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random fields. Our result extends moment bounds given by Wu (2007) or Liu and Lin
(2009) for causal autoregressive processes and follows by using recursive applications of
the Burkhölder inequality for martingales.
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1. Introduction

In this paper, we consider random fields X indexed by Zd, d ≥ 1, and which can be written as a Bernoulli shift, e.g.

Xt = H
(
(ξt−j)j∈Zd

)
, t ∈ Zd, (1)

where ξ is an independent and identically distributed E-valued random field and H is a real-valued measurable function.
We consider here E = Rk with k ∈ N∗ ∪ {∞} but a more general measurable space can be considered. A random field of the
form (1) is strictly stationary. The most well-known examples of such random fields are linear random fields, i.e.

Xt =
∑
j∈Zd
ajξt−j, t ∈ Zd. (2)

Spatial AR processes which can be written as linear random fields were extensively studied in spatial statistics (see Guyon,
1995, for a nice presentation).
Other (nonlinear) examples of such random fields are given in Doukhan and Truquet (2007) as solutions of autoregressive

equations of the form

Xt = F
(
(Xt−j)j∈Zd; ξt

)
, t ∈ Zd,

where F is a Lipschitzian function.
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In this note, we prove moment inequalities of the Marcinkiewicz–Zygmund type for the partial sums of a random field
X of the form (1). More precisely we prove that for a real number q > 1,

‖S(B)‖q ≤ Cdq
∑
k∈Zd
‖p(ξ)d,kd ◦ · · · ◦ p

(ξ)

1,k1
(X0)‖q|B|1/q

′

, (3)

where B is a finite subset of Zd, S(B) =
∑
j∈B Xj, q

′
= min(q, 2) and for (s, `) ∈ {1, . . . , d} × Z, p(ξ)s,` denotes the projection

operator defined for an integrable random variable Z by

p(ξ)s,` (Z) = Z − E
(
Z/σ(ξj/js 6= `)

)
. (4)

The constant Cq is the universal constant of the Burkhölder inequality (see Hall andHeyde, 1980) and thus it does not depend
on the distribution of the random field. ‖ · ‖q denotes the usual norm of Lq. Defining

Aq =
∑
k∈Zd
‖p(ξ)d,kd ◦ · · · ◦ p

(ξ)

1,k1
(X0)‖q, (5)

Aq is a positive constant depending only on q and the distribution of the random field ξ . Obviously inequality (3) is interesting
only when Aq <∞. The latter condition basically indicates short-range dependence. Then we study in detail the finiteness
of the constant Aq when the random field X can be written as a functional of linear fields.
An inequality of the form (3) is a useful tool for studying the behaviour of sums of dependent random variables. Strong

laws of large numbers, the strong invariance principle and other variants of limit theorems are often based on this kind
of inequality. Some existing methods for obtaining such inequalities use mixing coefficients. φ-mixing random fields are
considered in Dedecker (2001) and Delyon (2009), and an inequality for α-mixing random fields is given in Doukhan (1994).
Unfortunately, for random fields defined by (1), mixing conditions lead to restrictive assumptions on the random field
distribution (see Guyon, 1995, for the case of linear random fields) or are impossible to check (see the counterexample
of Andrews (1984)when d = 1). On the other hand, generalweak dependence conditions formulated in terms of covariances
of Lipschitzian functionals can be applied to random fields defined by (1) and corresponding moment inequalities are
available. We refer the reader to Dedecker et al. (2007) and Doukhan et al. (2009) for weak dependence conditions that
generalize strongmixing and to Bulinski and Shashkin (2006) for a generalization of associated random fields. Nevertheless,
despite their generality, such approaches do not exploit the particular form of the random field when it can be written as
a functional of independent random variables and lead to complicated and restrictive conditions for the representation (1).
When d = 1, martingale decompositions and the Burkhölder inequality for martingales have been used to prove simple
moment bounds for partial sums of causal processes of the form (2). We refer the reader to Wu (2007) and Liu and Lin
(2009) for details. In this paper, we generalize this approach to random fields and we prove inequality (3) using a simple
recursive application of the Burkhölder inequality. We next study in detail the application of such inequalities to partial
sums of transforms of linear random fields.

2. Moment bounds

We first state basic properties of specific conditional expectations and operators p(ξ)s,` defined in (4).

Lemma 1. Let Z be an integrable random variable, ξ an i.i.d. random field and q a real number with q ≥ 1. Then:
1. If A, B ⊂ Zd,

E (E (Z/ξA) /ξB) = E (Z/ξA∩B) .
2. If A ⊂ Zd and B ⊂ Zd \ A,

‖E (Z/ξA∪B)− E (Z/ξA)‖q ≤
∥∥Z − E

(
Z/ξZd\B

)∥∥
q .

3. If (s, s′, `, `′) ∈ {1, . . . , d}2 × Z× Z,

‖p(ξ)s,` ◦ p
(ξ)

s′,`′(Z)‖q ≤ 2min
(
‖p(ξ)s,` (Z)‖q, ‖p

(ξ)

s′,`′(Z)‖q
)
.

Proof of Lemma 1. 1. The result follows from the independence properties of the random field ξ .
2. From the point 1, we have

E (Z/ξA∪B)− E (Z/ξA) = E
(
Z − E

(
Z/ξZd/B

)
/ξA∪B

)
,

and the result is a consequence of the Jensen inequality.
3. We have from the point 1

p(ξ)s,` ◦ p
(ξ)

s′,`′(Z) = Z − E (Z/ξA)+ E (Z − E (Z/ξA) /ξB) ,

for A = {j ∈ Zd/js 6= `} and B = {j ∈ Zd/js′ 6= `′} and from the triangular inequality and Jensen inequality, we obtain

‖p(ξ)s,` ◦ p
(ξ)

s′,`′(Z)‖q ≤ 2‖p
(ξ)

s,` (Z)‖q.

Exchanging A and B, the result follows. �
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The main result of the paper can now be stated.

Theorem 1. Let X be a real centered random field indexed by Zd, d ≥ 1, and such that E|Xt | < ∞ for all t ∈ Zd. Assume
furthermore that there exists an i.i.d. random field ξ such that σ(X) ⊂ σ(ξ). Then for a real number q > 1, we have with
q′ = min(q, 2)

‖S(B)‖q ≤ Cdq
∑
k∈Zd

(∑
t∈B

‖p(ξ)d,td+kd ◦ · · · ◦ p
(ξ)

1,t1+k1
(Xt)‖q

′

q

)1/q′
, (6)

where Cq denotes the universal constant of the Burkhölder inequality for martingales.

Remarks. 1. The proof of inequality (6) does not use the representation (1) and the stationarity assumption. Note that for
a stationary random field, inequality (6) coincides with (3).

2. Let X be a random field of the form (1) and such that Aq <∞ for a real number q > 1. Then the Móricz theorem (Móricz,
1983) can be used to deduce from the bounds (3) a moment inequality for partial maxima when B is a block of Zd, i.e.

B = ((a1, b1] × · · · × (ad, bd]) ∩ Zd.

More precisely, if q > 2, we have

‖max
WCB
|S(W )|‖q ≤ (5/2)d/q

(
1− 2

2−q
2q
)−d
CdqAq|B|

1/2,

where the notationW C BmeansW ⊂ B andW is a block of Zd with the same minimal vertex as B, i.e.

W = ((a1, c1] × · · · × (ad, cd]) ∩ Zd.

In fact the result of Móricz is analytic, in the sense that it does not involve any dependence properties. When q ∈ (1, 2],
it gives the bound

‖max
WCB
|S(W )|‖q ≤ 5d/q2d(q−1)/qCdqAq|B|

1/q
d∏
i=1

log(bi − ai).

Proof of Theorem 1. 1. We first prove the result for d = 1. For j ∈ Z and an integrable random variable Z , we define

Pi(Z) = E (Z/Fi)− E (Z/Fi−1) ,

where Fi = σ(ξj/j ≤ i). We use the following decomposition:

Xi = Xi − E (Xi/Fi)+ E (Xi/Fi)

=

∑
j≥1

Pi+j(Xi)+
∑
j≥0

Pi−j(Xi)

=

∑
j∈Z

Pi+j(Xi).

Then we have S(B) =
∑
j∈Z
∑
i∈B Pi+j(Xi), and

(
Pi+j(Xi)

)
i∈Z is a martingale difference for the filtration

(
Fi+j

)
i∈Z. The

Burkhölder inequality leads to

‖S(B)‖q ≤
∑
j∈Z

∥∥∥∥∥∑
i∈B

Pi+j(Xi)

∥∥∥∥∥
q

≤ Cq
∑
j∈Z

E

∣∣∣∣∣∑
i∈B

Pi+j(Xi)2
∣∣∣∣∣
q/2

1/q

.

If q ≥ 2, the triangular inequality for the Lq/2 norm leads to

‖S(B)‖q ≤ Cq
∑
j∈Z

{∑
i∈B

‖Pi+j(Xi)‖2q

}1/2
.

Setting A = {` ∈ Z/` ≤ i+ j− 1} and B = {i+ j}, an application of point 2 in Lemma 1 yields

‖Pi+j(Xi)‖q ≤ ‖p
(ξ)

1,i+j(Xi)‖q.

Inequality (6) follows.
If now q ∈ (1, 2], inequality (6) is a consequence of the previous remark and the bound(∑

i∈B

Pi+j(Xi)2
)q/2
≤

∑
i∈B

|Pi+j(Xi)|q.
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2. We show the result for d ≥ 2 using induction on d. Suppose that the bound (6) holds for any random field indexed by Zs,
s ≤ d− 1, and satisfying the assumptions of Theorem 1. We have X = (Xi,j)i∈Z,j∈Zd−1 and

S(B) =
∑
i∈A

Yi, Yi =
∑
j∈Bi

Xi,j,

where B = ∪i∈A{i}×Bi. It is obvious that (Yi)i∈Z satisfies the assumptions of Theorem1with the random field ξ ′i = ξi,Zd−1 ,
i ∈ Z. Then, using inequality (6) for d = 1, we obtain

‖S(B)‖q ≤ Cq
∑
k1∈Z

(∑
i∈A

‖p(ξ
′)

1,i+k1
(Yi)‖q

′

q

)1/q′
. (7)

Note also that for ` ∈ Z, we have pξ
′

1,` = p
ξ

1,`. Then for k1 ∈ Z and i ∈ A, we have p(ξ
′)

1,i+k1
(Yi) =

∑
j∈Bi
p(ξ)1,k1(Xi,j). Since the

random field
(
p(ξ)1,k1(Xi,j)

)
j∈Bi
is indexed by Zd−1 and satisfies the assumptions of Theorem 1 with the i.i.d. random field

ξ ′′ =
(
ξZ,j
)
j∈Zd−1 , we can apply the induction hypothesis. We observe that for s ∈ {1, . . . , d− 1}, p

(ξ ′′)

s,k = p
(ξ)

s+1,k. Then we
get the following bound:

‖p(ξ)1,i+k1(Yi)‖q ≤ C
d−1
q

∑
k2,...,kd∈Z

(∑
j∈Bi

∥∥∥p(ξ)d,jd−1+kd ◦ · · · ◦ p(ξ)2,j1+k2 (p(ξ)1,i+k1(Xi,j))∥∥∥q′q
)1/q′

≤ Cd−1q

∑
k2,...,kd∈Z

(∑
j∈Bi

‖p(ξ)d,jd−1+kd ◦ · · · ◦ p
(ξ)

2,j1+k2
◦ p(ξ)1,i+k1(Xi,j)‖

q′
q

)1/q′
.

Then, using the triangular inequality for the norm ‖x‖ =
(∑

i |xi|
q′
)1/q′

, we obtain(∑
i∈A

‖p(ξ)1,i+k1(Yi)‖
q′
q

)1/q′
≤ Cd−1q

∑
k2,...,kd∈Z

(∑
i∈A

∑
j∈Bi

‖p(ξ)d,jd−1+kd ◦ · · · ◦ p
(ξ)

1,i+k1
(Xi,j)‖q

′

q

)1/q′
,

and the bound (6) follows from (7) using the equality
∑
i∈A
∑
j∈Bi
=
∑

(i,j)∈B. �

The iterations involving the operators p(ξ)s,` are not always easy to evaluate. The following corollary will be useful for
verifying the condition Aq <∞ for most of the examples.

Corollary 1. Let X be a real random field satisfying the assumptions of Theorem 1. Then

Aq ≤ 2d−1
d∑
s=1

∑
n∈N

(2n+ 1)d−1
∑
|ks|=n

cs,ks , (8)

where for s ∈ {1, . . . , d},

cs,ks =

(∑
t∈B

‖p(ξ)s,ts+ks(Xt)‖
q′
q

)1/q′
.

Remarks. 1. When the random field X can be written as in (1) we have the bound

‖p(ξ)s,ts+ks(Xt)‖q ≤ ‖Xt − X̃t,s,ks‖q, (9)

where X̃t,s,ks = H
((̃
ξt−j

)
j∈Zd

)
, ξ̃t−j = ξt−j if js 6= −ks and ξ ′t−j otherwise, ξ

′ being a copy of ξ . When d = 1, the right
hand side of (9) is the coefficient denoted by θq,k used by Wu (2005) to measure the dependence of a stationary process
X . In this case, condition Aq <∞ holds when∑

k∈Z

‖p(ξ)1,k(X0)‖q <∞,

which is similar to the condition
∑
k≤0 θq,k <∞ used by Liu and Lin (2009) (see LemmaA1 and LemmaA2 of their paper)

for a causal stationary process

Xt = H
((
ξt−j

)
j≥0

)
, t ∈ Z.
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2. Note that when d = 1, Aq is finite if and only if the right hand side of inequality (8) is finite. For d ≥ 2 this is no longer
true. For example, for the simple example of linear random fields (2), we have

Aq =
∑
k∈Zd
|ak| × ‖ξ0‖q.

In contrast, when q = 2 and ξ0 is square integrable, the right hand side of (8) is finite provided for s = 1, . . . , d,∑
n∈N

nd−1
√∑
|js|=n

a2j <∞,

which is more restrictive than the summability of coefficients (aj).

Proof of Corollary 1. From point 3 in Lemma 1, a straightforward induction leads to the following inequality:

‖p(ξ)d,td+kd ◦ · · · ◦ p
(ξ)

1,t1+k1
(Xt)‖q ≤ 2d−1 ∧ds=1 ‖p

(ξ)

`,ks+ts(Xt)‖q. (10)

Assume that the random field X satisfies the assumptions of Theorem 1. We have

∑
k∈Zd

(∑
t∈B

∧
d
s=1‖p

(ξ)

s,ts+ks(Xt)‖q

)1/q′
≤

d∑
s=1

∑
n∈N

∑
k/‖k‖∞=|ks|=n

cs,ks

≤

d∑
s=1

∑
n∈N

(2n+ 1)d−1
∑
|ks|=n

cs,ks .

Then the conclusion of Corollary 1 follows. �

3. Examples

In the sequel ξ denotes an i.i.d. random field satisfying Eξ0 = 0. For a random field X of the form (1), inequality (3) is
interesting provided the constant Aq defined in (5) is finite. For the simple case of a linear random field (2), we have

Aq =
∑
k∈Zd
|aj|‖ξ0‖q.

Then provided that ξ0 ∈ Lq, we have Aq < ∞ if and only if
∑
j∈Zd |aj| < ∞. The latter condition is a weak dependence

condition since in this case the autocovariances of the field are summable.
A precise evaluation of the constant Aq may also be possible when the random field X has a polynomial expression with

respect to the coordinates of ξ . We investigate, as an example, a moment bound for the covariances of linear random fields.

Corollary 2. Let Yt =
∑
j∈Zd ajξt−j, t ∈ Zd, with

∑
j∈Zd |aj| <∞, and for a given h ∈ Zd,

Xt = YtYt+h − E (YtYt+h) .

Assume that ξ0 ∈ L2m with m > 1. Then for 1 < q ≤ m, Aq <∞.

Proof of Corollary 2. Let k ∈ Zd and B = p(ξ)d,td+kd ◦ · · · ◦ p
(ξ)

1,t1+k1
(Xt). Then we are going to prove

B =
∑
(α,β)∈I

(∑
j∈Aα

ajξt−j

)
×

∑
j∈Aβ

aj+hξt−j

+ a−ka−k+h (ξ 2t+k − Eξ 20
)
, (11)

where

I = ∩ds=1{(α, β) ∈ {0, 1}
d
× {0, 1}d/(α, β) 6= (0, 0) and αsβs = 0},

Aα = ∩ds=1{j ∈ Zd/js = −ks if αs = 0 and αs = 1 otherwise }.

One can easily see that if (α, β) ∈ I , then α 6= β and since there exists s ∈ {1, . . . , d} such that αs = 0 and βs = 1 (or
the contrary) then the sums

∑
j∈Aα ajξt−j and

∑
j∈Aβ
ajξt−j are independent. Before giving a proof of (11), we show why the

conclusion of Corollary 2 holds. From (11) we obtain the following bound:

‖B‖q ≤
∑
(α,β)∈I

∑
j∈Aα

|aj| ·
∑
j∈Aβ

|aj+h|‖ξ0‖2q +
∣∣a−ka−k+h (ξ 20 − σ 2)∣∣ ,
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where σ 2 = Eξ 20 . Let q ∈ (1,m]. Using assumptions on ξ and coefficients (aj), Aq <∞ if for (α, β) ∈ I ,

G =
∑
k∈Zd

∑
j∈Aα

|aj| ·
∑
j∈Aβ

|aj+h|

 <∞. (12)

If α = 0, then Aα = −k and G ≤
∑
j |aj| ×

∑
j |aj+h| < ∞. The same holds if β = 0. Now suppose that ` = ]{s ∈

{1, . . . , d}/αs = 0} satisfies 1 ≤ ` ≤ d− 1. Without loss of generality, we assume that αs = 0, s ≤ `. Then by definition of
I , we have βs = 0 if s ≥ `+ 1. In this case, we obtain

G ≤
∑
k∈Zd

( ∑
j`+1,...,jd

|a−k1,...,−k`,j`+1,...,jd |

)
·

( ∑
j1,...,j`

|aj1+h1,...,j`+h`,−k`+1+h`+1,...,−kd+hd |

)
≤

∑
j∈Zd
|aj| ·

∑
j∈Zd
|aj+h|.

Then G <∞ and the conclusion of Corollary 2 follows.
Now we prove (11). We first introduce some notation. For s ∈ {1, . . . , d}, let

I(s) = ∩si=1{(α1, . . . , αs, β1, . . . , βs) ∈ {0, 1}
2s αiβi = 0},

A(s)α = ∩
s
i=1{j ∈ Zd / ji = −ki if αi = 0, and ji 6= −ki otherwise },

Bs = p
(ξ)

s,ts+ks ◦ · · · ◦ p
(ξ)

1,t1+k1
(Xt).

Using finite induction on the set {1, . . . , d}, we are going to prove that for s ∈ {1, . . . , d},

Bs =
∑

(α,β)∈I(s)

∑
j∈A(s)α

ajξt−j

×
∑
j∈A(s)β

aj+hξt−j

− ∑
ji=−ki,i=1,...,s

ajaj+hσ 2. (13)

Observe that Bd = B. The proof of this induction uses the following remark: for two subsets C and D of Zd, we have for
s ∈ {1, . . . , d} and Zt =

∑
j∈C ajξt−j ·

∑
j∈D aj+hξt−j,

ps,ts+ks (Zt) =
∑

j∈C,js=−ks

ajξt−j ·
∑

j∈D,js 6=−ks

aj+hξt−j +
∑

j∈C,js 6=−ks

ajξt−j ·
∑

j∈D,js=−ks

aj+hξt−j

− σ 2
∑

j∈C∩D,js=−ks

ajaj+h.

• The case s = 1 is an easy consequence of the previous remark.
• Suppose that equality (13) holds for Bs. Then applying again the previous equality to Bs+1 = ps+1,ks+1(Bs), equality (13)
easily follows for Bs+1. �

The next corollary gives a sufficient condition for having Aq <∞ for some locally Hölderian functionals of linear random
fields. Here we apply Corollary 1.

Corollary 3. Let h : R 7→ R be a function such that there exist a ≥ 0, b ∈ (0, 1] and a positive constant K satisfying∣∣h(x)− h(y) ∣∣≤ K (1+ |x|a + |y|a)∣∣ x− y∣∣b , x, y ∈ E.

For t ∈ Zd, let Yt =
∑
j∈Zd ajξt−j, t ∈ Zd and Xt = h(Yt)− Eh(Yt). Assume that E|ξ0|m <∞ with m > 1, m ≥ (a+ b)q and

q > 1. If for s ∈ {1, . . . , d}

∑
n≥0

(n+ 1)d−1
( ∑
j/|js|=n

a2j

)b/2
<∞, (14)

then Aq <∞.
In particular, if aj = O

(
‖j‖−α

)
with α > (2+b)d−b

2b , condition (14) is satisfied.

Remarks. 1. Corollary 3 shows that inequality Aq <∞ holds with a more restrictive condition than
∑
j∈Zd |aj| <∞. For

example, when aj = O
(
‖j‖−α

)
the summability of coefficients (aj)j holds when α > d, but (2+b)d−b2b > dwhen d ≥ 2.
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2. The result of Corollary 1 can also be applied if the functional h of Corollary 3 has somediscontinuities. However, additional
assumptions could be required in order to bound explicitly the quantity ‖p(ξ)s,` (X0)‖q. For example if h(x) = 1x>t , one can
use an approximation of h by the Lipschitz function hε(x) = 1x>t +

( 1
ε
x+ 1− t

ε

)
1t−ε<x≤t . We obtain

‖p(ξ)s,` (X0)‖q ≤ 2‖X0 − hε(Y0)‖q + ‖p
(ξ)

s,` (hε(Y0))‖q.

Then we can bound the second term as in the proof of Corollary 3 and we get

‖p(ξ)s,` (X0)‖q ≤ 2P (t − ε < Y0 ≤ t)+
2
ε
‖ξ0‖q

√∑
js=−`

a2j .

Some regularity assumptions have to be made for optimizing the previous bound in ε (e.g. ‖p(ξ)s,` (X0)‖q ∼
(∑

js=−` a
2
j

)1/4
if Y0 has a locally bounded density).

Proof of Corollary 3. We first derive a bound for the quantities ‖ps,ts+ks(Xt)‖q, s = 1, . . . , d, and q ≤
m
a+b . For a copy ξ

′ of
ξ , we set

Z = K

1+
∣∣∣∣∣∣
∑
j∈Zd
ajξt−j

∣∣∣∣∣∣
a

+

∣∣∣∣∣ ∑
j/js 6=−ks

ajξt−j +
∑
j/js=−ks

ajξ ′t−j

∣∣∣∣∣
a
∣∣∣∣∣ ∑

j/js=−ks

aj(ξt−j − ξ ′t−j)

∣∣∣∣∣
b

.

Then using the assumption on h, it is not difficult to prove that ‖ps,ts+ks(Xt)‖q ≤ ‖Z‖q. If a > 0, we consider two positive
numbers p and r satisfying 1q =

1
p +

1
r , ar ≤ m andm ≥ bp > 1. Such a choice is possible from the assumptions onm. In the

sequel C denotes a generic positive constant not depending on the index k or j. Then using the previous bound and Hölder
inequality, we obtain

‖ps,ts+ks(Xt)‖q ≤ CE1/p
∣∣∣∣∣ ∑
j/js=−ks

aj(ξt−j − ξ ′t−j)

∣∣∣∣∣
bp

.

Note that the previous bound holds also when a = 0 if we set p = m/b. From the Burkhölder inequality, we obtain

‖ps,ts+ks(Xt)‖q ≤ C

( ∑
j/js=−ks

a2j

)b/2
. (15)

The conclusion of the corollary follows easily from (15) and Corollary 1.
Suppose now aj = O

(
‖j‖−α

)
with α > (2+b)d−b

2b . Then we have for s ∈ {1, . . . , d}∑
j/js=n

a2j ≤ C
∑

j/‖j‖≥n,js=n

‖j‖−2α ≤ Cn−2α+d−1.

Using the same bound for
∑
j/js=−n a

2
j , we deduce that condition (14) is satisfied and the result follows. �
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