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ABSTRACT. We construct a compact Hausdorff space which has no P-points and
yet in which every nonempty G5 set has nonempty interior.

Definition 1 (Levy [1]). A space is an almost P-space if every nonempty Gs-set
has nonempty interior.

Definition 2. An element x of a topological space X is a P-point if x lies in
the interior of each Gj-subset of X which contains it. An element x of a
topological space X is a weak P-point if x lies in the closure of no countable
subset of X — {x}.

In 1977 Levy [1] showed that every ordered compact almost P-space contains
a P-point, and that every compact almost P-space of weight X; contains a P-
point. He asked whether there is any compact almost P-space which has no
P-points. In 1978 Shelah [2] constructed a model of set theory in which w*
has no P-points. Since w* is an almost P-space, this provided a consistent
positive solution to Levy’s question.

We answer the question affirmatively in ZFC.

Example 1 (ZFC). There is a compact almost P-space which contains no P-
points.

Let x = 2% . Let Fn be the family of all partial functions p whose domain
is a countably infinite subset of kU (x x w;) so that, if 1 € ¥ and a € w;, then
p(4) is either undefined or an element of 2 and p(4, ) is either undefined or
an element of x + 1. Let ¢ be a mapping of ¥ x w, onto Fn such that

(k x wy)Ndom(p(4, a)) C k X a.

We use the notation (f, g) € [p] to indicate that the total function (f, g)
extends the partial function p.
Let W be the set of (f, g) in 2* x (k + 1)**®t which satisfies the following
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three conditions:

l. (Va € w)|ran(g [k x {a}) = {x}| < 1.

2. (Va € wy)(VA € k)k Ndom(gp(4, @) C g(4, a).

3. Viek)Vaew)g(d,a)#Kk=(f,g) €lpd, a)].

Let W have the subspace topology induced by the Tychonoff product topol-
ogy on 2¥ x (k + 1)**®1 where x + 1 has the order topology. Note that since
failure of any of the three conditions for membership of some (f, g) in W
can be witnessed by finitely many coordinates, we can deduce that the comple-
ment of W is open in the compact Hausdorff space 2* x (x + 1)**? . Thus,
we know that W is a compact Hausdorff space itself.

Lemma 1. W is an almost P-space.

Proof. We show that if p € Fn and [p]Nn W # @, then [p]N W contains a
nonempty open set V' in W . This suffices since any nonempty G5 set in W
contains some such nonempty [p]Nn W .

Let (4, a) € p~(p). Let u =sup(k Ndom(p)) +1.

We argue that [((4, ), u)]NW C [p]. Suppose (f, g) € W and g(4, a) =
# . Then since g(4, a) # k, by (3), (f, &) € [p(4, &)1 = [p].

We argue that [((4, @), #)]N W is nonempty. Suppose (f, g) € [p]N W .
Define g* € (x + 1)**® so that g* D g | k x o and g* takes on the value
Kk elsewhere except at (4, a) where it is defined to be u. It suffices to show
that (f, g*) € W. We have constructed g* so that (1) and (2) hold. So let us
check (3) by supposing g*(1', ') # k. Now o’ < a, (f, &) € [p(4, )] by
(3) and (x x w;)Ndom(p(A', a')) Ck xa'. So (f, g*) € [p(A, a')].

Lemma 2. W can be partitioned into Cantor sets.
Proof. Suppose (f, g) € W. Let

A=|J{rkndom(p(4, @) : A€k, acw, g, a)#x}

By (2),

supA <sup{g(d,a): 1€k, a€w, g4, a) #xK}.
By (1), since cf(k) > w;, supA<k. If f"€2¥ and f[A=f'1A, then
(f', g) € W since (3) follows from dom(¢p(4, a)) C AU (k x w;) whenever
gh,a)# k. But {(f',g):f'"IA=f1] A} C W is homeomorphic to 2*,
and the proof is complete.

Corollary 1. Every point in W is the limit of a nontrivial convergent sequence
in W and thus W has no (weak) P-points.

Note that, by replacing 2* by [0, 1]* in the construction, we get an almost
P-space which can be partitioned into closed unit intervals.

Note that we can choose any x which satisfies the equations cf(x) > w;
and k® = k. So k = 2% suffices unless cf(2®0) = &, . Without any hypothesis,
k = (2%)* works.

Our original construction used a nonlinear inverse limit in which the bonding
maps are the projections from a kind of Alexandroff duplicate (see example
3.1.77 in [3]). The present exposition is a translation of this method into the
product of which the inverse limit is a subspace.

We became aware of this question by reading a recent preprint of Williams
and Zhou [4]. We thank the referee who suggested a substantial improvement.
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