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1. INTRODUCTION

It is well known that the constant e plays an important role in many areas
of mathematics. It is involved in many inequalities, identities, series expan-
sions, and some special functions. The well known Hardy’s inequality and
Carleman’s inequality are good examples of applications of approximation
of e.

Recently, there have been many results in generalizing the above men-
tioned two inequalities by using better approximations of e. In [1], Yang
and Debnath obtained the inequalities
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As an application of (1.1), they proved the following strengthened
Carleman’s inequality
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In [2], Yang showed that for x > 0,

e

[
1 − 1

2x+ 1

]
<

(
1 + 1

x

)x

< e

[
1 − 1

2�x+ 1�
]
� (1.3)

651

0022-247X/01 $35.00
Copyright  2001 by Academic Press

All rights of reproduction in any form reserved.



652 xiaojing yang

As an application of (1.3), he obtained the following strengthened
Hardy’s inequality
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1 a
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2 · · · aλn

n �1/σn < e
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n=1

[
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]
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where 0 < λn+1 ≤ λn, σn = ∑n
m=1 λm, an ≥ 0, 0 <

∑∞
n=1 λnan < ∞.

Sandor and Debnath [3] showed that

e

√
x

1 + x
<

(
1 + 1

x

)x

< e

(
2x+ 1

2�x+ 1�
)

(1.5)

holds for all x > 0.
In [4], Xie and Zhong improved (1.3) and obtained the inequalities
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� for x > 0� (1.6)

As an application of (1.6), they replaced the right side of (1.4) by a
sharper one: e

∑∞
n=1
1 − 6λn/�12σn + 11λn��λnan.

The author of this paper [5] obtained a better approximation of e than
(1.3),
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� (1.7)

where x > 0, b1 = 1
2 , b2 = 1

24 , b3 = 1
48 , b4 = 73

5760 , b5 = 11
1280 , b6 = 1945

580608 .
It is conjectured in [5] that if the following equality holds
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then bk > 0, k = 1� 2� � � � .
As an application of (1.7), Yang [5] obtained the following strengthened

Carleman’s inequality
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(1.9)
where an ≥ 0, 0 <

∑∞
n=1 an < ∞.

In this paper, two equalities are given, which improve the inequalities
(1.3) and (1.7); the conjecture in [5] is also proved. As applications, Hardy’s
inequality and Carleman’s inequality are strengthened.
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2. MAIN RESULTS

Theorem 1. For x > 0, let(
1 + x

x

)x

= e

[
1 −

∞∑
k=1

bk
�1 + x�k

]
� (2.1)

Then bk > 0, k = 1� 2� � � � , and �bk
nk=1 satisfy the following recursion
formula:

b1 = 1
2
�

bn+1 = 1
n+ 1

[
1

n+ 2
−

n∑
j=1

bj

n+ 2 − j

]
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(2.2)

Theorem 2. For x > 0, let(
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x

)x
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[
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]
� (2.3)

Then the �ak
nk=1 satisfy the following recursion formula
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(2.4)

where

cm =
{
− 1

m
� if m is odd,

1
m+1 � if m is even.

Moreover, for n = 1� 2� � � � ,

a2n = −a2n+1 < 0�

Proof of Theorem 1. Let y = 1
1+x

. Then 0 < y < 1 and (2.1) is written as
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/
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If we write g�y� = −∑∞
n=1�yn/n�n+ 1��, then h�y� = eg�y� and g�n��0� =

−�n− 1�!/�n+ 1�, n = 1� 2� � � � ; Moreover,
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By (2.5), (2.6), and (2.7), we obtain
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Therefore (2.2) is proved. Next we show 0 < bn < 1
n�n+1� , n = 2� 3� � � � .

From (2.2), it is easy to obtain the first 17 values of bn’s:

b1 = 1
2
� b2 = 1

24
� b3 = 1

48
� b4 = 73

5760
� b5 = 11

1280
�

b6 = 1945
580608

� b7 = 0�00496� b8 = 0�00386� b9 = 0�00311�

b10 = 0�00257� b11 = 0�00216� b12 = 0�00191� b13 = 0�00159�

b14 = 0�00139� b15 = 0�00126� b16 = 0�00088� b17 = 0�00063�

Therefore 0 < bn < 1
n�n+1� holds for n = 2� 3� � � � � 16. For n ≥ 17, we

have by (2.2), bn+1 < 1
�n+1��n+2� , if b1� � � � � bn > 0.

Suppose, by induction, that 0 < bm < 1
m�m+1� , m = 2� 3� � � � � n. Then by

(2.2), bn+1 < 1
�n+1��n+2� , and from (2.2), we need only to show
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<

1
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� (2.8)
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Since b1 = 1
2 , b2 = 1

24 , b3 = 1
48 , (2.8) is equivalent to
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j=4
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1
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48�n− 1�
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Next we show the following stronger inequalities (since by assumption
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1
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j
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+
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=
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1
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j=4

1
j
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)
+

(
1
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1
j
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from (2.10) and (2.11), we need only to show

1
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j=5

1
j
+
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1
j

)
<

21n3 − 31n2 + 4
48�n− 1�n�n+ 1��n+ 2�

− n2 − 5
4�n+ 1��n+ 2��n+ 3�

= 9n3 + 35n2 − 68n+ 12
48�n− 1�n�n+ 2��n+ 3� � (2.12)
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That is, we need only to show

n∑
j=5

1
j
+

n−2∑
j=2

1
j
<

9n3 + 35n2 − 68n+ 12
48�n− 1�n � (2.13)

Since
∑n2

j=n1

1
j
<

∫ n2−1
n1−1

1
x
dx = ln��n2 − 1�/�n1 − 1��, we have

n∑
j=5

1
j
+

n−2∑
j=2

1
j
< ln

n− 1
4

+ ln
n− 3

1
= ln

�n− 1��n− 3�
4

� (2.14)

We show next, for n ≥ 17,

ln
�n− 1��n− 3�

4
<

9n3 + 35n2 − 68n+ 12
48�n− 1�n � (2.15)

In fact, for x ≥ 4, let

p�x� = ln
�x− 1��x− 3�

4
�

q�x� = 9x3 + 35x2 − 68x+ 12
48�x− 1�x �

r�x� = q�x� − p�x��
Then

r ′�x� = 3x5 − 32x4 + 98x3 − 105x2 + 28x− 12
16�x− 1�2x2�x− 3� �

Let s�x� = 3x5 − 32x4 + 98x3 − 105x2 + 28x − 12. Then s′�x� =
15x4 − 128x3 + 294x2 − 210x + 28 = �x − 2��15x3 − 98x2 + 98x − 14� =
�x− 2��x2�15x− 98� + �98x− 14�� > 0 for x > 7. Since s�7� = 2242 > 0,
we have s�x� > 0, if x ≥ 7. This implies that r ′�x� > 0, if x ≥ 7.

Since r�17� = 0�04848 > 0, we obtain

r�x� > 0 for x ≥ 17�

This implies that (2.15) holds for n ≥ 17. Combining (2.12), (2.13),
(2.14), and (2.15), we have for n ≥ 17, 0 < bn+1 < 1

�n+1��n+2� , by induc-
tion. Theorem 1 is thus proved.

Proof of Theorem 2. Similar to the proof of Theorem 1, let z = 1
2x+1 .

Then (2.3) can be written as

(
1 + z

1 − z

) 1−z
2z

= e

[
1 −

∞∑
k=1

akz
k

]
� (2.16)



approximations for constant e 657

Let F�z� = � 1+z
1−z

��1−z�/2z/e. Then

lnF�z� =
(

1 − z

2z

)

ln�1 + z� − ln�1 − z�� − 1

= �1 − z�
∞∑
k=1

z2k−2

2k− 1
− 1

=
∞∑
k=1

ckz
k�

where

ck =
{
− 1

k
� if k is odd�

1
k+1 � if k is even�

Hence F�z� = e
∑∞

k=1 ckz
k

and
∞∑
k=1

akz
k = 1 − F�z�� (2.17)

Let G�z� = ∑∞
k=1 ckz

k = lnF�z�. Then F ′�z� = F�z� ·G′�z� and

F �n+1��0� =
n∑

j=0

Cj
nF

�j��0�G�n+1−j��0�� n = 1� 2� � � � � (2.18)

From (2.17), (2.18) we obtain

a1 = −c1 = 1�

an+1 = −F �n+1��0�/�n+ 1�!

=
n∑

j=0

Cj
n�−F �j��0��G�n+1−j��0�/�n+ 1�!

=
n∑

j=0

n!
�n+ 1�!

(−F �j��0�
j!

)
· 1
�n− j�! · �n+ 1 − j�!cn+1−j

= −cn+1 +
n∑

j=1

�n+ 1 − j�
n+ 1

ajcn+1−j �

Therefore (2.4) is proved. From (2.4), let n = 1� 2� � � � � 6. We obtain

a1 = 1� a2 = −5
6
� a3 = 5

6
� a4 = −287

360
�

a5 = 287
360

� a6 = −0�78097� a7 = 0�78097�
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Next we show by induction that

a2k−1 > 0� k = 1� 2� � � � � (2.19)

and

a2k = −a2k+1� k = 1� 2� � � � � (2.20)

Suppose for k = 1� 2� � � � � n, (2.19) holds. Then for n+ 1 = 2m we have

a2m = −c2m +
2m−1∑
j=1

�2m− j�
2m

ajc2m−j � (2.21)

Since c2k > 0, a2k < 0, c2k−1 < 0, a2k−1 > 0, we see a2m < 0. Similarly
we can prove that a2m+1 > 0, m = 1� 2� � � � .

Suppose for k = 1� 2� � � � � n, (2.20) holds. Then for n+ 1 = 2m, we have
by (2.21),

a2m=− 1
2m+1

+ 1
2m

[
�2m−1� −1

2m−1
+�2m−2�a2

1
2m−1

−a3+···+2a2m−2
1
3
+a2m−1�−1�

]

=− 1
2m+1

+ 1
2m

[
−1+ 2m−2

2m−1
a2−a3+···−a2m−3+

2
3
a2m−2−a2m−1

]

=− 1
2m+1

+ 1
2m

[
−1+

(
2m−2
2m−1

a2+a2

)
+···+

(
2
3
a2m−2+a2m−2

)]

=− 1
2m+1

+ 1
2m

[
−1+ 4m−3

2m−1
a2+···+ 5

3
a2m−2

]
� (2.22)

Similarly, by (2.4), we have

a2m+1 = 1
2m+ 1

+ 1
2m+ 1

[
2m

2m+ 1
− a2 +

2m− 2
2m− 1

×a3 − · · · − a2m−2 +
2
3
a2m−1 − a2m

]

= 1
2m+ 1

+ 1
2m+ 1

[
2m

2m+ 1
− 4m− 3

2m− 1

×a2 − · · · − 5
3
a2m−2 − a2m

]
� (2.23)

Substituting (2.22) into (2.23), we obtain

a2m + a2m+1 = 0�

By induction, (2.19), (2.20) hold for all k ∈ N . Theorem 2 is proved.
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Corollary 1. For x > 0, we have for m�n ∈ N

e

[
1 −

2m−1∑
k=1

ak
�2x+ 1�k

]
<

(
1 + x

x

)x

< e

[
1 −

n∑
k=1

bk
�1 + x�k

]
�

where a1 = 1, a2 = −a3 = − 5
6 , a4 = −a5 = −287

360 , a6 = −a7 = −0�78097, ak
satisfies (2.4), (2.19), and (2.20), k ≥ 2. b1 = 1

2 , b2 = 1
24 , b3 = 1

48 , b4 = 73
5760 ,

b5 = 11
1280 , b6 = 1945

580608 � � � � � bk satisfies (2.2), and bk > 0, k ≥ 2.

As applications, we obtain the following strengthened Hardy inequality
and Carleman inequality:

Corollary 2. Suppose an ≥ 0, 0 ≤ λn+1 ≤ λn, σn = ∑n
m=1 λm, 0 <∑∞

n=1 λnan < ∞. Then for any m ∈ N , we have

∞∑
n=1

λn+1�aλ1
1 a

λ2
2 · · · aλn

n �1/σn ≤
∞∑
n=1

(
1 + 1

σn/λn

)σn/λn

λnan

< e
∞∑
n=1

(
1 −

m∑
k=1

bk
�1 + σn/λn�k

)
λnan�

where b1 = 1
2 , b2 = 1

24 , b3 = 1
48 � � � � � bk satisfies (2.2), and bk > 0, k ≥ 2,

Corollary 3. Suppose an ≥ 0, n = 1� 2� � � � , and 0 <
∑∞

n=1 an < ∞.
Then for any m ∈ N ,

∞∑
n=1

�a1a2 · · · an�1/n < e
∞∑
n=1

(
1 −

m∑
k=1

bk
�1 + n�k

)
an�

where b1 = 1
2 , b2 = 1

24 , b3 = 1
48 � � � � � bk satisfies (2.2), and bk > 0, k ≥ 2.

Remark. By using a similar method as used in the proof of Theorem 2,
the right side of (2.3) can be replaced by e
1 −∑∞

k=1�ak/�x+ ε�k��, where
ε ∈ �0� 1�, ak = ak�ε�, k = 1� 2� � � � . In this case, the left side of (1.1), (1.5),
and (1.6) can be replaced by equalities.
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