 0, fixing m12 and m21 at nonzero values, and letting m11

vary. Similarly, we note that the magnitude of m̃21 ranges continuously over [0,∞) by setting

m11 = 0, fixing m12 and m21 at nonzero values, and letting m22 vary.
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Let z = m11m22 and set m12m21 = 1. Under this choice, m̃11 becomes the complex

function z−ζ
z−1 and m̃22 becomes the complex function ζz−1

z−1 . From this, we see that here too,

the magnitude of the elements m̃11 and m̃22 each range continuously over [0,∞).

From (8), we observe that the blocks X11 and X21 cannot be simultaneously zero. Similarly,

Y11 and Y12 cannot be simultaneously zero. This leads us to consider four separate cases, namely,

1. X11 �= 0 and Y11 �= 0,

2. X11 �= 0 and Y12 �= 0,

3. X21 �= 0 and Y11 �= 0,

4. X21 �= 0 and Y12 �= 0.

At least one of these cases must be true.

For Case 1, we focus on equation (14). As X11 �= 0, there exists at least one row of X11

to be nonzero. Pick one such row, and let it have values x =
(
α β

)
. As Y11 �= 0, there

exists at least one column of Y11 that is nonzero. Pick one such column and let it have values

yT =
(
γ δ

)T
. Then,

xM̃y = γαm̃11 + γβm̃21 + δαm̃12 + δβm̃22 (19)

As α and β are not simultaneously zero and γ and δ are not simultaneously zero, at least one of

the four summands in (19) must not be identically nonzero. If only one summand is nonzero,

as we know the magnitude of m̃11, m̃21, m̃12, and m̃22 each range continuously over [0,∞) for

varying choices of m11, m12, m21, and m22, we verify that xM̃y assumes a non-denumerable

set of values. So, suppose at least two of the four summands in (19) are not identically zero.

We wish to show that xM̃y cannot be limited to a discrete set of values. Equation (18) shows

that m̃11, m̃21, m̃12, and m̃22 are continuous complex valued functions, and only m̃11 and m̃22

can be linearly related (for example, when ζ = −1). But if the coefficients of m̃11 and m̃22

are both nonzero in the linear combination (19), then the coefficients of m̃21 and m̃12 will

also be nonzero. Therefore, if at least two of the four summands in (18) are nonzero, there

will be a nonzero term involving either the product μm11m12 (that is, m̃12) or the product

μm21m22 (that is, m̃21). As only one of them involves the product μm11m12 and only one of

the four summands (19) involves the product μm21m22, the product xM̃y cannot be limited

to a discrete set of values. We conclude that the product in (14) assumes a non-denumerable

number of values under the assumptions of Case 1.

The treatment of Cases 2, 3, and 4 may be treated in the same manner, with Case 2 dealing

with equation (15), Case 3 with equation (16), and Case 4 with equation (17). As the form of

D used in the demonstration occurs in every set Sm (A, X) for which A has dimension two or

more, and as at least one of the four cases must be true, this completes the proof.

5 The Anti-Commuting Case

In addition to studying K2-symmetry, the articles [5, 6, 9] also investigated matrices A

that satisfy the anti-commuting relationship AK = −KA, where K is an involution (the K2-

skew-centrosymmetric matrices). It would therefore be desirable to obtain results similar to

those found for Sm (A) that hold for the set of complex m-involutions that anti-commute with

a fixed complex matrix A ∈ Cn×n.
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Let us denote this set as S̃m (A) and suppose K is an m-involution. Some facts are

immediately apparent. From a trivial determinant argument, we see that if n is odd and A is

nonsingular, then S̃m (A) is empty. Also, as A = KmA = (−1)mAKm = (−1)mA, if m is odd,

it then follows that S̃m (A) is empty except when A is the zero matrix, in which case S̃m (A) is

non-denumerable for n > 1. So, we only need to focus on the case where m is even.

A deeper study of S̃m (A) requires a characterization of the structure of both A and K

when AK = −AK. To accomplish this, we turn to the Jordan decomposition of A Ã = S−1AS

of A, where

Ã = diag(J1(λ1), · · · ,Jk(λk)),

the Jordan blocks Ji are ni × ni, and n =
∑

ni. Let K̃ be any matrix of the same size as A,

and block partition it so that its K̃ij block is ni × nj . If let K = SK̃S−1, then AK = −KA if

and only if ÃK̃ = −K̃Ã if and only if JiK̃ij = −K̃ijJi for all i, j. The following lemma helps

describe the structure of the blocks Ji and K̃ij whenever ÃK̃ = −K̃Ã.

Lemma 5.1 Suppose B ∈ C
m×n, Im is the m×m identity matrix, and Nm is the m×m

matrix with ones directly above the main diagonal and zeros elsewhere. Let bi,j denote the

(i, j)-element of the matrix B. Then,

1. If λi + λj �= 0, then

(λiIm + Nm)B = −B(λjIn + Nn) (20)

if and only if B = 0.

2. If λi + λj = 0, then

(λiIm + Nm)B = −B(λjIn + Nn) (21)

if and only if B is upper triangular, where the components of columns 1 through n − m are

zero if n > m, the components of rows m+1 through n are zero if n < m, and each diagonal of

the upper triangle has constant magnitude and alternates in sign along the diagonal (that is,

bi,j = −bi+1,j+1).

Proof To prove the first assertion, first rewrite equation (20) as

((λi + λj)Im + Nm)B + BNn = 0. (22)

Multiplying (22) the left-side by N j
n for 1 ≤ j ≤ n− 1 gives n− 1 equalities of the form

((λi + λj)Im + Nm)BN j
n + BN j+1

n = 0. (23)

As Nn
n = 0 and (λi + λj)Im + Nm is nonsingular, if let j = n − 1 in equation (23), we have

BNn−1
n = 0. Substituting this into equation (23) for j = n − 2, we see that BNn−2

n = 0.

Continuing in this manner, we arrive at BNn = 0 when j = 1 which, when substituting into

(22), gives us B = 0.

To prove the second assertion, we first simplify equation (21) as

NmB = −BNn. (24)

Comparison of the first column of each side of (24) shows that the matrix B is zero in the first

column below the element b1,1. Equating the j-th column of each side of (24) gives

(b2,j , b3,j, · · · , bn,j, 0)T = −(b1,j−1, b2,j−1, · · · , bn−1,j−1, bn,j−1)
T . (25)
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This shows that the diagonals of B are of equal magnitude and alternate in sign, and are zero

below the main diagonal. Finally, we note that the m-th row of (24) shows that bm,1 = bm,2 =

· · · = bm,n−1 = 0. Combining this with (25) shows that columns one through n −m are zero

when n > m.

The next lemma will be useful in the determination of the cardinality of S̃m (A).

Lemma 5.2 Suppose that B ∈ C
n×n has the form described in Lemma 5.1 and n > 1.

That is, B is upper triangular and each element satisfies bi,j = −bi+1,j+1. Then, there are

uncountably many involutory B.

Proof Let C = B2. Then, ci,j =
j∑

k=i

bi,kbk,j =
j−i+1∑
k=1

(−1)
k+1

b1,kb1,j−k−i+2. As cii,j1 =

ci2,j2 whenever j2 − i2 = j1 − i1, we see that C is upper triangular Toeplitz and so we can

restrict our attention to the values of the first row of C. For convenience, let us write cj for c1,j

and bj for b1,j . Then, cj =
j∑

k=1

(−1)k+1
bkbj−k+1. When j is even, cj = 0. When j = 2m + 1,

we have

c2m+1 = (−1)
m+1

b2
m+1 + 2

m∑
k=1

(−1)
k+1

bkb2m−k+2. (26)

We want C = I. The constraint c1 = 1 yields two solutions for b1. If n = 2, then b2 is

unconstrained and we are done. Assume n > 2. As the solutions for b1 can be substituted back

into (26), the equation c3 = 0 becomes a complex bivariate quadratic in b2 and b3, which has

uncountably many solutions for b2 and b3. This process can be continued as m is incremented.

Each time m is increased by one, the solutions of the previous iterations can be substituted into

(26) and two new unknowns b2m and b2m+1 appear, resulting in another bivariate quadratic for

which there are uncountably many solutions.

Theorem 5.3 Given A ∈ Cn×n and an m-involution K ∈ Cn×n:

1. Let n = 1. If A is the number zero, then S̃m (A) contains the m-th roots of unity.

Otherwise, S̃m (A) is empty.

2. Suppose n > 1 and let m > 1 be an odd integer. If A is the zero matrix, then S̃m (A)

is non-denumerable. Otherwise, S̃m (A) is empty.

3. Suppose n > 1 and let m > 1 be an even integer. If the non-zero eigenvalues of A come

in pairs of opposite signs where the corresponding pairs have Jordan blocks of equal size, then

the cardinality of the set S̃m (A) is non-denumerable. Otherwise, S̃m (A) is empty.

Proof The first assertion is trivial, while the second assertion’s proof was given at the

beginning of this section. We proceed with the proof of the third assertion.

From Lemma 5.1, we see that if A anti-commutes with K, then its nonzero eigenvalues

must come in pairs of opposite signs where the corresponding pairs have Jordan blocks of equal

size. So, to demonstrate the theorem’s third assertion, we only need to show that S̃m (A) is

non-denumerable when A satisfies this condition. For convenience, we will assume that the pairs

of Jordan blocks with eigenvalues of opposite sign appear consecutively along the diagonal of

Ã. The proof will be broken into several cases.

1. Case: Ã is the zero matrix.

2. Case: Ã has all eigenvalues zero and has at least Jordan block that is m × m where

m > 1.
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3. Case: Ã has at least one pair of Jordan blocks for non-zero eigenvalues of opposite signs

that are both m×m where m > 1.

4. Case: All Jordan blocks of Ã corresponding to non-zero eigenvalues are 1× 1.

Case 1 is trivial, so we move on to Case 2. For Case 2, we consider a particular class of

block-diagonal matrices K̃ whose diagonal blocks are of the same size as those of Ã. Assume,

without loss of generality, that an m×m Jordan block of Ã, where m > 1, occupies the 1, 1 block

position. Consider the set of block matrices whose 1, 1 block is an upper triangular involution

whose elements satisfy ki,j = −ki+1,j+1, and remaining diagonal blocks are diagonal matrices

with alternating values of 1 and −1. The elements of this set are clearly involutions, they

anti-commute with Ã because their form satisfies the conditions of Lemma 5.1, and Lemma 5.2

shows that there are uncountably many choices for the 1, 1 block. As m is even, this set of

involutions belongs to S̃m (A) and so we are done with this case.

Case 3. Assume, without loss of generality, that the 1, 1 and 2, 2 Jordan block positions of

Ã are occupied by blocks corresponding to a positive-negative eigenvalue pair and whose block

sizes are m×m where m > 1. We choose the 1, 2 and 2, 1 blocks of K̃, such that K̃1,2 = K̃2,1

and K̃1,2 and K̃2,1 are upper triangular involutions whose elements satisfy ki,j = −ki+1,j+1.

For the remaining Ã Jordan block pairs in the i, i and i+1, i+1 positions, pick the K̃ blocks in

the i, i + 1 and i + 1, i positions to be identical diagonal matrices with alternating 1’s and −1’s

on their diagonals. For the Ã blocks in the i, i positions corresponding to zero eigenvalues, let

the i, i block of K̃ also be diagonal with alternating 1’s and −1’s. Assume that the remaining

blocks of K̃ are zero. Then, K̃ is an involution, Lemma 5.2 shows that there are uncountably

many choices for K̃’s 1, 1 and 2, 2 blocks, and Lemma 5.1 shows that K̃ anti-commutes with Ã.

As noted in Case 2, these involutions belong to S̃m (A).

Case 4. Assume, without loss of generality, that the 1, 1 and 2, 2 Jordan block positions

of Ã are occupied by 1 × 1 blocks corresponding to a positive-negative eigenvalue pair. Pick

elements k1,2 and k2,1 of K̃, such that k1,2k2,1 = 1. For the remaining 1× 1 Jordan block pairs

of Ã in the i, i and i + 1, i + 1 positions, pick the elements ki,i+1 and ki+1,i to be 1. For the Ã

blocks in the i, i positions corresponding to zero eigenvalues, let the i, i block of K̃ be diagonal

with alternating 1’s and −1’s (as in Case 3) and assume the remaining blocks of K̃ are zero.

Then, K̃ is an involution, there are uncountably many choices for k1,2 and k2,1, and Lemma 5.1

shows that K̃ anti-commutes with Ã. As noted in Case 2, these involutions belong to S̃m (A).

Because these results for Ã and K̃ in Cases 1-4 translate directly into anti-commuting

results for A and K, we are done.

Lemma 5.1, together with the m-involution constraint, characterizes the matrices K̃, which

in turn characterizes the elements of S̃m (A). This characterization can then be used to de-

velop an algorithm for generating subsets of S̃m (A). For example, after computing the Jordan

decomposition Ã of A, one could construct examples of K̃ as follows. For the Ã Jordan block

pairs corresponding to non-zero eigenvalues in the i, i and i+1, i+1 block positions, pick the K̃

blocks in the i, i + 1 and i + 1, i positions to be identical diagonal matrices whose 1, 1 diagonal

element is an m-th root of unity and whose subsequent diagonal elements alternate in sign. For

the Ã blocks in the i, i positions corresponding to zero eigenvalues, let the i, i block of K̃ also be

diagonal whose 1, 1 diagonal element is an m-th root of unity and whose subsequent diagonal

elements alternate in sign. Assume that the remaining blocks of K̃ are zero.



644 ACTA MATHEMATICA SCIENTIA Vol.32 Ser.B

Of course, there are many other elements of S̃m (A) that this particular construction of

K̃ does not consider. For example, other blocks of K̃ may be nonzero, in particular, if there

are multiple Jordan blocks of Ã corresponding to a particular eigenvalue value. Also, it is not

necessary for the blocks of K̃ to be diagonal. The example of construction described in the

previous paragraph could be modified to include such possibilities. The main drawback to this

construction, however, is its reliance on the Jordan decomposition, which is known to be very

sensitive numerically. Constructing an efficient and stable algorithm for generating elements of

S̃m (A) that does not rely on first computing the Jordan decomposition of A is a possible topic

for future investigation.

6 Concluding Remarks

This article has explored some of the fundamental properties of the class Sm (A) of m-

involutory matrices that commute with a given diagonalizable matrix A. The constructive

nature of the definition of Sm (A, X) allows one to easily generate numerous (in some cases

all) m-involutions commuting with A. By providing a constructive means to generate elements

of Sm (A), it now becomes easier to identify the types Km-symmetry satisfied by a matrix A

and thereby use the body of results that accumulated in recent years regarding Km-symmetry.

Other results were given for the class S̃m (A) of m-involutory matrices that anti-commute with

A. It is hoped that the results obtained in this article will lead to additional insights and

research related to the class Sm (A), S̃m (A), the study of Km-symmetric matrices, and their

applications.
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