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Abstract The results of accurate order of uniform approximation and simultaneous ap-

proximation in the early work “Jackson Type Theorems on Complex Curves” are improved

from Fejér points to disturbed Fejér points in this article. Furthermore, the stability of

convergence of T ∗

n,ε(f, z) with disturbed sample values f(z∗

k) + εk are also proved in this

article.
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1 Introduction

Let D be a simply connected domain with the boundary to be a closed Jordan curve Γ

in the complex plane, z = 0 ∈ D. Suppose that univalent analytic function z = ψ(w) is a

conformal mapping from |w| > 1 onto the complement of D such that ψ(∞) = ∞, ψ′(∞) = 1.

Extend ψ to a continuous function on |w| ≥ 1. zk = ψ(e
2kπ

n
i), k = 0, 1, · · · , n − 1, are called

Fejér points on Γ .

Suppose that Γ is a smooth chlosed Jordan curve. Denote by σ1(t) the modulus of conti-

nuity of ψ′(w) on |w| = 1. If for a > 0 the inequality∫ a

0

σ1(t)

t
dt < +∞, a > 0, (1.1)

holds, then Γ is said to be of class J̃ .

Recently, the first author of this article, by the help of the q-th class of fundamental

polynomials of Hermite interpolation, Ak,q(z) for f ∈ C(Γ ), and Fejér points on Γ , introduced
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the interpolation operator [1] Tn,q(f, z) as well as Tn(f, z), and researched the accuracy of order

of approximation by Tn,q(f, z) and simultaneous approximation on a curve in complex plane.

In 1969, suppose nonzero derivative ψ′(w) ∈ Lipα on |w| = 1, Thompson [2] obtained

the convergence on closed subset of D by the Lagrange interpolation at asymptotic neutral. In

1991–1992, X. C. Shen and B. P. Shuai [3–5], under the boundary condition that Γ = {|w| = 1},

Γ ∈ C1+δ, or the second derivative of ψ(w) is continuous on |w| = 1 respectively, researched

the order of approximation by Lagrange interpolation at disturbed nodes on Γ . In 1993, C.

K. Chui, X. C. Shen, and L. F. Zhong [6] studied Lagrange interpolation at disturbed roots of

unity. In 2005, Wang Xinghua & Cui Fen [7], for the stable Lagrange numerical differentiation,

obtained some results.

It is natural to ask whether the results in [1] still hold after Fejér points in [1] are replaced

by disturbed Fejér points. The answer is positive. To this end, there is great need for lots of

preparations.

Definition {z∗k = ψ(e
2k+tk

n
πi)}n−1

0 with
n−1∑
k=0

|tk| ≤ 0.7778 · · · < 4
π+2 and tn = t0 are

called disturbed Fejér points on Γ .

Clearly, disturbed Fejér points include Fejér points as its particular case that
n−1∑
k=0

|tk| = 0.

Let

ω∗n(z) =

n−1∏
k=0

(z − z∗k), l∗k(z) =

n−1∏
l=0

l�=k

z − z∗l
z∗k − z

∗
l

=
ω∗n(z)

ω∗n
′(z∗k)(z − z∗k)

,

A∗k,j(z) =

(
ω∗n(z)

z − z∗k

)q+1
(z − z∗k)j

j!

q−j∑
ν=0

α∗k,ν(z − z∗k)ν , j = 0, 1, · · · , q,

α∗k,ν := α∗k,ν(q, n) =
1

ν!

[(
z − z∗k
ω∗n(z)

)q+1
](ν)

z∗
k

.

T ∗n,q(f, z) =

n−1∑
k=0

|A∗k,q(z)|
pf(z∗k)

n−1∑
k=0

|A∗k,q(z)|
p

=

n−1∑
k=0

∣∣∣( 1
ω∗

n
′(z∗

k
)

)q

l∗k(z)
∣∣∣p f(z∗k)

n−1∑
k=0

∣∣∣( 1
ω∗

n
′(z∗

k
)

)q

l∗k(z)
∣∣∣p , p > 2, z ∈ Γ , (1.2)

here T ∗n,q(f, z) ∈ Γ and T ∗n,q(f, zk) = f(zk), k = 0, 1, · · · , n− 1. In T ∗n,q(f, z), if q = 0, there is

T ∗n(f, z) =

n−1∑
k=0

|l∗k(z)|pf(z∗k)

n−1∑
k=0

|l∗k(z)|p
, p > 2, z ∈ Γ , (1.2)′

T ∗n(f, z) ∈ Γ and T ∗n(f, zk) = f(zk), k = 0, 1, · · · , n− 1.

2 Disturbed Roots of Unity

We call w∗k = e
2k+tk

n
πi with

n−1∑
k=0

|tk| ≤ 0.7778 · · · < 4
π+2 and tn = t0 the disturbed roots of

unity similar to roots of unity.



No.2 T.L. Tu & J. Mo: COMPLEX RATIONAL TYPE INTERPOLATION 443

In this section, we are going to research the relations between disturbed roots of unity and

roots of unity as well as their related quantities.

Theorem 2.1 Suppose that {w∗k}
n−1
0 are disturbed roots of unity, then, for |w| = 1

|ω∗n(w)| <

(
|ωn(w)| +

4π

π + 2

)
e

2π
π+2 ≤ C. (2.1)

Here and later on, C denotes a positive constant without reference to its value.

Proof Because ω∗n(we
2π
n

i) = ω∗n(w), we can set |argw| ≤ π
n
.

ω∗n(w) = |w − w∗0 |

n−1∏
l=1

|w − w∗l | ≤ |w − w0 + w0 − w
∗
0|

n−1∏
l=1

|w − wl + wl − w
∗
l |

≤ (|w − w0|+ |w0 − w
∗
0 |)

n−1∏
l=1

|w − wl|

n−1∏
l=1

[
1 +

∣∣∣∣wl − w
∗
l

w − wl

∣∣∣∣]

≤

{
|ωn(w)| + |w0 − w

∗
0 |

∣∣∣∣ ωn(w)

w − w0

∣∣∣∣} exp

{
n−1∑
l=1

∣∣∣∣wl − w
∗
l

w − wl

∣∣∣∣
}
. (2.2)

In order to estimate
n−1∑
l=1

∣∣∣wl−w∗
l

w−wl

∣∣∣, we see clearly that, for |argw| ≤ π
n

and l �= 0,

|w − wl| ≥

∣∣∣∣2 sin
1

2n
π

∣∣∣∣ ≥ ∣∣∣∣ 2π 2
π

2n

∣∣∣∣ =
2

n
,

|wl − w
∗
l | =

∣∣∣∣2 sin
tl

2n
π

∣∣∣∣ ≤ π

n
|tl|.

Thus,
n−1∑
l=1

∣∣∣∣wl − w
∗
l

w − wl

∣∣∣∣ < n

2

n−1∑
l=1

|tl|
π

n
<

2π

π + 2
(2.3)

At the same time,∣∣∣∣ωn(w0)

w − w0

∣∣∣∣ ≤ n, |w0 − w
∗
0 | = |2 sin

t0

2n
π| <

π

n

4

π + 2
. (2.4)

Uniting (2.3) with (2.4), from (2.2), we obtain

|ω∗n(w)|

[
|ωn(w)|+

4π

π + 2

]
e

2π
π+2 .

Theorem 2.1 is proved.

Lemma 2.1 Suppose ai ≥ 0,
n∑

i=1

ai ≤ Sn < A for n > 0 uniformly and A ≥ 1, then,

n∏
i=1

(A− ai) ≥ A− Sn.

Proof Clearly, when n = 1, it is true. Let Lemma 2.1 hold when n = k, then we prove

that Lemma 2.1 is also true when n = k + 1.

k+1∑
i=1

(A− ai) =

[
k∑

i=1

(A− ai)

]
(A− ak+1) ≥ (A− Sk)(A − ak+1)

= A2 −ASk+1 + Skak+1 = A(A− Sk+1) + Skak+1 ≥ A− Sk+1.
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Let A = 1, the known result [3] is obtained, and from [3] can deduce Lemma 2.1 too.

Theorem 2.2 For {w∗k}
n−1
0 , there are positive constants C1, C2, such that

C2n ≤
∣∣ω∗n′(w∗k)

∣∣ ≤ C1n, k = 0, 1, · · · , n− 1. (2.5)

Because |ω′n(wk)| = n, the inequalities (2.5) can be rewritten below.

C2|ω
′
n(wk)| ≤

∣∣ω∗n′(w∗k)
∣∣ ≤ C1|ω

′
n(wk)|, k = 0, 1, · · · , n− 1. (2.5)′

Proof We prove first for the case of k = 0.

∣∣ω∗n′(w∗0)
∣∣ =

n−1∏
l=1

|w∗0 − w
∗
l | =

n−1∏
l=1

|w∗0 − wl + wl − w
∗
l |

≤

n−1∏
l=1

|w∗0 − wl|

n−1∏
l=1

[
1 +

∣∣∣∣wl − w
∗
l

w∗0 − wl

∣∣∣∣]

≤

n−1∏
l=1

|w∗0 − wl| exp

{
n−1∑
l=1

∣∣∣∣wl − w
∗
l

w∗0 − wl

∣∣∣∣
}
. (2.6)

We estimate the sum in (2.6), for l �= 0,

|w∗0 − wl| ≥ min{|w∗0 − w1|, |w
∗
0 − wn−1|} = min

{∣∣∣∣2 sin
2− t0

2n
π

∣∣∣∣ , ∣∣∣∣2 sin
2 + t0

2n
π

∣∣∣∣}
=

∣∣∣∣2 2

π

2− |t0|

2n
π

∣∣∣∣ =
2

n
(2 − |t0|) >

2

n

(
2−

4

π + 2

)
=

4π

n(π + 2)
,

|wl − w
∗
l | =

∣∣∣∣2 sin
tl

2n
π

∣∣∣∣ < ∣∣∣∣2 tl2n
π

∣∣∣∣ =
π

n
|tl|,

thus, for any n > 0, from Definition,

Sn :=

n−1∑
l=1

∣∣∣∣wl − w
∗
l

w∗0 − wl

∣∣∣∣ < n(π + 2)

4π

n−1∑
l=1

|tl|
π

n
<
n(π + 2)

4π

4

π + 2

π

n
= 1. (2.7)

At the same time,

n−1∏
l=1

|w∗0 − wl| =

∣∣∣∣wn − 1

w − 1

∣∣∣∣
w∗

0

=

∣∣∣∣ sin nt0
2n
π

sin t0
2n
π

∣∣∣∣ .
Because |t0| <

n−1∑
l=1

|tl| <
4

π+2 , t0
2 π <

π
2 , by formula 2

π
x ≤ sinx ≤ x as 0 ≤ x ≤ π

2 , there are

2

π
n ≤

n−1∏
l=1

|w∗0 − wl| ≤
π

2
n. (2.8)

Uniting (2.6) with (2.7) and (2.8), we obtain

ω∗n
′(w∗0) ≤

π

2
ne =: C1n. (2.9)
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The inequalities in the right of (2.5) for k = 0 are proved. We prove the left in (2.5) for k = 0

continually. Recalling (2.6), (2.7), and (2.8), and using Lemma 2.1, we have similarly

∣∣ω∗n′(w∗0)
∣∣ ≥ n−1∏

l=1

|w∗0 − w
∗
l |

n−1∏
l=1

[
1−

∣∣∣∣wl − w
∗
l

w∗0 − wl

∣∣∣∣] ≥ 2

π
n [1− Sn] ≥ C2n > 0. (2.10)

The proof of Theorem 2.2 for k = 0 is completed.

It remains to us to prove (2.5) for k �= 0. It is similar to (2.6) that

∣∣ω∗n′(w∗k)
∣∣ ≤ n−1∏

l=0

l�=k

|w∗k − wl| exp

⎧⎪⎨⎪⎩
n−1∑
l=0

l�=k

∣∣∣∣wl − w
∗
l

w∗k − wl

∣∣∣∣
⎫⎪⎬⎪⎭ . (2.6)′

We are going to estimate the sum in (2.6)′. For l ∈ [0, 1, · · · , k − 1, k + 1, · · · , n− 1], one has

|w∗k − wl| ≥

∣∣∣∣2 sin
2−min{|tk−1|, |tk+1|}

2n
π

∣∣∣∣ > ∣∣∣∣ 2n
(

2−
n−1∑
k=0

|tk|

)∣∣∣∣ > 2

n

(
2−

4

π + 2

)
>
π

n

4

π + 2
,

|wl − w
∗
l | =

∣∣∣∣2 sin
tl

2n
π

∣∣∣∣ ≤ π

n
|tl|,

thus,

Sn
′ :=

n−1∑
l=0

l�=k

∣∣∣∣wl − w
∗
l

w∗k − wl

∣∣∣∣ < n(π + 2)

4π

n−1∑
l=0

l�=k

π

n
|tl| <

n(π + 2)

4π

π

n

4

π + 2
= 1. (2.7)′

At the same time,

n−1∑
l=0

l�=k

|w∗k − wl| =

∣∣∣∣wn − 1

w − wk

∣∣∣∣
w∗

k

=

∣∣∣∣w∗kn − 1

w∗k − wk

∣∣∣∣ =

∣∣∣∣∣sin
n(2k+tk)

2n
π

sin tk

2n
π

∣∣∣∣∣ =

∣∣∣∣sin ntk

2n
π

sin tk

2n
π

∣∣∣∣ .
Because |tk|

2 π < π
2 , we have

2

π
n ≤

n−1∏
l=0

l�=k

|w∗k − wl| ≤
π

2
n. (2.8)′

From (2.6)′, using (2.8)′ and (2.7)′, we obtain

|ω∗n
′(w∗k)| ≤

π

2
ne = C1n. (2.9)′

It is similar to (2.6)′ that

|ω∗n
′(w∗k)| ≥

n−1∏
l=0

l�=k

|w∗k − wl|

n−1∏
l=0

l�=k

[
1−

∣∣∣∣wl − w
∗
l

w∗k − wl

∣∣∣∣] .
From the above inequality, noting Lemma 2.1 and (2.7)′ as well as (2.8)′, we obtain

|ω∗n
′(w∗k)| ≥

2

π
n

[
1−

n−1∑
l=0

l�=k

∣∣∣∣wl − w∗l
w∗k − wl

∣∣∣∣
]
≥

2

π
n[1− Sn

′] ≥ C2n > 0. (2.10)′
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Theorem 2.2 is proved.

Theorem 2.3 Suppose that {w∗k}
n−1
k=0 are the disturbed roots of unity, then, for |w| = 1

and k = 0, 1, · · · , n− 1,

e−
2π

π−2

∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ ≤ ∣∣∣∣ ω∗n(w)

w − w∗0

∣∣∣∣ ≤ e
2π

π+2

∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ , (2.11a)

∣∣∣∣ ω∗n(w)

w − w∗k

∣∣∣∣ ≤ e
2π

π+2

[∣∣∣∣ ωn(w)

w − wk

∣∣∣∣ +
4π

π + 2

∣∣∣∣ 1

w − wk

∣∣∣∣] , k �= 0. (2.11b)

Proof First, we consider that, for k = 0, 1, · · · , n− 1,∣∣∣∣ ω∗n(w)

w − w∗k

∣∣∣∣ =

∣∣∣∣∣
n−1∏
l=0

l�=k

(w − w∗l )

∣∣∣∣∣ =

n−1∏
l=0

l�=k

∣∣∣(we
2π
n

i − w∗l e
2π
n

i)
∣∣∣ ∣∣∣e− 2π

n
i
∣∣∣ =

n−1∏
l=0

l�=k

|we
2π
n

i − w∗l e
2π
n

i|,

it is enough to prove this theorem for |argw| ≤ π
n
.

We start to prove the case of k = 0.∣∣∣∣ ω∗n(w)

w − w∗0

∣∣∣∣ =

n−1∏
j=1

|w − w∗j | ≤

n−1∏
j=1

|w − wj |

n−1∏
j=1

[
1 +

∣∣∣∣wj − w
∗
j

w − wj

∣∣∣∣]

≤

∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ exp

⎧⎨⎩
n−1∑
j=1

∣∣∣∣wj − w
∗
j

w − wj

∣∣∣∣
⎫⎬⎭ . (2.12a)

It is similar to the proof of (2.3), for |argw| ≤ π
n

and j �= 0, we have

|w − wj | ≥

∣∣∣∣2 sin
1

2n
π

∣∣∣∣ ≥ ∣∣∣∣ 2π 2
π

2n

∣∣∣∣ =
2

n
, |wj − w

∗
j | = |2 sin

tj

2n
π| <

π

n
|tj |.

Consequently,
n−1∑
j=1

∣∣∣∣wj − w
∗
j

w − wj

∣∣∣∣ < n

2

π

n

n−1∑
j=1

|tj | <
2π

π + 2
. (2.13a)

Thus, from (2.12a), ∣∣∣∣ ω∗n(w)

w − w∗0

∣∣∣∣ ≤ ∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ e 2π
π+2 . (2.14a)

On the other hand,∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ =
n−1∏
j=1

|w − wj | ≤
n−1∏
j=1

|w − w∗j |
n−1∏
j=1

[
1 +

∣∣∣∣∣w∗j − wj

w − w∗j

∣∣∣∣∣
]

≤

∣∣∣∣ ω∗n(w)

w − w∗0

∣∣∣∣ exp

⎧⎨⎩
n−1∑
j=1

∣∣∣∣∣w∗j − wj

w − w∗j

∣∣∣∣∣
⎫⎬⎭ .

It is similar to the proof of (2.13a) that

|w − w∗j | ≥ min{|w − w∗1 |, |w − w
∗
n−1|} ≥

2

π
2
π

2n

(
2−

n−1∑
j=0

|tj |

)
>

2

n
(2−

4

π + 2
) =

4π

n(π + 2)
,

|w∗j − wj | ≤ 2 sin
|tj |

2n
π ≤

π

n
|tj |,
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n−1∑
j=1

∣∣∣∣∣w∗j − wj

w − w∗j

∣∣∣∣∣ < n

2

n−1∑
j=1

π

n
|tj | <

n

2

π

n

4

π + 2
=

2π

π + 2
. (2.13b)

Then, ∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ ≤ ∣∣∣∣ ω∗n(w)

w − w∗0

∣∣∣∣ e 2π
π+2 , that is, e−

2π
π+2

∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ ≤ ∣∣∣∣ ω∗n(w)

w − w∗0

∣∣∣∣ . (2.14b)

Uniting (2.14a) with (2.14b), we have

e−
2π

π+2

∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ ≤ ∣∣∣∣ ω∗n(w)

w − w∗0

∣∣∣∣ ≤ ∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ e 2π
π+2 .

The inequalities (2.11a) are proved. We are going to prove (2.11b) continually.

For k �= 0,∣∣∣∣ ω∗n(w)

w − w∗k

∣∣∣∣ = |w − w∗0 |

n−1∏
j=1

j �=k

|w − w∗j | ≤ (|w − w0|+ |w0 − w
∗
0 |)

n−1∏
j=1

j �=k

(|w − wj |+ |wj − w
∗
j |)

≤ (|w − w0|+ |w0 − w
∗
0 |)

n−1∏
j=1

j �=k

|w − wj |

n−1∏
j=1

j �=k

[
1 +

∣∣∣∣wj − w
∗
j

w − wj

∣∣∣∣]

≤

{∣∣∣∣ ωn(w)

w − wk

∣∣∣∣ + |w0 − w
∗
0 |

∣∣∣∣ ωn(w)

(w − w0)(w − wk)

∣∣∣∣} exp

{
n−1∑
j=1

j �=k

∣∣∣∣wj − w
∗
j

w − wj

∣∣∣∣
}
.

(2.12b)

Now, we estimate
n−1∑

j=1,j �=k

∣∣∣wj−w∗
j

w−wj

∣∣∣. Noting |argw| ≤ π
n

and j ∈ [1, · · · , k − 1, k + 1, · · · , n − 1],

we have

|w − wj | ≥ min
|argw|≤ π

n
j �=0,k

|w − wj | ≥ |2 sin
π

2n
| ≥ |2

2

π

π

2n
| =

2

n
,

|wj − w
∗
j | ≤ |2 sin

tj

2n
π| ≤

π

n
|tj |.

Thus
n−1∑
j=1

j �=k

∣∣∣∣wj − w
∗
j

w − wj

∣∣∣∣ ≤ n−1∑
j=1

∣∣∣∣wj − w
∗
j

w − wj

∣∣∣∣ < n

2

π

n

n−1∑
j=1

|tj | <
2π

π + 2
.

On the other hand,

|w0 − w
∗
0 | = |2 sin

t0

2n
π| <

π

n
|t0| <

4

π + 2

π

n
,

∣∣∣∣ ωn(w)

w − w0

∣∣∣∣ ≤ n,

thus

|w0 − w
∗
0 |

∣∣∣∣ ωn(w)

(w − w0)(w − wk)

∣∣∣∣ ≤ 4π

π + 2

∣∣∣∣ 1

w − wk

∣∣∣∣ .
From (2.12b), for k �= 0, we have∣∣∣∣ ω∗n(w)

w − w∗k

∣∣∣∣ ≤ {∣∣∣∣ ωn(w)

w − wk

∣∣∣∣ +
4π

π + 2

∣∣∣∣ 1

w − wk

∣∣∣∣} e
2π

π+2 .

Theorem 2.3 is proved.
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Corollary 2.1 Suppose that {w∗k}
n−1
k=0 are the disturbed roots of unity, then for |w| = 1

and k = 0, 1, · · ·, n− 1,

C4 |l0(w)| ≤ |l∗0(w)| ≤ C3|l0(w)|, (2.15a)

|l∗k(w)| ≤ C3|lk(w)| + C5

∣∣∣∣ 1

n(w − wk)

∣∣∣∣ , k �= 0. (2.15b)

In fact, from |l∗k(w)| =
∣∣∣ ω∗

n(w)
ω∗

n
′(w∗

k
)(w−w∗

k
)

∣∣∣, by use of Theorems 2.2 and 2.3, the corollary holds.

Taking note of |lk(w)| ≤ 1 for k = 0, 1, · · · , n−1, and 1
n|w−wk|

< 1 for k �= 0 and |argw| ≤ π
n
,

from (2.15a) and (2.15b), we obtain

|l∗k(w)| = O(1) k = 0, 1, · · · , n− 1. (2.15)

Corollary 2.2 Suppose that assumptions are the same as those in Corollary 2.1, then

for k = 0, 1, · · ·, n− 1, and |w| = 1

n−1∑
k=0

|l∗k(w)|
r

=

⎧⎨⎩O(1), r > 1;

O(lnn), r = 1.

(2.16a)

(2.16b)

Proof By use of the easily proved inequality:

|a± b|r ≤ 2r(|a|r + |b|r), r > 0, (2.17)

and (2.15a) as well as (2.15b), one has

n−1∑
k=0

|l∗k(w)|
r

= |l∗0(w)|
r

+

n−1∑
k=1

|l∗k(w)|
r

≤ C |l0(w)|
r
+ C

{
n−1∑
k=1

|lk(w)|
r
+

n−1∑
k=1

∣∣∣∣ 1

n(w − wk)

∣∣∣∣r
}
,

in which
n−1∑
k=0

|l∗k(w)|r is a function with period 2π
n

. We may set |arg(w)| ≤ π
n
. Estimate the last

term below

n−1∑
k=1

∣∣∣ 1
n(w−wk)

∣∣∣r = 2

[ n−1

2
]+1∑

k=1

∣∣∣∣∣ 1

2n sin 2k−1
2n

π

∣∣∣∣∣
r

≤ C

[ n−1

2
]+1∑

k=1

∣∣∣∣ 1

2k − 1

∣∣∣∣r

≤ C

[
1 +

∫ [ n−1

2
]+1

1

dx

2x− 1

]
=

⎧⎨⎩O(lnn), r = 1,

O(1), r > 1.
(2.18a)

All the same

n−1∑
k=1

|lk(w)|
r
≤ 2

[ n−1

2
]+1∑

k=1

∣∣∣∣∣ 1

2n sin 2k−1
2n

π

∣∣∣∣∣
r

=

⎧⎨⎩O(lnn), r = 1,

O(1), r > 1.
(2.18b)

In addition, |l0(w)| ≤ 1. Consequently, Corollary 2.2 is proved.
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3 Disturbed Fejér Points

It is similar to Fejér points that {z∗k}
n−1
k=0 = {ψ(e

2k+tk
n

πi)}n−1
k=0 are called disturbed Fejér

points on Γ , in which
n−1∑
k=0

|tk| ≤ 0.7778 · · · <
4

π + 2
, tn = t0. (3.1)

Theorem 3.1 Suppose that Γ is a closed smooth Jordan curve, then, ψ′(w) is continuous

and does not vanish on |w| ≥ 1, and for positive constants A1 > A2,

A2 ≤ |ψ
′(w)| ≤ A1, |w| ≥ 1; (3.2)

A2 ≤

∣∣∣∣ψ(w)− ψ(u)

w − u

∣∣∣∣ ≤ A1, |w| ≥ 1, |u| ≥ 1. (3.3)

Moreover, if Γ ∈ J̃ , then for a certain constant A > 0,∫
|u|=1

∣∣∣∣ 1

u− w
−

ψ′(u)

ψ(u)− ψ(w)

∣∣∣∣ |du| < A < +∞, |w| = 1. (3.4)

Proof From Section 1, we know that ψ(w) is continuous on |w| ≥ 1. Hence, for z ∈ Γ ,

z(θ) = ψ(eiθ) = u(θ)+iv(θ) is continuous on [0, 2π]. By virtue of the smoothness of Γ , it is well

known that z′(θ) = u′(θ) + iv′(θ) is continuous and does not vanish on [0, 2π]. On the other

hand, ψ(w) is univalent analytic in |w| > 1, that is, ψ′(w) is continuous and does not vanish

in |w| > 1. Considering linear derivative and domain derivative, from Walsh–Sewell theory [8],

we know that ψ′(w) is continuous and does not vanish on |w| ≥ 1. Thereby, (3.2) and (3.3) are

obtained directly.

Owing to

|ψ(u)− ψ(w) − ψ′(u)(u− w)| =

∫ u

w

[ψ′(t)− ψ(u)]dt ≤ Cσ1(|u− w|)|u − w|,

by use of (3.3) and assumption condition Γ ∈ J̃ , one has at once∫
|w|=1

∣∣∣∣ 1

u− w
−

ψ′(u)

ψ(u)− ψ(w)

∣∣∣∣ |du| < A < +∞, |w| = 1.

Lemma 3.1 [9, Lemma 3.2] Suppose that the continuous function F (θ) with period 2π

has total variation
∨2π

0 (F ) ≤ A < +∞, then∣∣∣∣∣ 1

2π

∫ 2n+tn
n

π

t0
n

π

F (θ)dθ −
1

n

n∑
k=1

F (
2k + tk

n
π)

∣∣∣∣∣ ≤ CA

n
,

where CA is a positive constant dependent only on A.

Theorem 3.2 [9,Lemma 3.3] Suppose Γ ∈ J̃ and

Ω∗n(w) =
ω∗n(z)

ω∗n(w)
. (3.5)

Then

e−CA < |Ω∗n(w)| < eCA . (3.6)
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Corollary 3.1 Under the assumptions of Theorem 3.2, the following inequalities hold.

I e−2CA ≤

∣∣∣∣ Ω∗n(w)

Ω∗n(w∗k)

∣∣∣∣ ≤ e2CA . (3.7)

II |ω∗n(z)| = |Ω∗n(w)ω∗n(w)| ≤ C. (see (3.5), (3.6) and Theorem 2.1) (3.8)

III ω∗n
′(z∗k) = Ω∗n(w∗k)ω∗n

′(w∗k)
1

ψ′(w∗k)
. (3.9)

Thereby, utilizing (3.6), Theorem 2.2, and inequality (3.2), one obtains at once

A7n ≤ |ω
∗
n
′(z∗k)| ≤ A6n, A6 > A7 — positive constants (3.10)

Theorem 3.3 Suppose Γ ∈ J̃ , then

max
z∈D

n−1∑
k=0

|l∗k(z)|
r

=

⎧⎨⎩O(1), r > 1;

O(lnn), r = 1.

(3.11a)

(3.11b)

Proof Using (3.5), (3.9), (3.2), (3.3), and (3.7), we have

n−1∑
k=0

|l∗k(z)|r =
n−1∑
k=0

∣∣∣∣ ω∗n(z)

ω∗n
′(z∗k)(z − z∗k)

∣∣∣∣r ≤ C

n−1∑
k=0

∣∣∣∣ ω∗n(w)Ω∗n(w)ψ′(w∗k)

Ω∗k(w∗k)ω∗n
′(w∗k)(w − w∗k)

∣∣∣∣r

≤ C

n−1∑
k=0

∣∣∣∣ ω∗n(w)

ω∗n
′(w∗k)(w − w∗k)

∣∣∣∣r ≤ C

n−1∑
k=0

|l∗k(w)|
r
. (3.12)

By Corollary 2.2, Theorem 3.3 is proved.

Theorem 3.4 Suppose Γ ∈ J̃ and r > 1, then,

n−1∑
k=0

|l∗k(z)|r ≥ Cr > 0.

Proof It is similar to the proof of Theorem 3.3 that

n−1∑
k=0

|l∗k(z)|
r
≥ C

n−1∑
k=0

|l∗k(w)|
r
.

From periodicity and (2.15a)

min
z∈Γ

n−1∑
k=0

|l∗k(z)|
r
≥ min
|w|=1

C

n−1∑
k=0

|l∗k(w)|
r

= min
|argw|≤π

n

C

n−1∑
k=0

|l∗k(w)|
r
≥ min
|argw|≤π

n

C |l∗0(w)|
r

≥ min
|argw|≤π

n

C4C|l0(w)|r ≥ Cr(
2

π
)r, Cr-positive constant dependent on r.

Theorem 3.4 is proved.

4 Main Results and Its Proofs

Basic Theorem Suppose that Γ ∈ J̃ , f ∈ C(Γ ), and {z∗k} are the disturbed Fejér points,

and for z ∈ Γ and p > 2, set

T ∗n,q(f, z) =

n−1∑
k=0

∣∣∣A∗k,q(z)
∣∣∣p f(z∗k)

n−1∑
k=0

∣∣∣A∗k,q(z)
∣∣∣p =

n−1∑
k=0

∣∣∣( 1
ω∗

n
′(z∗

k
)

)q

l∗k(z)
∣∣∣p f(z∗k)

n−1∑
k=0

∣∣∣( 1
ω∗

n
′(z∗

k
)

)q

l∗k(z)
∣∣∣p ,



No.2 T.L. Tu & J. Mo: COMPLEX RATIONAL TYPE INTERPOLATION 451

which is a continuous function on Γ , and T ∗n,q(zk) = f(z∗k), k = 0, · · · , n− 1. Then

max
z∈Γ

|T ∗n,q(f, z)− f(z)| = O

(
ω(f,

1

n
)

)
.

Proof

Δ∗p,q :=
∣∣T ∗n,q(f, z)− f(z)

∣∣ =

∣∣∣∣∣∣∣∣
n−1∑
k=0

∣∣∣A∗k,q(z)
∣∣∣p f(z∗k)

n−1∑
k=0

∣∣∣A∗k,q(z)
∣∣∣p − f(z)

∣∣∣∣∣∣∣∣
≤

n−1∑
k=0

∣∣∣( ω∗
n(z)

ω∗
n
′(z∗

k
)

)q

l∗k(z)
∣∣∣p |f(z∗k)− f(z)|

n−1∑
k=0

∣∣∣( ω∗
n(z)

ω∗
n
′(z∗

k
)

)q

l∗k(z)
∣∣∣p ,

using (3.10), we have

Δ∗p,q ≤ C

n−1∑
k=0

|l∗k(z)|
p
|f(z∗k)− f(z)|

n−1∑
k=0

|l∗k(z)|
p

≤ C

n−1∑
k=0

|l∗k(z)|
p
{|f(z∗k)− f(zk)|+ |f(zk)− f(z)|}

n−1∑
k=0

|l∗k(z)|
p

≤ C

n−1∑
k=0

|l∗k(z)|
p
{ω(f, |z∗k − zk|) + ω(f, n|zk − z|

1
n
)}

n−1∑
k=0

|l∗k(z)|
p

. (4.1)

Because

|z∗k − zk| = C|2 sin
tk

2n
π| ≤ C

π

n
|tk| ≤ C

4π

n(π + 2)
,

ω(f, |z∗k − zk|) ≤

(
1 +

4Cπ

π + 2

)
ω(f,

1

n
)

and

ω(f, n|z − zk|
1

n
) ≤ (1 + n|z − zk|)ω(f,

1

n
),

then

Δ∗p,q = O(ω(f,
1

n
)) +O(ω(f,

1

n
))

n
n−1∑
k=0

|l∗k(z)|p|z − zk|

n−1∑
k=0

|l∗k(z)|p
. (4.2)

By using (3.8), (3.10), and (3.11a), there are

n

n−1∑
k=0

|l∗k(z)|p|z − zk| = n

n−1∑
k=0

|l∗k(z)|p−1

∣∣∣∣ ω∗n(z)

ω∗n
′(z∗k)

∣∣∣∣ = O(1). (4.3)
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From Theorem 3.4,

n−1∑
k=0

|l∗k(z)|p ≥ Cp > 0. (4.4)

Uniting (4.2)–(4.4), we obtain

Δ∗p,q = O(ω(f,
1

n
)).

Basic Theorem is proved.

In Basic Theorem, let q = 0, then A∗p,q(z) = l∗k(z), and the following theorem is obtained.

Theorem 4.1 Suppose that Γ ∈ J̃ , f ∈ C(Γ ), and {z∗k}
n−1
0 are the disturbed Fejér

points on Γ , and for p > 2, z ∈ Γ , set

T ∗n(f, z) =

n−1∑
k=0

|l∗k(z)|pf(z∗k)

n−1∑
k=0

|l∗k(z)|p
,

then,

max
z∈Γ

|T ∗n(f, z)− f(z)| = O

(
ω(f,

1

n
)

)
,

in which T ∗n(f, z) is a continuous function on Γ , and T ∗n(f, z) = f(z∗k), k = 0, · · · , n− 1.

Let
n−1∑
k=0

|tk| = 0, then disturbed Fejér points becomes usual Fejér points. Clearly, Theorems

2.1 and 2.2 in [1] are the particular cases of Basic Theorem and Theorem 4.1 in this article.

Because we have already proved in [1] that the orders of approximation in Theorems 2.1 and

2.2 are accurate, naturally the orders of approximation in Basic Theorem and Theorem 4.1 in

this article, generally, cannot be improved again.

By same method of Theorem 6.2 in [1], we obtain

Theorem 4.2 Suppose that Γ ∈ J̃ , f ∈ Cq(Γ ), and {z∗k = ψ(e
2k+tk

n
πi)}n−1

0 are the

disturbed Fejér points on Γ , then, for 0 ≤ j ≤ q,

max
z∈Γ

|f (q−j)(z)− τ∗n,j(z)| = O

(
1

nj
ω(f (q),

1

n
)

)
, (4.5)

in which

I∗n,0(z)
def
= 0, τ∗n,0(z) = I∗n,0(z) + T ∗n(f (q) − I∗n,0, z) = T ∗n(f (q), z)

I∗
′

n,1(z) = τ∗n,0(z) = T ∗n(f (q), z), τ∗n,1 = I∗n,1(z) + T ∗n(f (q−1) − I∗n,1, z),

I∗
′

n,j(z) = τ∗n,j−1(z), τ∗n,j(z) = I∗n,j(z) + T ∗n(f (q−j) − I∗n,j , z),

· · · · · ·

and τ∗n,j(z) is continuous on Γ , τ∗n,j(zk) = f (q−j)(zk), k = 0, 1. · · · , n− 1.

In (4.5), let j = q, then

max
z∈Γ

|f(z)− τ∗n,q(z)| = O

(
1

nq
ω(f (q),

1

n
)

)
. (4.6)

In (4.6), let q = 0, then maxz∈Γ |f(z)− τ∗n,0(z)| = O
(
ω(f, 1

n
)
)

and τ∗n,0(z) = T ∗n(f, z).

Clearly, Theorem 4.1 is similar to Jackson’s Theorem 1 [10, p.117], and the inequality (4.6)

is similar to Jackson’s Theorem 2 [10, p.121].
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5 Disturbed Boundary Data

If the boundary data {f(z∗k)}n−1
0 have disturbances too, for example, truncation [7], then,

we have

Theorem 5.1 Suppose Γ ∈ J̃ , f ∈ C(Γ ), and fε(z
∗
k) = f(z∗k) + εk. Set

T ∗n,ε(f, z) =

n−1∑
k=0

|l∗k(z)|pfε(z
∗
k)

/
n−1∑
k=0

|l∗k(z)|p, p > 2, z ∈ Γ ,

then

max
z∈Γ

|T ∗n,ε(f, z)− f(z)| = O

(
ω(f,

1

n
)

)
+

n∑
k=0

|εk|.

Proof

max
z∈Γ

|T ∗n,ε(f, z)− f(z)| = max
z∈Γ

∣∣∣∣∣∣∣∣
n−1∑
k=0

|l∗k(z)|pfε(z
∗
k)

n−1∑
k=0

|l∗k(z)|p
− f(z)

∣∣∣∣∣∣∣∣
≤ max

z∈Γ

n−1∑
k=0

|l∗k(z)|p|fε(z
∗
k)− f(z)|

n−1∑
k=0

|l∗k(z)|p

≤ max
z∈Γ

n−1∑
k=0

|l∗k(z)|p|f(z∗k)− f(z)|

n−1∑
k=0

|l∗k(z)|p
+ max

z∈Γ

n−1∑
k=0

|l∗k(z)|p|εk|

n−1∑
k=0

|l∗k(z)|p

= I + II. (5.1)

First, from the estimate of Δ∗p,q in Basic Theorem, we see

I = max
z∈Γ

n−1∑
k=0

|l∗k(z)|p|f(z∗k)− f(z)|

n−1∑
k=0

|l∗k(z)|p
= O(ω(f,

1

n
)). (5.2)

Next,

II = max
z∈Γ

n−1∑
k=0

|l∗k(z)|p|εk|

n−1∑
k=0

|l∗k(z)|p
≤ max

z∈Γ

n−1∑
k=0

|l∗k(z)|p
n−1∑
k=0

|εk|

n−1∑
k=0

|l∗k(z)|p
≤

n−1∑
k=0

|εk|. (5.3)

By uniting (5.1)–(5.3), Theorem 5.1 is proved.

Corollary 5.1 Suppose Γ ∈ J̃ , f ∈ C(Γ ), and the disturbed Fejér points {z∗k}
n−1
0

are given, then for lim
n→∞

max
z∈Γ

|T ∗n,ε(f, z) − f(z)| = 0, the sufficient and necessary condition is

n−1∑
k=0

|εk| = o(1).

In sum, this article extends all the results in reference [1] from Fejér points to disturbed

Fejér points on a closed Jordan curve. Furthermore, the stable uniform convergence of T ∗n,ε(f, z)

with disturbed boundary data f(z∗k) + εk is also proved in this article.
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