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The design, implementation, and testing of a C++ software library for univariate polynomials
in Bernstein form is described. By invoking the class environment and operator overloading,
each polynomial in an expression is interpreted as an object compatible with the arithmetic
operations and other common functions (subdvision, degree elevation, differentiation and
integration, composition, greatest common divisor, real-root solving, etc.) for polynomials in
Bernstein form. The library allows compact and intuitive implementation of lengthy manipu-
lations of Bernstein-form polynomials, which often arise in computer graphics and computer-
aided design and manufacturing applications. A series of empirical tests indicates that the
library functions are typically very accurate and reliable, even for polynomials of surprisingly
high degree.
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Analysis]: Roots of Nonlinear Equations; G.4 [Mathematics of Computing]: Mathematical
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1. INTRODUCTION

The Bernstein—Bézier form has become a de facto standard for representing
curves and surfaces in computer-aided geometric design (CAGD), due to the
intuitive geometrical properties and recursive algorithms it entails [Farin
1997; Hoschek and Lasser 1993]—convex hull confinement, variation-
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diminishing property, de Casteljau subdivision algorithm, etc. The Bern-
stein form of a degree-n polynomial

P(x) = iCZbZ(x), bi(x) = (Z)(l — )yt 1)
k=0

on' x € [0, 1] was introduced in 1912 by Bernstein [1912] in a construc-
tive proof for the theorem of Weierstrass, concerning uniform approximation
of continuous functions on finite intervals by polynomials. The slow conver-
gence of Bernstein polynomial approximants incurred a widespread percep-
tion that the form (1) is unsuitable for “practical” computations, which
persisted until de Casteljau and Bézier demonstrated its advantages in
geometric design.

Another advantage of the Bernstein form, of much broader significance,
is its intrinsic numerical stability as a representation for polynomials
defined on finite intervals [Farouki and Rajan 1987]. Namely, the values
(and roots) of P(x) on x € [0, 1] are much less sensitive to uniform
perturbations or errors in the coefficients Cj, ..., C» compared to other
commonly used polynomial bases—e.g., the power form. In fact, the Bern-
stein form is optimally stable—it is impossible to construct a basis on [0, 1]
that yields systematically smaller condition numbers for the values and
roots of arbitrary polynomials on this interval [Farouki and Goodman
1996].

Explicit conversions between different polynomial bases become increas-
ingly ill-conditioned [Daniel and Daubisse 1989; Farouki 1991a; 2000;
Hermann 1996] as the degree n increases. In order to take full advantage of
its stability, it is essential to formulate the problem under consideration
initially in the Bernstein form, and to express all intermediate steps using
it. Although perhaps less familiar, basic algorithms for Bernstein-form
polynomials (arithmetic operations, evaluation, subdivision, composition,
etc.) are not significantly more complicated or expensive than their familiar
power-form versions [Farouki and Rajan 1988]. In this paper we describe
an object-oriented library of functions for polynomials in Bernstein form
that facilitates intuitive high-level programming of polynomial computa-
tions. Relieved from having to worry about the underlying technical de-
tails—binomial coefficient operations, matching degrees of operands, etc.—
the programmer can rapidly develop robust and efficient code that inherits
both the intuitive geometrical features and stability properties of the
Bernstein form.

Although use of the Bernstein form is commonplace in computer graphics
and CAGD, its advantageous properties have only recently begun to
achieve recognition in the much broader contexts of numerical analysis and

For brevity we focus on the Bernstein form over x € [0, 1]. The extension to arbitrary
intervals [a, b] and to (tensor-product) multivariate polynomials [Berchtold and Bowyer 2000]
is straightforward.
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scientific computing. Recent examples of its diverse potential applications
include:

—solution methods for systems of algebraic equations [Miiller and Otte
1991];

—modeling of global intermolecular potential energy surfaces [Ho and
Rabitz 2000];

—robust stability of parameter-dependent linear control systems [Zettler
and Garloff 1998];

—stress analysis and crack propagation in laminated composites [Bog-
danovich 2000; Bogdanovich and Yushanov 1999];

—formulation of filter-sharpening functions in signal processing [Samadi
2000].

Our hope is that the library described herein will encourage broader
adoption of the Bernstein representation in a variety of computing con-
texts.

A polynomial is specified in Bernstein form by its degree n and its
coefficients Cj, ..., C. A function that performs a binary operation on
two polynomials might typically have the form (in a syntax similar to C or
C++):

int operation(int n1, double *C1, int n2, double *C2, int *n_result, double *C_result)

{

where two sets of Bernstein data are received as input, and one set is
returned as output.? Natural as it seems, this approach can become unduly
cumbersome in programming polynomial expressions that require just a
single line when written by hand. Consider, for example, the formula

gx) = 3[u)v' (x) — u' (@) + [u*(x) — v*(x)], (2)

where u(x), v(x) are Bernstein-form polynomials. To obtain the desired
polynomial one might invoke a sequence of function calls, such as:

v_prime = differentiate(v);

u_v_prime = multiply(u,v_prime);
u_prime = differentiate(u);

u_prime_v = multiply(u_prime,v);

term1 = subtract(u_v_prime,u_prime_v);
3_term1 = premultiply(3.0,term1);
u_square = multiply(u,u);

v_square = multiply(v,v);

term2 = subtract(u_square,v_square);
g = add(3_term1,term?2);

20f course the input and output data sets may differ in number from the example shown here,
and may also include scalar values.
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Apart from its verbosity, this approach incurs a proliferation of temporary
variables. Expression (2) is an innocuous example of the kinds of Bernstein-
form polynomials that are commonplace in geometric modeling applica-
tions—see Farouki et al. [2000] for numerous examples that arise in the
context of determining maximum safe feedrates for a CNC machine under
given constraints on the torque and power capacity of the drive motors.

This paper describes a software library for Bernstein-form polynomials
that exploits the object-oriented programming capabilities of C++ [Strous-
trup 1997]. By the operator overloading method, we regard each polynomial
in an expression as an “object” that comprises degree and coefficient
information. Arithmetic operations and other basic functions on these
polynomials are then defined, receiving “instances” of the objects as input,
and returning new instances as outputs. Programming a sequence of
polynomial operations such as (2) thus reduces to simply “writing out” the
expression in the appropriate syntax:

g =3.0" (u*diffy) — diff) *v) + (u O 2-v O 2);

Since no separate function calls (or intermediate variables) are needed,
there is a significant reduction in the implementation effort, as well as a
reduced likelihood of programming errors. We expect this software library
to prove useful in the complex geometrical calculations often encountered
in CAGD (e.g., surface intersections) and many other application contexts.

Our emphasis in this paper is on “numerical” methods—i.e., algorithms
implemented in double-precision floating-point arithmetic, the medium
most often used in practical applications. In this context, the intrinsic
stability of the Bernstein form is especially valuable. Of course, the
methods also admit symbolic-computation counterparts if we restrict our
attention to polynomials with rational coefficients, and provide the ability
to exactly process rational numbers of arbitrary size.

2. BERNSTEIN DATA AND ALGORITHMS AS OBJECTS

The software library comprises a header file Bernstein.h for declaration of
the functions, and a C++ program Bernstein.cpp containing all of the
definitions, basic functions, and operator-overloadings. It employs the class
environment in C++ to handle both Bernstein data and algorithms.

The header file Bernstein.h is listed below, showing the structure of the
object definition. One can see that the object Bernstein possesses two pieces
of data, cf and dgr, and a group of basic functions and algorithms. Specific
definitions for each of these functions are explained in subsequent sections.
It is worth noting that all of the functions are implemented as friend (i.e.,
nonmember) functions except for (most of) the operator functions, which
are typically implemented as member functions.

Defining friend utility functions allows the user to employ “C-like”
syntax—for example, t = EVAL(r), rather than the dot notation t = r.EVAL()
—thus making the expressions more concise, especially when chained
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operations like t = EVAL(DE(r)) are needed. The other reason for defining
friend functions is to allow objects of other classes or primitive types to
appear on the left-hand side of the operator. This is clearly illustrated in
the definition of the “pre/postmultiply by a number” operators (see Section
4.2).

// Declare a class for Bernstein data and algorithms:
class Bernstein
{
public:

// Array for storing Bernstein coefficients.

double *cf;

// Degree of the polynomial.

int dgr;

// Constructors and destructor:
Bernstein();

Bernstein(double *coeff, int degree);
Bernstein(const Bernstein &u);
~Bernstein();

// Binomial coefficients and utilities:

friend Bernstein getprimes(int n, int pr_num, int mode);

friend Bernstein factorization(int n, int k);

friend double binom(int n, int k);

friend double binom(const Bernstein &e);

friend Bernstein binomult(const Bernstein &e1, const Bernstein &e2);
friend Bernstein binodiv(const Bernstein &e1, const Bernstein &e2);

// Degree elevation:
friend Bernstein DE(const Bernstein &u, int r);

// Evaluation and subdivision:

friend double EVAL(const Bernstein &u, double x);

friend Bernstein subLEFT(const Bernstein &u, double Xx);
friend Bernstein subRIGHT(const Bernstein &u, double x);

// Differentiation and integration:

friend Bernstein diff(const Bernstein &u);
friend Bernstein integrate(const Bernstein &u);
friend double integral(const Bernstein &u);

// Normalization:
friend double Norm(const Bernstein &u);
friend Bernstein Normalize(const Bernstein &u);

// Operator overloading:

const Bernstein &operator=(const Bernstein &u);

Bernstein operator+(const Bernstein &u) const;

Bernstein operator—(const Bernstein &u) const;

Bernstein operator:(const Bernstein &u) const;

friend Bernstein operator:(const Bernstein &u, double factor);
friend Bernstein operator+(double factor, const Bernstein &u);
Bernstein operator[{int power);

Bernstein operator/(const Bernstein &u) const;

ACM Transactions on Mathematical Software, Vol. 27, No. 2, June 2001.



272 . Y.-F. Tsai and R. T. Farouki

friend Bernstein quo(const Bernstein &u, int degree);
friend Bernstein rem(const Bernstein &u, int degree);
friend Bernstein rem(const Bernstein &u, int degree);
Bernstein operator<<(const Bernstein &u) const;

// Greatest common divisor:
friend Bernstein GCD(const Bernstein &u, const Bernstein &v, double epsilon);

// Bernstein root solver:

friend Bernstein ROOT(const Bernstein &u, double delta, double eta, double
epsilon);

friend Bernstein sROOT(const Bernstein &u, double delta, double eta);

friend Bernstein mROOT(const Bernstein &u, double delta, double eta, double
epsilon);

b
For completeness, the constructors and destructor are also listed below—
the reader may refer to Stroustrup [1997] for further details.

// Constructors and destructor:
// Constructor:
Bernstein::Bernstein() {

dgr = 0;

cf = NULL;
}

// Constructor with coefficient and degree inputs:
Bernstein::Bernstein(double *coeff, int degree) {
int kk;
dgr = degres;
try { cf = new double[dgr + 1]; }
catch (bad_alloc exception ) {
cout << “In constructing a Bernstein object:” << exception.what() << endl;
dgr = -1;
}
for (kk = 0; kk <= dgr; kk++)
cflkk] = coefflkk];
}

// Copy constructor:
Bernstein::Bernstein(const Bernstein &uu) {
int kk;
dgr = uu.dgr;
try { cf = new double[dgr + 1]; }
catch ( bad_alloc exception ) {
cout << “In constructing a Bernstein object:” << exception.what() << endl;
dgr = -1;

for (kk = 0; kk <= dgr; kk++)
cflkk] = uu.cflkk];
}

// Destructor:
Bernstein:: Bernstein() { if (dgr > -1) delete [] cf; }

ACM Transactions on Mathematical Software, Vol. 27, No. 2, June 2001.



Algorithm 812: BPOLY . 273

3. BASIC FUNCTIONS

We begin by describing some elementary functions concerned with binomial
coefficients and operations on a single polynomial. One approach that helps
elucidate the structure of algorithms for Bernstein-form polynomials is
based on the concept of blossoming, i.e., the interpretation of a degree-n
univariate polynomial as the specialization of a multivariate polynomial
that is linear in each of n variables. We opt for direct formulations of the
various algorithms here, since they are accessible to the general reader who
is not versed in the theory and methods of blossoming—see Farin [1997]
and Ramshaw [1987; 1989].

3.1 Binomial Coefficient Computations

Related programs:
Bernstein getprimes(int n, int pr_num, int mode)
Bernstein factorization(int n, int k)
double binom(int n, int k)
double binom(const Bernstein &e)
Bernstein binomult(const Bernstein &e1, const Bernstein &e2)
Bernstein binodiv(const Bernstein &e1, const Bernstein &e2)
In processing polynomials expressed in Bernstein form, we often encoun-
ter computations involving the binomial coefficients

(”)—”! k=0 (3)
L _(n—k)!k!’ =0,...,n.

We adopt the convention that (3) has the value 0 when £ < 0 or & > n.
Pascal’s triangle is a well-known scheme for computing binomial coeffi-

cients:
m m—1 m—1
(k)=< k )*(k—l) “w

for k. =0,...,m and m = 2, ..., n. In ordinary integer arithmetic,
however, this may incur overflow at relatively small n values [Farouki and
Rajan 1988]. Goetgheluck [1987; 1988] describes an approach to processing
binomial coefficients that circumvents this problem, based on their factor-
ization into primes

n ; er
(k) = rlzllpr; (5)

where pq, ps, Ps, ... =2, 3,5, ... 1is the ordered set of primes, and e, e,,
es, ... are their corresponding exponents (to be determined by the method
described below). Since prime factors larger than n cannot appear in the
factorization, m is determined by the conditions p,, = n and p,,.; > n.
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Employing (5) as our basic representation, the multiplication and divi-
sion of binomial coefficients can be performed by simply adding or subtract-
ing the exponent vectors. Additions and subtractions also benefit from use
of (5), by extracting the highest common factor from the operands before the
addition or subtraction is performed. Although the value of an expression
that involves binomial coefficients may ultimately be required as a floating-
point number, performing as much of the calculation as possible on the
exponents in the representation (5) minimizes the accumulation of round-
off errors.

To obtain the prime factorization of a binomial coefficient, we will need
the following lemma:

LEMMA 1. The power of a prime p in the factorization of n! is given by

> /pd (6)

i>0,p'=n

To verify this, we note that m; = [h/pOis the largest integer such that

mp = n. Now in the expansion of n!, p occurs in p, 2p, ..., mp, and
hence m; is the number of “simple” appearances of p in the factors of n!.
Similarly, setting m, = [h/p?] we see that p? occurs in p?, 2p2, ..., myp?

upon expanding n!, and m, is thus the number of “double” appearances of p
in the factors of n!. Continuing in the same manner for each successive
power of p, such that p! = n, we finally obtain (1) as the power of p in n!.
Applying this result to (3), and noting that multiplications and divisions
correspond to additions and subtractions of prime exponents, we obtain

e,(n,k) = > [/pD- k/p0- On — k)/pT0 (7

i>0, p'=n

for the exponent of the prime p in (3). We now show that each term of the
above sum is simply O or 1.

THEOREM 1. Let p be a prime number, and n, k, i be positive integers
that satisfy n = k and n, k = p'. Then n and k can be expressed as

n=ap' +b, k=cp +d,
where a, b, ¢, d are positive integers with 0 = b, d < p', and we have

0 ifb=d,

1 ifb <d. (®)

(&/p'0— k/p'0- Un — k)/p0= {

ProOF. Clearly, n/p’ and k/p’ comprise integer and fractional parts,
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so that (h/p0— [(k/p0= a — c. Thus, recalling that 0 = b, d < p’, we
write
n—=k b—d

—=a—c+——. 9)
p p
Clearly, if b = d, the integer part of (9) is just a — ¢, which causes
expression (8) to assume the value 0. When b < d, on the other hand, we
must borrow 1 from a — ¢ to accommodate the negative fractional part on
the right in (9), so that dn — k)/pd= a — ¢ — 1, which causes (8) to
assume the value 1. [

The relation (8) suffices to compute the exponent (7) of each prime p =
n, and hence yields the complete factorization of (3). The following lists a
simple implementation of the scheme (Goetgheluck gives a slightly more
complicated version, employing several “rules of thumb” that help reduce
the total number of floating-point divisions—see Goetgheluck [1987] for
details).

Bernstein factorization(int n, int k)
{

int i, j;

double p_i;

Bernstein primes, exp;

// Irrational case:
if(n < KIl(k < 0)exp.dgr=—1;
else {
// Retrieve prime numbers in mode 1:
primes = getprimes(n, 0, 1);
// Set up the array for storing the exponent vector:
exp.dgr = primes.dgr;
try { exp.cf = new double[exp.dgr]; }
catch ( bad_alloc exception ) {
cout << “In function factorization():” << exception.what() << endl;
exp.dgr = —1;
return exp;

}

exp.cfl0] = 1.0;
for (j=1; ] <= exp.dgr; j++) {
exp.cffj] = 0.0;
i=1;
p_i = pow(primes.cf[j], i);
while (p_i <= n) {
if (fmod(n, p_i) < fmodi(k, p_i)) exp.cf[j] +=1.0;
i++;
p_i = pow(primes.cfl]], i);
}
}

// Return the exponent array and the size of the array in
// an instance of Bernstein object:
return exp;
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For input parameters n and k, this function returns the exponents e,(n, k)
of all prime factors p = n of (3). Note that class Bernstein is “borrowed”
here to store the exponents in the cf array, and the size of the array in the
variable dgr. This avoids the need to introduce and manipulate a new
object, as well as ensures that the return type of this function is consistent
with all other functions. Input data with 2 < 0 or £ > n causes the value
—1 to be returned for the size of the exponent array, which alerts subse-
quent functions to produce the value 0 for (3). The output of factorization
serves as input to functions that evaluate, or perform arithmetic operations
on, binomial coefficients. We emphasize that the prime factorization is an

exact representation of (3), regardless of the size of n. Other functions
concerned with the binomial coefficients are:

—Bernstein getprimes(int n, int pr _num, int mode):
This retrieves an ordered set of primes. When called with mode=1, it
returns all primes less than or equal to n in an array, and the number of
elements in that array. When called with other values for mode, the
desired number of primes (starting with 2) is specified by pr_num, and
the function returns these primes in ascending order.

—Bernstein binomult(const Bernstein &e1, const Bernstein &e2):

This function multiplies two binomial coefficients by adding their prime
exponent arrays €1 and e2; the resulting exponent array is returned in a
Bernstein instance.

—Bernstein binodiv(const Bernstein &e1, const Bernstein &e2):
Similar to the above, but with addition replaced by subtraction.

—double binom(int n, int k):
With input n and k, this function computes (3) by calling factorization()
and then directly multiplying out the prime factorization.

—double binom(const Bernstein &e):

With exponent array e as input, this function directly computes (3) by
multiplying out the prime factorization.

3.2 Degree Elevation

Related program:
Bernstein DE(const Bernstein &u, int r)

A polynomial of true degree n can be represented in the Bernstein basis
of degree n + r, for r = 1, through a process known as degree elevation
[Farin 1997; Hoschek and Lasser 1993]. Degree elevation is required in, for
example, the addition of polynomials of different degrees. If C§, ..., C»
are the coefficients in the degree-n Bernstein basis, the coefficients in the
basis of degree n + r are given [Farouki and Rajan 1988] by
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r n
min(n, k) k _,] ,]

CZJrr — E C,}
J
Jj=max(0, k—r) n+tr
k

Bernstein DE(const Bernstein &u, int r)

{

int j, jmin, jmax, n, Kk, i;
double fracBINOM;
Bernstein result, e1, e2, e12, e3, €123, CF;

n = u.dgr;

result.dgr =n +r;

try { result.cf = new double[result.dgr + 1]; }
catch ( bad_alloc exception ) {

cout << “In function DE():” << exception.what() << endl;

result.dgr = -1;
return result;

for (k=0; k <= n+r; k++)

{

jmin =k-r;
if jmin < 0) jmin = 0O;
jmax = k;

if jmax > n)jmax = n;
result.cflk] = 0.0;

// Compute the common factor:
el = factorization(r, k — jmin);
e2 = factorization(n, jmin);

e3 = factorization(n-+r, k);

e12 = binomult(e1, €2);

€123 = binodiv(e12, e3);

CF = e123;

for (j=jmin+1; ] <= jmax; j++)

el = factorization(r, k — j);
e2 = factorization(n, j);

e3 = factorization(n + r, Kk);
e12 = binomult(el, e2);
€123 = binodiv(e12, e3);

// Establish the common factors:
for (i=1;i < = e123.dgr; i++)
if (€123.cf[i] != CF.cf[i]) CF.cf[i] = 0.0;
}

// Bring out the common factor:
for (j=jmin; j <= jmax; j++)

277

(10)

, n + r. The following function performs degree elevations:
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el = factorization(r, k — j);
e2 = factorization(n, j);

e3 = factorization(n + r, k);
e12 = binomult(e1, e2);
€123 = binodiv(e12, e3);

for (i=1; i <= e123.dgr; i++)
if (€123.cf[i] == CF.cf[i]) e123.cf[i] = 0.0;

// Direct evaluations:
fracBINOM = binom(e123);
result.cflk] += fracBINOM * u.cf[j];

}

// Multiply by the common factor:
result.cflk] = result.cflk] * binom(CF);

return result;
}

This function exploits the factorized binomial coefficient representation.
For each term of the sum, the quantity involving three binomial coefficients
is aggregated in factored form in the exponent array e123. Also, the highest
common factor of all of these quantities is extracted from the sum as CF. By
performing the necessary floating-point operations only after these steps,
the effects of round-off error (especially for large n) are minimized.

The converse of degree elevation (i.e., degree reduction) is possible only if
the true degree of a polynomial is less than the degree of the Bernstein
basis in which it is expressed—the detection of such cases and adaptation
of the above algorithm to perform degree reduction are described in
Farouki and Rajan [1988].

3.3 Evaluation and Subdivision

Related programs:

double EVAL(const Bernstein &u, double X)
Bernstein subLEFT(const Bernstein &u, double x)
Bernstein subRIGHT(const Bernstein &u, double x)

The standard means of evaluating a Bernstein-form polynomial is
through an iterated sequence of linear interpolations among the Bernstein
coefficients, known as the de Casteljau algorithm [Farin 1997]. A triangu-
lar array of values P\’ forr = 0, ... ,n and k2 = r, ..., n is populated
as follows. We begin by assigning the Bernstein coefficients to the first row

(r =0):

PO=cCr, k=0,...,n.

Then, if x, is the point at which the polynomial is to be evaluated,
subsequent rows r = 1, ..., n are filled recursively according to the
formula
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PPV =1 —-x)Pr Y +xPr Y, k=r ..., 0 (11)

The final element, at the apex of the triangular array, then gives the
desired value: P(x,) = P{". In addition to evaluating the polynomial at x
= x,, the de Casteljau algorithm also subdivides the polynomial at this
point. Namely, the values on the left- and right-hand sides of the triangular
array

PY,PY,...,PY and P, PrY,...,PY

are the Bernstein coefficients of the polynomial on x € [0, x,] and x €
[x,, 1], when these subintervals are both mapped to [0, 1]. The functions
SUbLEFT and subRIGHT furnish?® the coefficients of the subdivided polyno-
mial.

Subdivision is a useful tool in processing Bézier curves and surfaces
[Farin 1997; Lane and Riesenfeld 1980]; it is also the basis of the root-
solver described in Section 5 below. Note that the de Casteljau algorithm
has O(n?) cost; in contexts where efficiency is of primary concern, an O(n)
Horner-like algorithm may be used instead.

3.4 Differentiation and Integration

Related programs:
Bernstein diff(const Bernstein &u)
Bernstein integrate(const Bernstein &u)
double integral(const Bernstein &u)
The differentiation and integration of polynomials in Bernstein form is a
simple matter, involving only linear combinations of the Bernstein coeffi-
cients [Farouki and Rajan 1988]. The derivative of (1) is a polynomial of

degree n — 1, given by

n—1

d
—Px) = 2n(Ci, — CHb; (). (12)
dx k=0

Higher derivatives can be obtained by repeated application of this rule.

Note also that values of the derivatives at a given ¢ can be computed
directly by an extension of the de Casteljau algorithm, as described in

Farin [1997]. The indefinite integral is a polynomial of degree n + 1,

k=0

n+1
fP(x)dx = > I (x) (13)

3Note that each call to EVAL, subLEFT, subRIGHT incurs execution of the de Casteljau
algorithm—although a single execution can furnish all the information provided by these
three functions, we prefer to keep them separate for greater programming clarity.
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where we take I2*' = 0 as the integration constant, and
1 k-1
Iit=——>cr, k=1,...,n+ 1

Finally, the definite integral of P(x) over [0, 1] is

\M:

c. (14)

1 1
Px)dx =1"11=——
fo () .l

The functions diff(), integrate(), and integral() compute (12), (13), and (14).

3.5 Normalization

Related programs:
double Norm(const Bernstein &u)
Bernstein Normalize(const Bernstein &u)

In root-solving and various other contexts, it may be advantageous to
scale the Bernstein coefficients of a polynomial by a certain factor, in order
to satisfy a desired normalization condition. If we choose the L, norm

IP@)l| =

1
f IP(x)Ide]”Z, (15)

0

as the scaling factor, this is given [Farouki and Rajan 1988] by

I — zz(n)(j)

2n + 1,5 ,5( 2n
i+J

crer.

Dividing the coefficients C}, ..., C? by |P(x)| ensures that the root-mean-
square value of the polynomial over [0, 1] is unity.

The function Norm computes the value given by (15), whereas Normalize
returns a Bernstein-form polynomial whose coefficients have been scaled by
(15).

4. ARITHMETIC OPERATIONS

Consider the sum, difference, product, and quotient of two polynomials
F(x) and G(x), of degree m and n, with Bernstein coefficients A, ..., A
and Bj, ..., B}, respectively. These functions are embedded into the
familiar operators +, —, *, / by means of the operator-overloading tech-
nique. The assignment operator = is also overloaded; it simply copies the
coefficients and degree from the right operand to the left. Two further
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binary operations for Bernstein-form polynomials are also presented—the
polynomial composition and greatest common divisor algorithms.

4.1 Addition and Subtraction

Related programs:
Bernstein Bernstein::operator + (const Bernstein &u) const
Bernstein Bernstein::operator — (const Bernstein &u) const

If m = n, the sum or difference of F'(x) +G(x) is of the same degree, and
involves simply adding or subtracting the coefficients term-by-term. If m
# n we degree-elevate the polynomial of lower degree, so as to represent
both polynomials in the basis of the same degree, and then add/subtract the
coefficients. The addition function is illustrated below.

Bernstein Bernstein::operator+(const Bernstein &u) const
{

int k, m, n;

m = dgr; n= u.dgr;

Bernstein result, temp;

result.dgr = m;

try { result.cf = new double[m + 1]; }

catch (bad_alloc exception ) {
cout << “In function add():” << exception.what() << endl;
result.dgr = —1;
return result;

}

for (k=0; k <= m; k++)
result.cflk] = cflk] + u.cf[k];

else if (m > n)
{
result.dgr = m;
try { result.cf = new double[m + 1]; }
catch ( bad_alloc exception ) {
cout << “In function add():” << exception.what() << endl;
result.dgr = —1;
return result;

}

temp = DE(u, m — n);
for (k=0; k <= m; k++)
result.cflk] = cflk] + temp.cf[K];
}

else if (m < n)

result.dgr = n;
try { result.cf = new double[n + 1]; }
catch (bad_alloc exception ) {
cout << “In function add():” << exception.what() << endl;
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result.dgr = —1;
return result;

}

temp = DE(*this, n — m);
for (k=0; k <= n; k++)
result.cflk] = temp.cf[k] + u.cflk];

return result;

}

4.2 Multiplication

Related programs:

Bernstein Bernstein::operator * (const Bernstein &u) const
Bernstein Bernstein::operator [(int power) const
Bernstein operator * (double factor, const Bernstein &u)
Bernstein operator : (const Bernstein &u, double factor)

The product F(x)G(x) is of degree m + n, and has Bernstein coefficients

e
min(m, k) ,] k _.j

cnin = > A"B? (16)
* j=max(0,k-n) (M T 1 7
k
fork = 0, ..., m + n [Farouki and Rajan 1988]. We omit the implemen-

tation, which is similar to that of the degree-elevation formula (10). The
power operator [0 and pre- or postmuliplication (by a number) are natural
concomitants of the product operator. To implement [ (for integer expo-
nents), we just apply the product operator repeatedly on the same operand.
For pre/postmultiplication by a number, we modify the argument list of the
* overloading

// Bernstein “premultiply” operator:
Bernstein operator(double factor, const Bernstein &u)

... (omitted)...
}

// Bernstein “postmultiply” operator:
Bernstein operator(const Bernstein &u, double factor)

{
}

so that it calls the appropriate definition of * when the compiler recognizes
a particular argument list. In C++, this is known as function overloading.
Of course, the general product function could be used to multiply a
polynomial by a scalar, if we are willing to define the latter as a polynomial
of degree 0. However, it is much more convenient for the user to have the
ability to write k * polynomial or polynomial * k, for any number k.

... (omitted)...
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4.3 Division

Related programs:
Bernstein Bernstein::operator/(const Bernstein &u) const
Bernstein quo(const Bernstein &u, int degree)
Bernstein rem(const Bernstein &u, int degree)
Assuming that m = n, the division of F(x) by G(x) corresponds to
finding the quotient and remainder polynomials, @(x) and R(x), in the
equation

F(x) = Gx)Q(x) + R(x), %))

Q@ being of degree m — n and R of degree =n — 1. Let Q7 ™", ..., Q@n_"
and R7™ ', ..., R"_]{ be the Bernstein coefficients of these polynomials.

Applying the sum and product rules, Eq. (17) yields

")
min(m—n, k) ] k _ .]

ar= 3 BL,Q"
j=max(0, k—n) m
k
(m—n-l—l)(n—l)
min(n—1, k) h—i .
+ > / A (18)
j=max(0, k—m+n—1) m
k
for k =0,...,m. Since Af, ..., Al and Bj, ..., B are known, (18)
amounts to a system of m + 1 linear equations for the m + 1 unknowns
meno oL, Q™" and REY, ..., R"_l. Writing this system in vector-

matrix form, a standard procedure—e.g., Gaussian elimination with partial
pivoting [Atkinson 1989]—suffices for its solution. Clearly, polynomial
division incurs greater computational cost (and is perhaps more prone to
round-off error accumulation) than addition or multiplication, since it
entails solving a linear system. The following fragment illustrates the use
of the division function:

Bernstein u, v, result, g, r;

result =u/v;

q = quo(result,m-n);

r = rem(result,n-1);

4.4 Composition

Related programs:
Bernstein Bernstein::operator << (const Bernstein &u) const

The composition algorithm is concerned with computing the polynomial

Wix) = F(G(x)),
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defined by substituting one polynomial as the argument of other. As before,
we take F(x) and G(x) to be of degree m and n, with Bernstein coefficients

o, ...,A" and Bj, ..., B. Then W(x) is of degree mn, and its coeffi-
cients may be computed using the product algorithm of DeRose [1988]. This
populates a tetrahedral array of numbers hfS)J as follows. In the first level,
s = 0, we set

RO =Ar, i=0,...,m.

Successive levels s = 1, ..., m are then filled using the recursive formula

ns —n n
min(j, ns—n) k ;o k

M= 3

k=max(0, j—n) (ns)
J

fori =0,...,m —sandj =0, ..., ns. Once the array is fully popu-
lated, the last level, s = m, contains the desired coefficients of W(x):

[(1 = BLphPP + Bryhinh]  (19)

W= B =0, mn.

0,/

Although more complicated, expression (19) is somewhat similar in struc-
ture to degree elevation (10) and multiplication (16), so we omit implemen-
tation details. We adopt the operator << to denote composition—F(u) <<
G (x) suggests “feeding” the expression u = G(x) into the polynomial F'(u).

It should be noted that composition is relatively expensive compared to
the arithmetic and other simple operations—the cost is O(m3n?) flops.

4.5 Greatest Common Divisor

Related program:
Bernstein GCD(const Bernstein &u, const Bernstein &v, double epsilon)

The greatest common divisor gcd(F(x), G(x)) of two polynomials is the
polynomial of highest degree that divides exactly (i.e., with zero remainder)
into both polynomials. The ged of a given polynomial P(x) and its deriva-
tive, ged(P(x), P'(x)), is an important example: the ged allows multiple
roots of P(x) to be identified in a root-finding procedure.

The standard method of computing ged (F(x), G(x)) is through Euclid’s
algorithm [Uspensky 1948], which employs an iterated sequence of polyno-
mial divisions. Assuming that m = n, we assign ¢o(x) = F(x), ¢;(x) =
G(x), and compute successive polynomials ¢s(x), ..., ¢, (x) through the
scheme

Po(x) = q1(x)P1(x) + Py(x),
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b1(x) = qo(x)ho(x) + d3(x),

d)rfl(x) = qr(x)qbr(x) + d)r+1(x)7

d)m—l(x) = qm(x)¢m(x)a (20)

where ¢,(x) and ¢,.,(x) are the quotient and remainder upon dividing
¢,_1(x) by ¢,(x). The procedure is continued until we encounter a remain-
der ¢,,.1(x) that vanishes identically, and we then have ged(F(x), G(x))
= ¢, (x).

’I(‘lile( il)nplementation of Euclid’s algorithm in floating-point arithmetic is
a delicate issue, since the vanishing-remainder termination criterion is
never precisely attained due to round-off errors incurred in each division. It
might seem that a reasonable termination criterion, in the context of
floating-point arithmetic, is to test the remainder norm* ||¢,.;(x)|| at each
step against a prescribed tolerance €, assuming that the input polynomials
F(x) and G(x) are normalized before embarking on the Euclidean algo-
rithm (20).

Example 1. Consider the polynomials
F(x) = (x — 0.19)%x — 0.53)*(x — 0.81)4,
G(x) = (x — 0.24)%(x — 0.53)*(x — 0.66)*,

for which ged(F(x), G(x)) = (x — 0.53)%. Representing these polynomials
in Bernstein form® and applying the division sequence (20), we obtain the
data shown in Table I. Since ged(F(x), G(x)) is known to be of degree 4,
one might expect to observe a small remainder norm at stage 8. We see,
however, that the remainder norm experiences dramatic and unpredictable
changes at each successive stage: its comparison with a specified tolerance

€ is thus an unreliable indicator of when to stop the Euclidean algorithm
(20).

The inadequacy of ||¢,,,(x)| as an indicator of when to stop the division
sequence (19) to obtain a satisfactory “approximate ged” can be understood
as follows. If we stop at the rth step (i.e., the division of ¢,_;(x) by ¢,.(x))

4Since the norm (15) depends only on the polynomial behavior over x € [0, 1], this can only
be expected to accurately yield ged factors corresponding to roots on this interval.

5The factors x — a are written in the Bernstein form — a(1 — x) + (1 — a)x before being
multiplied together to form F(x) and G(x), thus avoiding the need for basis conversions.
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Table I. Remainder Norms in Applying (19) to the Polynomials of Example 1

Stage Dividend Degree Divisor Degree Remainder Norm
1 14 11 1.2228 x 10°
2 11 10 5.2620 x 10!
3 10 9 6.6666 x 104
4 9 8 3.2542 x 10!
5 8 7 1.0953 X 10°°
6 7 6 4.4323 X 10°
7 6 5 3.4512 x 10°°?
8 5 4 1.2140 x 10°¢
9 4 3 1.4128 x 10°°
10 3 2 5.5170 x 10°?
11 2 1 1.6978 x 108

we can show, by working backward through (19), that the original polyno-
mials can be written in the form

F(x) = $pox) = (x)p,(x) + 65" (x) b1 (x),

G(x) = $1(x) = 61(x)d,(x) + 67" (x)byi1(),

for certain polynomials 6;(x), 657 (x) and 67(x), 677 '(x). When ¢,,,(x) = 0,
¢,(x) divides exactly into both F'(x) and G(x). When ¢, ;(x) # 0, however,
the value of ||¢,.1(x)| is not a good indicator of “how nearly” ¢,(x) divides
into F(x) and G(x), since the divisions F(x)/ ¢,(x) and G(x)/ ¢,(x) produce
remainders 057 (x)$,.1(x) and 677 (x)d,.1(x), not just ¢, 1(x).

Since a satisfactory “approximate ged” should produce remainders with
small norms when divided into the original polynomials F(x) and G(x),

these considerations motivate the following definition (adapted from Schon-
hage [1985]):

Definition 1. The quasi ged of two normalized Bernstein-form polynomi-

als F(x) and G(x), for a given tolerance €, is the first polynomial ¢,(x)
generated by (19) satisfying the condition that the divisions

F(x) = () (x) + ri(x),

G(x) = q2(x)d,(x) + ryx),

produce remainders with ||r;(x)|| < € and [|r,(x)| < e.

The use of this definition in an approximate gcd procedure clearly incurs
additional expense, since at each step of the division sequence (19) we must
divide the “candidate ged” ¢,(x) into the original polynomials, and compute
the norms of the resulting remainders (Schonhage [1985] presents a
complexity analysis for a somewhat different definition of the quasi gecd).
With € = 107 in Definition 1, the e-ged of F(x) and G(x) in Example 4.5 is
properly identified at the 8th division stage, as shown in Table II.
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Table II. Remainder Norms on Dividing F(x) and G(x) by ¢,(x) in Example 1

Stage Dividend Degree Divisor Degree |74l |72l
6 7 6 1.8422'x 1075 2.8021 X 1072
7 6 5 2.0652 X 1075 6.3700 x 107°
8 5 4 4.9069 X 10~®  8.1258 x 107°

Table III. Comparison of Computed and Exact gcd Coefficients for Example 1

Ct exact 3.5660966909593
computed 3.560966646640
Ci exact —3.157838580205
computed —3.157837897874
Cs exact 2.800347420182
computed 2.800347420182
C3 exact —2.483326957520
computed —2.483326561676
Ci exact 2.202195603838
computed 2.202195707067

Table IIT compares the coefficients of the computed ged, obtained using
the termination strategy in Definition 1, with the exact coefficients (ob-
tained by writing the factor (x — 0.53)* in Bernstein form).

Since any gecd algorithm implemented in floating-point arithmetic must
rely on a prescribed numerical tolerance for its termination, it is inherently
less “robust” than the other polynomial operations described above. Round-
off errors incurred by the gcd computation may be especially prominent
when the number of division stages is large. Thus, when invoking the gecd
function, careful consideration must be given to the choice of an appropri-
ate tolerance, and the consequences of using an approximate gcd in
subsequent applications (e.g., determination of multiple roots; see Section
5). A simple example illustrates the need for a cautionary attitude toward
the use of this function:

Example 2. Given the three linear Bernstein-form polynomials
a(x) =2.5(1 — x)—3.8x, b(x) = 4.5(1 — x)—1.8x, c(x) = 4(1 — x)—3x

we define F'(x) = aP(x)c(x) and G(x) = b9(x)c(x), so that ged(F(x), G(x))
= ¢(x) for any p and ¢q. If h(x) = ho(1 — x) + hix is the quasi ged
computed using the above procedure, the deviation of h,/h; from the exact
value —4/3 indicates the error in this approximate ged. With € = 107,
we obtain the acceptable result ho/h; = —1.333333333333335 when
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(p, q) = (4, 3). With (p, q) = (19, 18), however, the ratio becomes
—1.3333333427725553—i.e., the 15 extra division stages incur a loss of
7 significant digits.

To summarize, one must be realistic about the accuracy expected from a
floating-point ged function. As a simple rule of thumb, results that require
more than r = 10 division stages in (20) should be regarded with skepti-
cism. One must also keep in mind the important role that the tolerance e
plays in terminating the procedure. A truly robust floating-point ged would
entail a detailed study of the conditioning and backward error analysis of
sequences of polynomial divisions, a task that is beyond our present scope.

5. BERNSTEIN ROOT-SOLVER

Related programs:

Bernstein sROOT(const Bernstein &u, double delta, double eta)

Bernstein mROQOT(const Bernstein &u, double delta, double eta, double epsilon)
Bernstein ROOT(const Bernstein &u, double delta, double eta, double epsilon)

The Bernstein form is ideally suited to the isolation and approximation of
the real roots of a polynomial on a given interval, due to its numerical
stability [Farouki and Goodman 1996; Farouki and Rajan 1987] and the
useful geometrical information contained in the coefficients. As a first step,
the root-finder normalizes the Bernstein coefficients by calling Normalize().
A variety of root-finding methods [Spencer 1994] are then available, based
on the following well-known properties:

(1) convex hull property: the graph of y = P(x) is confined within the
convex hull of the control points (x,, y,) = (k/n, C}) fork =0, ..., n;

(2) variation-diminishing property: the number N of real roots of P(x)
on the open interval (0, 1) is related to the number of sign changes V
in its coefficients by N = V — 2k, where k is a nonnegative integer;

(3) subdivision property: the de Casteljau algorithm (11) splits P(x) at
any point x, € [0, 1] and furnishes its Bernstein coefficients on the
subintervals [0, x,] and [x,, 1].

Lane and Riesenfeld [1981] describe a scheme combining iterated subdi-
vision with the variation-diminishing property to isolate and approximate
real roots on [0, 1]. Although valuable in isolating the real roots, repeated
subdivision is rather slow as a means of approximating them. A quadrati-
cally convergent scheme, such as the Newton—Raphson method, is prefera-
ble for this purpose, provided we can ensure convergence to a desired root
before invoking it.

Henrici [1964] specifies sufficient conditions for the convergence of New-
ton’s method to a simple real root, in terms of the behavior of the first and
second derivatives over the root-isolating interval [a, b]. In terms of the
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Bernstein form on [a, b], these conditions may be phrased as follows
[Farouki 1991b]:

THEOREM 2. Let the polynomial P(x) have Bernstein coefficients C},
..., C!on x € [a, b], with first and second forward difference AC} =
Ci., — C} and A*C} = AC}., — AC}. Then sufficient conditions for P(x)
to have a unique root on [a, b], and for the Newton-Raphson iteration to
converge to it from any starting point in the interval, may be phrased as
follows:

(D cer < o;

(2) ACE, AC:_; # 0 and V(ACE, ..., AC?_,) = 0;

3) v(axcg, ..., A%Cr_,) = 0;

(4) 1CY = n(b — a)lAC}l and IC?I = n(b — a)lAC?_,]I,

where V(- - +) is the number of sign variations in the indicated quantities.

Since P(a) = Cj and P(b) = C?, condition (1) ensures the existence of a
real root on (a, b). Note that roots at the interval end-points must be
tested for separately, by checking if Cj = 0 or C,; = 0. Condition (2)
ensures that P'(x) # 0, and P(x) is thus monotone on x € [a, b]—hence,
there is only one root. Finally, condition (3) guarantees that P"'(x) = 0 or
P’ (x) = 0 for x € [a, b], while (4) requires the tangent lines to P(x) at
x = a and x = b to intersect the x-axis within the interval [a, b].

The basic root-finding algorithm employs recursive binary subdivision of
the interval x € [0, 1] to identify subintervals on which the conditions of
Theorem 2 are satisfied. During subdivision, the extent of each subinterval
and corresponding Bernstein coefficients for P(x) are stored in stacks.
Subintervals over which all the Bernstein coefficients are of the same sign
may be discarded, since they cannot contain roots. If P(x) has only simple
roots on [0, 1], this root isolation process terminates with at most n
subintervals on which the conditions of Theorem 2 hold. Newton—Raphson
iterations may then be applied to obtain guaranteed quadratic convergence
to the roots.

The ability of the root solver to isolate real roots is ultimately limited by
the accumulation of floating-point errors incurred in successive subdivi-
sions. Subdivision may be regarded as a linear map M transforming the
Bernstein coefficients on an interval [a, b] into those on any subinterval

[@, b]. In the ||*||.. norm, the condition number of M can be written [Farouki
and Neff 1990] as

k(M) = [2f max(uzm, v,)]", (21)

un=m—a)/(b—a), v,=(b—m)/(b— a) being barycentric coordinates
of the subinterval midpoint m = (1/2)(@ + b), f= (b — a)/(b — @)

ACM Transactions on Mathematical Software, Vol. 27, No. 2, June 2001.



290 . Y.-F. Tsai and R. T. Farouki

being the “zoom factor,” and n the polynomial degree. In the case [a, b]
= [0, 1] we have 1/2 = max(u,;, v,) < 1, and hence k.(M) = (2f)". For
high-degree polynomials, this worst-case amplification of errors in the
original Bernstein coefficients as subdivision proceeds to a high resolution
can generate erroneous coefficient signs and compromise the root isolation
process.® In Section 6.2 we show that for the Chebyshev polynomials this
concern becomes significant at n =~ 50.

The above procedure is implemented in the function sROOT, which is
intended for polynomials with only simple roots. Note that sSROOT requires
two numerical tolerances: delta is a tolerance on the magnitude of P(x),
used to check for roots at interval endpoints, while eta specifies the
minimum allowed width of an interval generated during the recursive
subdivision—if the conditions of Theorem 2 are not met on a subinterval
smaller than this tolerance, sROOT will terminate and output an error
message.

Multiple roots require special treatment, since the criteria of Theorem 2
will not be satisfied in any subinterval, however small, that contains a
multiple root. The identification of multiple roots may be based [Uspensky
1948] upon a sequence of ged computations: starting with Py(x) = P(x), we
construct the sequence of polynomials defined recursively by the formula

P, (x
P - i)
ged(Py,_1(x), P’p1(x))
fork = 1, ..., m, terminating when P,,(x) = constant. Then P(x) has no

roots of multiplicity greater than m, and the polynomials defined by

P(x)
Ppiq(x)

Qrlx) = fork=1,...,m—1

and @,,(x) = P, (x) all have only simple roots, such that the roots of @,(x)
correspond to the roots of P(x) of multiplicity %.

Once the polynomials @,(x) are constructed using the ged and polyno-
mial division functions, we can invoke the simple-root solver sROOT and
thus (in principle) determine the value and multiplicity of all the roots on
[0, 1]. This method is implemented in mMROOT, which requires the numer-
ical tolerance epsilon (for terminating the ged computations) in addition to
delta and eta.

Because of its reliance on successive tolerance-based ged computations,
mROOT is obviously not robust when applied to polynomials of high degree
with roots of high multiplicity. The determination of multiple roots is, in

8Since we use the original Bernstein coefficients of P(x) on x € [0, 1] for the Newton—
Raphson iterations, the accuracy of a root that is successfully isolated (according to the
conditions of Theorem 2) is not compromised by errors incurred in the subdivision process.
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fact, an inherently ill-conditioned problem in finite-precision arithmetic.
Caution is thus advisable when invoking the function mROOT.

Finally, ROOT checks whether a call to SROOT or mROOT is necessary,
by testing (using the specified tolerance epsilon) if ged(P(x), P'(x)) =
constant, and then makes the appropriate call. We emphasize again that
use of sROOT is preferred whenever possible, since choosing a “loose”
tolerance in the gecd computation can erroneously signal the presence of
multiple roots.

6. EMPIRICAL TESTS OF SOFTWARE LIBRARY

A variety of empirical tests were conducted in order to assess the accuracy
and robustness the software library. We describe below a few representa-
tive results from these experiments.

6.1 Arithmetic Operations

The special treatment of the binomial coefficients, described in Section 3.1
above, is a key feature of the software library that allows accurate process-
ing of high-degree polynomials. To illustrate this, we consider the explicit
construction of Bernstein representations of successively higher degree for
a rather trivial polynomial, namely, the constant P(x) = 1. In the basis of
any degree n, the Bernstein coefficients of P(x) are simply C} = - - - =
C" = 1. Starting with C; = C} = 1, however, we explicitly compute these
coefficients through successive polynomial multiplications

m

1
206 (x) X X Cibiw),

j=0 k=0

m=1,...,n — 1, as invoked by the exponentiation operator [0. From
(16), we see that these multiplications incur successive evaluation of the

sums
5"
min(m, k) . k g
o M J

jemax0, k-1 (M + 1
k

cre.

Table IV lists the root-mean-square deviations, about the nominal value of
1, of the Bernstein coefficients computed in this manner for n values up to
350. These errors are remarkably subdued, and grow very slowly with
n—on the other hand, explicit evaluation of the binomial coefficients can

incur enormous values: from the Stirling approximation m! ~ V'/Z m
e "m™ one can estimate that for even m the largest binomial coefficient of
order m is ~2™/2/7m(~ 10'°%) for m = 350).
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Table IV. Root-Mean-Square Errors in Computed Bernstein Coefficients

Degree n RMS Coefficient Error
50 1.04 x 1016
100 4.65 x 1016
150 5.75 X 1016
200 1.08 x 1015
250 1.02 x 1015
300 1.34 x 1015
350 1.66 X 1071°

6.2 Roots of Chebyshev Polynomials

Our second example is concerned with constructing the Bernstein form of
the Chebyshev polynomials on [0, 1] and computing their roots on this
interval. The Chebyshev polynomials on x € [—1, +1] are defined [Rivlin
1990] by

T (x) = cos(ncos™ ), (22)
and may be constructed by the recursion formula
Tn(x) = sznfl(x) - Tn*Z(x)y (23)

commencing with Ty(x) = 1 and T;(x) = x. To cast (23) in Bernstein form, we
introduce the change of variables u = (1/2)(x + 1) that mapsx €[ -1, +1]
intou € [0, 1]. With Ty(z) = 1 and T;(z) = 2u — 1, the recursion is then

while (22) becomes T,(u) = cos(ncos™*(2u — 1)). Hence, T,(z) has n
distinct real roots between 0 and 1—namely,

1

uk=§

2k + 1

2n

1 + cos

77} fork=0,...,n— 1. (25)

The following program illustrates the construction of a degree-n Chebyshev
polynomial in Bernstein form by use of (24), and the computation of its
roots using the root solver described in Section 5. The computed roots can
be compared with the exact roots defined by expression (25).

#include “Bernstein.h”

// Demonstration: constructing a degree-n Chebyshev polynomial and finding its roots
void main()

inti, n;

n = 6; // the polynomial degree

double *zeros, pi = 3.14159265358979323;
double R, delta, eta;

Bernstein *T, result;
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// Set the tolerances for root solving:

delta = 1e-11;
eta = 1e-§;
try {

T = new Bernstein[n + 1J;
zeros = new double[n];

catch (bad_alloc exception ) {
cout << “In test_Chebyshev.cpp:” << exception.what() << endl;
exit(1);

// Set T[Q] = 1:
T[0].dgr = 0;
T[0].cf[0] = 1.0;

// SetT[1] = 2u — 1 = (—1.0)"(1.0 — u) + 1.0*(u):
T[1].dgr = 1;
T[1].cfl0] = —1.0; T[1].cf[1] = 1.0;

// Recursion for constructing T[n]:
for (i=2; i <= n;i++)
T =20*TAI*Tli — 1]1-T[i — 2];

// Root solving (with the result sorted in ascending order):
result = sort(sROOT(T[n],delta,eta));

if (result.dgr == —1) {
cout << “In test_Chebyshev.cpp:” << “Error in root solving.” << endl;
exit(1);

// Compute “standard” roots:
for (i=n—1;i>=0;i--)
zeros[n-1-i] = 0.5 + 0.5 * cos((2.0 * (double)i + 1.0) * pi / (2.0 * (double)n));

// Compute RMS error:
... (omitted)...

// Print the results:

... (omitted)...

}

Table V presents results for the degree-6 Chebyshev polynomial obtained
using SROOT with delta = 107!® and eta = 1078 The computed values
agree with the exact roots to at least 15 significant digits in all cases, and
the RMS error of the computed roots is 7.0 X 10717, Similar computations
were also performed for n up to 50, and the results are summarized in
Table VI. As expected, there is a steady degradation of the accuracy with
increasing n. At n = 50, the accumulated floating-point errors incur
erroneous satisfaction of the conditions of Theorem 2 that cause 3 of the 50
Newton—Raphson iterations to wander into adjacent isolating intervals. For
cases with n = 20, however, the software performs remarkably well. It
should be noted that the results in Tables V and VI are far superior to what
can be obtained using the familiar “power” form of the Chebyshev polyno-
mials.
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Table V. Computed and Exact Roots for the Degree-6 Chebyshev Polynomial

wo computed 0.01703708685546585
exact 0.01703708685546590
Uy computed 0.14644660940672632
exact 0.14644660940672627
Ugy computed 0.37059047744873957
exact 0.37059047744873969
Us computed 0.62940952255126048
exact 0.62940952255126037
Uy computed 0.85355339059327373
exact 0.85355339059327373
Us computed 0.98296291314453410
exact 0.98296291314453410

Table VI. RMS Errors in Computed Roots of Degree-n Chebyshev Polynomials

n =10 n =20 n =30 n = 40
RMS error 6.36 X 10716 5.99 x 10713 2.09 x 10710 4.45 x 1078

6.3 Computing Multiple Roots

As a more stringent test case, consider the degree-n polynomial P(x) with
Bernstein coefficients

Ci=(—1n -k fork=0,...,n.

For n = 3 this polynomial has simple roots at x = 0 and x = 1, and a root
of multiplicity n — 2 at x = 1/2. A numerical determination of the roots
may seem problematic if n is large, since many polynomial divisions
(possibly entailing a significant loss of accuracy) are required to isolate the
multiple root.

Tests of the ROOT function were performed using this polynomial with
increasing degrees n. With the tolerances set at epsilon = 1077, delta =
107!, and eta = 1078, we obtained essentially exact values for all of the
roots for n up to 64 (the exactness of the roots is due to the fact that 0, 1,
and 1/2 are all precise end-points of subintervals in the binary subdivision
of the unit domain). Although such accuracy cannot be expected for
arbitrary multiple roots, this example illustrates the basic soundness of the
approach.

7. CLOSURE

In applications involving computations with polynomials over finite inter-
vals, the Bernstein form offers enhanced numerical stability and intuitive
algorithms for many basic functions. The development of an object-oriented
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software library for Bernstein-form polynomials, as described herein, al-
lows the programmer to take advantage of these features and implement
complex polynomial manipulations in a concise and reliable manner that
does not presuppose an intimate knowledge of the underlying mathematics.
Empirical tests (e.g., computing the roots of Chebyshev polynomials) show
that the library is capable of excellent performance in typical circum-
stances. One should be realistic, however, about performance on problems
that are inherently ill-posed in the context of floating-point arithmetic (e.g.,
greatest common divisors and multiple roots). We believe this library will
help accelerate the development of software packages for a variety of
applications.
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