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Abstract

We give the solution of the functional equation f (x +y)+λf (x)f (y) = Φ(x,y) under some conditions.
Also we show its Hyers–Ulam stability.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and results

In [1], S. Butler posed the following problem: Show that for d < −1 there are exactly two
solutions f : R → R of the functional equation

f (x + y) − f (x)f (y) = d sinx siny (x, y ∈ R). (1)

M.Th. Rassias excellently answered this problem [6]. Recently, S.-M. Jung has proved that
Eq. (1) has the Hyers–Ulam stability [4]. Here we note that (1) is of the form:

f (x + y) + λf (x)f (y) = Φ(x,y) (x, y ∈ R), (2)
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where λ is a nonzero complex number and Φ is a nonzero complex continuous function on R
2

with Φ(x,y) = Φ(y,x) (x, y ∈ R). The symmetric condition Φ(x,y) = Φ(y,x) is necessary for
Eq. (2) to have a solution. In this paper, we consider the following two special cases:

(I) Φ(x, y) = φ(x + y), (II) Φ(x, y) = ψ(x)ψ(y) (x, y ∈ R),

where φ and ψ are nonzero complex continuous functions on R.
Our first purpose is to solve the functional equation (2) in case (I) or (II). The case (I) is settled

as follows:

Theorem 1. Let λ be a nonzero complex number and φ a nonzero complex continuous function
on R. If the functional equation

f (x + y) + λf (x)f (y) = φ(x + y) (x, y ∈ R) (3)

has a solution f , then φ is written as φ(x) = ρeαx (x ∈ R), where ρ and α are complex numbers
and ρ �= 0. In fact, the solution f of the equation

f (x + y) + λf (x)f (y) = ρeα(x+y) (x, y ∈ R) (4)

is given by

f (x) = −1 ± √
1 + 4λρ

2λ
eαx (x ∈ R). (5)

The symbol
√

z denotes one of the square roots of the complex number z.

In this paper, the ambiguity in the choice of the square roots of nonzero z is absorbed, because
we will deal with two square roots at the same time.

A part of the case (II) is described like Theorem 1.

Theorem 2. Let λ be a nonzero complex number and ψ a nonzero complex continuous function
on R with ψ(0) �= 0. If the functional equation

f (x + y) + λf (x)f (y) = ψ(x)ψ(y) (x, y ∈ R) (6)

has a solution f , then ψ satisfies ψ(x)ψ(y) = ρeα(x+y) (x, y ∈ R) for some complex numbers
ρ, α with ρ �= 0. For such ψ , (6) becomes (4).

We next change the assumption ψ(0) �= 0 into ψ(0) = 0 in Theorem 2.

Theorem 3. Let λ be a nonzero complex number and ψ be a nonzero complex function on R with
ψ(0) = 0 and ψ(c) �= 0 for some c ∈ R. Then the functional equation (6) has a solution if and
only if

λ2ψ(c)2ψ(x)ψ(y)A2

+ λψ(c)
{
ψ(x + y)ψ(c) − ψ(y + c)ψ(x) − ψ(x + c)ψ(y)

}
A

+ ψ(x + c)ψ(y + c) − ψ(x + y + c)ψ(c) − λψ(c)2ψ(x)ψ(y) = 0 (7)

holds for every x, y ∈ R, where A is a solution of the quadratic equation

λ2ψ(c)4z2 − λψ(2c)ψ(c)2z + ψ(2c)2 − ψ(3c)ψ(c) − λψ(c)4 = 0. (8)
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In this case, the solution f of (6) is given by

f (x) = Aψ(x) − 1

λψ(c)
ψ(x + c) (x ∈ R). (9)

Corollary 4. Let λ be a nonzero complex number and ψ be a nonzero complex function on R

with ψ(0) = 0 and ψ(c) �= 0 for some c ∈ R. Suppose that

ψ(c)ψ(x + y) = ψ(x)ψ(y + c) + ψ(x + c)ψ(y) (10)

holds for every x, y ∈ R. Then the functional equation (6) has a solution and the solution f is
given by

f (x) = ±1

λ

√
λ + ψ(3c)

ψ(c)3
ψ(x) − 1

λψ(c)
ψ(x + c) (x ∈ R). (11)

The example of the function ψ satisfying (10) will be given in Section 5.
The second purpose of this paper is to investigate the Hyers–Ulam stability of Eq. (2). The

Hyers–Ulam stability is the concept based on Ulam’s problem [8] and Hyers’ result [3]. We may
find some results on the Hyers–Ulam stability of various equations in many papers (for example,
[2,4,5]). First, we show the Hyers–Ulam stability of Eq. (4) that appeared in Theorems 1 and 2,
under the assumption that α is purely imaginary.

Theorem 5. Let λ and ρ be nonzero complex numbers and θ a real number. For the functional
equation

f (x + y) + λf (x)f (y) = ρeiθ(x+y) (x, y ∈ R), (12)

there exists a constant K = K(λ,ρ) with the following property: For any nonnegative number
ε < |ρ| and any complex function g on R satisfying∣∣g(x + y) + λg(x)g(y) − ρeiθ(x+y)

∣∣ � ε (x, y ∈ R), (13)

there is a solution f of (12) such that∣∣g(x) − f (x)
∣∣ � K

(
ε + √

ε
)

(x ∈ R). (14)

Next, we consider the Hyers–Ulam stability of Eq. (6) in Theorem 2.

Theorem 6. Let λ, ψ and c be as in Corollary 4, and suppose that ψ is bounded on R. For the
functional equation (6), there exists a constant K = K(λ,ψ, c) with the following property: For
any nonnegative number ε < |ψ(c)|2 and any complex function g on R satisfying∣∣g(x + y) + λg(x)g(y) − ψ(x)ψ(y)

∣∣ � ε (x, y ∈ R), (15)

there is a solution f of (6) such that (14) holds.

Corollary 4 and Theorem 6 are generalizations of the results by M.Th. Rassias [6] and by
S.-M. Jung [4]. We explain this fact in the last section.
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2. Lemmas

In this section, we deal with the general functional equation (2). First we consider the excep-
tional case Φ(x,y) = 0.

Lemma 1. Let λ be a nonzero complex number. If a nonzero complex continuous function f on
R satisfies

f (x + y) + λf (x)f (y) = 0 (x, y ∈ R), (16)

then there exists a complex number α such that f (x) = − 1
λ
eαx (x ∈ R).

Proof. Define g(x) = −λf (x) for x ∈ R. Then g is a nonzero complex continuous function
on R. Also, (16) implies

g(x + y) = g(x)g(y) (x, y ∈ R).

It is well known that such a function g is written as g(x) = eαx (x ∈ R) for some complex
number α (see [7, Chapter 8, Exercise 6]). Hence f (x) = − 1

λ
g(x) = − 1

λ
eαx for x ∈ R. �

Let λ be a nonzero complex number and Φ a nonzero complex function on R
2. Choose a

point (a, b) ∈ R
2 so that Φ(a,b) �= 0. For any complex function g on R, define a function ga,b

on R by

ga,b(x) = 1

λΦ(a, b)

(
λg(a)Φ(x, b) + Φ(x,a + b) − Φ(x + b, a)

)
(x ∈ R). (17)

Lemma 2. Let λ, Φ and (a, b) be as above. If ε � 0 and if a complex function g on R satisfies∣∣g(x + y) + λg(x)g(y) − Φ(x,y)
∣∣ � ε (x, y ∈ R), (18)

then ∣∣g(x) − ga,b(x)
∣∣ � 2 + |λ|(|g(x)| + |g(a)|)

|λΦ(a, b)| ε (x ∈ R). (19)

Proof. Putting y = a + b in (18), we obtain∣∣g(x + a + b) + λg(x)g(a + b) − Φ(x,a + b)
∣∣ � ε.

Replacing x by x + b and y by a in (18), we obtain∣∣g(x + a + b) + λg(x + b)g(a) − Φ(x + b, a)
∣∣ � ε.

Hence we compute∣∣λΦ(a, b)
∣∣∣∣g(x) − ga,b(x)

∣∣
= ∣∣λΦ(a, b)g(x) − λg(a)Φ(x, b) − Φ(x,a + b) + Φ(x + b, a)

∣∣
= ∣∣−λg(x)

(
g(a + b) + λg(a)g(b) − Φ(a,b)

)
+ λg(a)

(
g(x + b) + λg(x)g(b) − Φ(x,b)

)
+ (

g(x + a + b) + λg(x)g(a + b) − Φ(x,a + b)
)

− (
g(x + a + b) + λg(x + b)g(a) − Φ(x + b, a)

)∣∣
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� |λ|∣∣g(x)
∣∣∣∣g(a + b) + λg(a)g(b) − Φ(a,b)

∣∣
+ |λ|∣∣g(a)

∣∣∣∣g(x + b) + λg(x)g(b) − Φ(x,b)
∣∣

+ ∣∣g(x + a + b) + λg(x)g(a + b) − Φ(x,a + b)
∣∣

+ ∣∣g(x + a + b) + λg(x + b)g(a) − Φ(x + b, a)
∣∣

� |λ|∣∣g(x)
∣∣ε + |λ|∣∣g(a)

∣∣ε + ε + ε = (
2 + |λ|(∣∣g(x)

∣∣ + ∣∣g(a)
∣∣))ε.

Dividing both sides of the resulting inequality by |λΦ(a, b)|, we get (19). �
Lemma 3. Let Φ , λ and (a, b) be as in Lemma 2. If the functional equation (2) has a solution f ,
then f is of the form

f (x) = 1

λΦ(a, b)

(
λf (a)Φ(x, b) + Φ(x,a + b) − Φ(x + b, a)

)
(x ∈ R).

Proof. In Lemma 2, put ε = 0 and g = f . �
3. Proofs of Theorems 1–3 and Corollary 4

Proof of Theorem 1. Suppose that there exists a complex function f on R satisfying (3). Put
A = f (0). Substituting y = 0 in (3), we obtain

φ(x) = (1 + λA)f (x) (x ∈ R). (20)

Since φ is nonzero and continuous, 1 + λA �= 0 and f is a nonzero continuous function on R.
Combining (20) with (3), we get Af (x + y) − f (x)f (y) = 0 (x, y ∈ R). Moreover, A �= 0,
because A = 0 implies f = 0. Thus we have the equation f (x +y)− 1

A
f (x)f (y) = 0 (x, y ∈ R).

According to Lemma 1, there is a complex number α such that

f (x) = Aeαx (x ∈ R). (21)

If we put

ρ = A(1 + λA), (22)

then ρ �= 0 and

φ(x) = (1 + λA)Aeαx = ρeαx (x ∈ R)

by (20) and (21). Moreover, (22) implies A = (−1 ± √
1 + 4λρ)/2λ, and so (21) leads to (5).

Conversely, a straightforward computation shows that the functions f defined by (5) sat-
isfy (4). �
Proof of Theorem 2. Suppose that there exists a complex function f on R satisfying (6). Sub-
stituting y = 0 in (6), we obtain

ψ(x) = 1 + λf (0)

ψ(0)
f (x) = Af (x) (x ∈ R),

where A = (1 + λf (0))/ψ(0). Since ψ is nonzero, A �= 0, and so f (x) = ψ(x)/A (x ∈ R).
Hence (6) yields

ψ(x + y) + λ − A2

ψ(x)ψ(y) = 0 (x, y ∈ R).

A
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Here λ − A2 �= 0, for if not, then ψ = 0. Applying Lemma 1, we find a complex number α such
that ψ(x) = (−A/(λ − A2))eαx (x ∈ R). If we put ρ = A2/(λ − A2)2, then ρ �= 0 and

ψ(x)ψ(y) = A2

(λ − A2)2
eαxeαy = ρeα(x+y) (x, y ∈ R). �

Proof of Theorem 3. Suppose that the functional equation (6) has a solution f . It follows from
Lemma 3 with Φ(x,y) = ψ(x)ψ(y) (x, y ∈ R) and a = b = c, that f is of the form

f (x) = 1

λψ(c)2

(
λf (c)ψ(x)ψ(c) + ψ(x)ψ(2c) − ψ(x + c)ψ(c)

)
= Aψ(x) − 1

λψ(c)
ψ(x + c) (x ∈ R), (23)

where A = (λf (c)ψ(c) + ψ(2c))/λψ(c)2. Since f is a solution of (6), if we substitute (23)
into (6), then we obtain

Aψ(x + y) − 1

λψ(c)
ψ(x + y + c)

+ λ

(
Aψ(x) − 1

λψ(c)
ψ(x + c)

)(
Aψ(y) − 1

λψ(c)
ψ(y + c)

)
= ψ(x)ψ(y) (24)

for all x, y ∈ R. In particular, if we put x = y = c in (24), then we get

λ2ψ(c)4A2 − λψ(2c)ψ(c)2A + ψ(2c)2 − ψ(3c)ψ(c) − λψ(c)4 = 0.

This implies that A is a solution of the quadratic equation (8). By a simple calculation, we see
from (24) that (7) holds for every x, y ∈ R.

Conversely, suppose that (7) holds for every x, y ∈ R. We will show that the functional equa-
tion (6) has a solution. In fact, if we put f (x) = Aψ(x) − ψ(x + c)/λψ(c) for x ∈ R, then we
have

f (x + y) + λf (x)f (y)

= Aψ(x + y) − 1

λψ(c)
ψ(x + y + c)

+ λ

(
Aψ(x) − 1

λψ(c)
ψ(x + c)

)(
Aψ(y) − 1

λψ(c)
ψ(y + c)

)

= 1

λψ(c)2

[
λ2ψ(c)2ψ(x)ψ(y)A2

+ λψ(c)
{
ψ(x + y)ψ(c) − ψ(y + c)ψ(x) − ψ(x + c)ψ(y)

}
A

+ ψ(x + c)ψ(y + c) − ψ(x + y + c)ψ(c)
]

(25)

for every x, y ∈ R. Since (7) is assumed to hold, it follows from (25) that

f (x + y) + λf (x)f (y) = 1

λψ(c)2
λψ(c)2ψ(x)ψ(y) = ψ(x)ψ(y)

for every x, y ∈ R. This proves that the functional equation (6) has a solution.
From the argument above, we see that the solution of the functional equation (6) is given

by (9), where A is a solution of the quadratic equation (8). This completes the proof. �
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Proof of Corollary 4. Note that if we put x = y = c in (10), then we obtain

ψ(2c) = 0. (26)

We will prove that (7) holds for every x, y ∈ R, where A is a solution of the quadratic equa-
tion (8): By (26) with (8), A satisfies

λ2ψ(c)4A2 − ψ(3c)ψ(c) − λψ(c)4 = 0. (27)

Fix x, y ∈ R arbitrarily. By (27) we have

λ2ψ(c)2ψ(x)ψ(y)A2 − λψ(c)2ψ(x)ψ(y) = ψ(3c)

ψ(c)
ψ(x)ψ(y).

Therefore, to prove (7) it is enough to show that

ψ(3c)

ψ(c)
ψ(x)ψ(y) = ψ(x + y + c)ψ(c) − ψ(x + c)ψ(y + c). (28)

To do this, put y = 2c in (10). With (26), we have

ψ(c)ψ(x + 2c) − ψ(x)ψ(3c) = 0.

This implies that

ψ(3c)

ψ(c)
ψ(x)ψ(y) = ψ(x + 2c)ψ(y). (29)

If we replace x by x + c in (10), then we get

ψ(c)ψ(x + y + c) − ψ(x + c)ψ(y + c) − ψ(x + 2c)ψ(y) = 0,

and hence

ψ(x + 2c)ψ(y) = ψ(c)ψ(x + y + c) − ψ(x + c)ψ(y + c). (30)

By (29) and (30), we conclude that (28) holds. By Theorem 3, the functional equation (6) has a
solution and the solution f is of the form

f (x) = Aψ(x) − 1

λψ(c)
ψ(x + c) (x ∈ R).

Since A satisfies (27), we see that

A = ±1

λ

√
λ + ψ(3c)

ψ(c)3
,

and the proof is complete. �
4. Proofs of Theorems 5 and 6

Proof of Theorem 5. Choose ε so that 0 � ε < |ρ|, and let g be a complex function on R

satisfying (13). We first observe that g is bounded on R. Putting y = 0 in (13), we obtain∣∣(1 + λg(0)
)
g(x) − ρeiθx

∣∣ � ε (x ∈ R).

Since ε < |ρ|, it is impossible that 1 + λg(0) = 0. Hence 1 + λg(0) �= 0. Thus |g(x)| �
(|ρ| + ε)/|1 + λg(0)| for all x ∈ R. This means that g is bounded on R. Put m = sup{|g(x)|:
x ∈ R}. Since (13) implies∣∣λg(x)g(y)

∣∣ �
∣∣g(x + y)

∣∣ + |ρ| + ε <
∣∣g(x + y)

∣∣ + 2|ρ| (x, y ∈ R),
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it follows that |λ|m2 � m + 2|ρ|, and so

m � 1 + √
1 + 8|λρ|
2|λ| .

Put Φ(x,y) = ρeiθ(x+y) (x, y ∈ R). Since Φ(0,0) = ρ, (17) with a = b = 0 becomes

g0,0(x) = 1

λρ

(
λg(0)ρeiθx + ρeiθx − ρeiθx

) = g(0)eiθx (x ∈ R),

and Lemma 2 says that (13) implies that

∣∣g(x) − g0,0(x)
∣∣ � 2 + |λ|(|g(x)| + |g(0)|)

|λρ| ε

� 2 + 2|λ|m
|λρ| ε � 3 + √

1 + 8|λρ|
|λρ| ε (x ∈ R). (31)

Next, we substitute x = y = 0 in (13) to see that |g(0) + λg(0)2 − ρ| � ε. This inequality can
be written in the form

|λ|∣∣g(0) − A1
∣∣∣∣g(0) − A2

∣∣ � ε,

where

A1 = −1 + √
1 + 4λρ

2λ
and A2 = −1 − √

1 + 4λρ

2λ
.

Hence we have either∣∣g(0) − A1
∣∣ �

√
ε

|λ| or
∣∣g(0) − A2

∣∣ �
√

ε

|λ| .

Write A for Ai with |g(0) − Ai | � √
ε/|λ|, and put f (x) = Aeiθx for x ∈ R. By Theorem 1, we

know that f is a solution of (12). Moreover, we have

∣∣g0,0(x) − f (x)
∣∣ = ∣∣(g(0) − A

)
eiθx

∣∣ = ∣∣g(0) − A
∣∣ �

√
ε

|λ| (x ∈ R). (32)

Put

K = max

{
3 + √

1 + 8|λρ|
|λρ| ,

1√|λ|
}
.

Then (31) and (32) show that∣∣g(x) − f (x)
∣∣ �

∣∣g(x) − g0,0(x)
∣∣ + ∣∣g0,0(x) − f (x)

∣∣ � K
(
ε + √

ε
)

(x ∈ R). �
Remark 1. In Theorem 5, we only proved the Hyers–Ulam stability for ε < |ρ|. In general,
the Hyers–Ulam stability does not hold for ε � |ρ|. To see this, pick ε � |ρ| arbitrarily. Put
g(x) = −ex/λ for x ∈ R. Then

g(x + y) + λg(x)g(y) = 0

holds for every x, y ∈ R. In particular, (13) is satisfied since |ρ| � ε. On the other hand, it follows
from Theorem 1 that the solution f of the functional equation (12) is given by

f (x) = Aeiθx (x ∈ R),
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where A = (−1 ± √
1 + 4λρ )/2λ. Since |f (x)| = |A| on R, we have

sup
x∈R

∣∣g(x) − f (x)
∣∣ � 1

|λ| sup
x∈R

ex − |A| = ∞.

This implies that if ε � |ρ|, then there exists an approximate solution g of (12) such that g is not
near to any solution f of (12).

Remark 2. In Theorem 5, we only considered the functional equation (4) with α = iθ . If we
consider the case where the real part Reα �= 0, then the following is true: If ε,M � 0 and if

f (x + y) + λf (x)f (y) = ρeα(x+y),
∣∣g(x + y) + λg(x)g(y) − ρeα(x+y)

∣∣ � ε

and |g(x) − f (x)| � M for all x, y ∈ R, then g = f .
In fact, put h = g − f , and hence |h(x)| � M for all x ∈ R. By hypothesis,∣∣h(x + y) + f (x + y) + λ

(
h(x) + f (x)

)(
h(y) + f (y)

) − ρeα(x+y)
∣∣

= ∣∣g(x + y) + λg(x)g(y) − ρeα(x+y)
∣∣ � ε

for all x, y ∈ R. Since f is a solution of the functional equation (4), we have∣∣h(x + y) + λ
(
h(x)h(y) + h(x)f (y) + h(y)f (x)

)∣∣ � ε (x, y ∈ R).

By the triangle inequality,∣∣λh(y)f (x)
∣∣ � ε + ∣∣h(x + y)

∣∣ + |λ|∣∣h(x)
∣∣(∣∣h(y)

∣∣ + ∣∣f (y)
∣∣)

� ε + M + |λ|M(
M + ∣∣f (y)

∣∣)
for all x, y ∈ R since |h| � M on R. Now assume, on the contrary, that there exists x0 ∈ R such
that h(x0) �= 0. Then we get∣∣λh(x0)f (x)

∣∣ � ε + M + |λ|M(
M + ∣∣f (x0)

∣∣),
and hence∣∣f (x)

∣∣ � ε + M + |λ|M(M + |f (x0)|)
|λh(x0)|

for all x ∈ R. Therefore, f is a bounded function on R. On the other hand, since f is a solution of
Eq. (4), f is of the form f (x) = Aeαx for x ∈ R by Theorem 1, where A = (−1±√

1 + 4λρ)/2λ.
Because Reα �= 0, f is an unbounded function on R, which is a contradiction. We thus conclude
that h = 0 on R, that is, g = f .

Proof of Theorem 6. Choose ε so that 0 � ε < |ψ(c)|2, and let g be a complex function satisfy-
ing (15). Putting Φ(x,y) = ψ(x)ψ(y) (x, y ∈ R) and a = b = c in (17), and using (26), we see
that

gc,c(x) = 1

λψ(c)2

(
λg(c)ψ(x)ψ(c) + ψ(x)ψ(2c) − ψ(x + c)ψ(c)

)
= g(c)

ψ(c)
ψ(x) − 1

λψ(c)
ψ(x + c) (x ∈ R). (33)

Since ψ is bounded on R, so is gc,c. Also, Lemma 2 says that (15) implies∣∣g(x) − gc,c(x)
∣∣ � 2 + |λ|(|g(x)| + |g(c)|)

2
ε (x ∈ R). (34)
|λψ(c) |
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Hence(
1 − ε

|ψ(c)|2
)∣∣g(x)

∣∣ �
∣∣gc,c(x)

∣∣ + 2 + |λg(c)|
|λψ(c)2| ε (x ∈ R).

Since ε < |ψ(c)|2 and since gc,c is bounded on R, it follows that g is also bounded on R. Put
m = sup{|g(x)|: x ∈ R} and Mψ = sup{|ψ(x)|: x ∈ R} (recall that ψ is bounded). By (15), we
have |λg(x)g(y)| � |g(x +y)|+ |ψ(x)ψ(y)|+ ε (x, y ∈ R), and so |λ|m2 � m+M2

ψ +|ψ(c)|2.
Hence m is less than or equal to

Mg =
1 +

√
1 + 4(M2

ψ + |ψ(c)|2)|λ|
2|λ| .

Clearly, the constant Mg depends only on λ, ψ and c. Since |g(x)| � Mg for all x ∈ R, it follows
from (34) that

∣∣g(x) − gc,c(x)
∣∣ � 2 + 2|λ|Mg

|λψ(c)2| ε (x ∈ R). (35)

Next, we substitute x = 2c in (33) and use (26) to see that

gc,c(2c) = g(c)

ψ(c)
ψ(2c) − 1

λψ(c)
ψ(3c) = −ψ(3c)

λψ(c)
. (36)

The same substitution turns (35) into

∣∣g(2c) − gc,c(2c)
∣∣ � 2 + 2|λ|Mg

|λψ(c)2| ε,

while the substitution x = y = c in (15) provides |g(2c) + λg(c)2 − ψ(c)2| � ε. Hence∣∣λg(c)2 − ψ(c)2 + gc,c(2c)
∣∣ �

∣∣λg(c)2 − ψ(c)2 + g(2c)
∣∣ + ∣∣gc,c(2c) − g(2c)

∣∣
�

(
1 + 2 + 2|λ|Mg

|λψ(c)2|
)

ε.

With (36), the left side can be written as follows:

∣∣λg(c)2 − ψ(c)2 + gc,c(2c)
∣∣ = |λ|

∣∣∣∣g(c)2 − ψ(c)2

λ
− ψ(3c)

λ2ψ(c)

∣∣∣∣
= |λ|

∣∣∣∣g(c)2 − ψ(c)2

λ2

(
λ + ψ(3c)

ψ(c)3

)∣∣∣∣
= |λ|∣∣g(c) − A1ψ(c)w

∣∣∣∣g(c) − A2ψ(c)
∣∣,

where

A1 = 1

λ

√
λ + ψ(3c)

ψ(c)3
and A2 = −1

λ

√
λ + ψ(3c)

ψ(c)3
.

Hence either |g(c) − A1ψ(c)| or |g(c) − A2ψ(c)| is bounded by√
1

|λ|
(

1 + 2 + 2|λ|Mg

|λψ(c)2|
)√

ε.
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If |g(c)− Aiψ(c)| is truly bounded by the above quantity, then we write A instead of Ai and put

f (x) = Aψ(x) − 1

λψ(c)
ψ(x + c) (x ∈ R). (37)

By Corollary 4, f is a solution of (6). By (33), (37) and our choice of A = Ai , we obtain

∣∣gc,c(x) − f (x)
∣∣ �

∣∣∣∣ g(c)

ψ(c)
ψ(x) − Aψ(x)

∣∣∣∣ = 1

|ψ(c)|
∣∣g(c) − Aψ(c)

∣∣∣∣ψ(x)
∣∣

� 1

|ψ(c)|

√
1

|λ|
(

1 + 2 + 2|λ|Mg

|λψ(c)2|
)

Mψ

√
ε (x ∈ R). (38)

Now put

K = max

{
2 + 2|λ|Mg

|λψ(c)2| ,
1

|ψ(c)|

√
1

|λ|
(

1 + 2 + 2|λ|Mg

|λψ(c)2|
)

Mψ

}
,

which depends only on λ, ψ and c. Then (35) and (38) yield (14). �
5. An example

Let us give some applications of Theorems 3 and 6.

Corollary 7. Let λ and β be nonzero complex numbers. Then the functional equation

f (x + y) + λf (x)f (y) = βxy (x, y ∈ R) (39)

has a solution and the solution f is given by

f (x) = ±
√

β

λ
x − 1

λ
(x ∈ R). (40)

Proof. Put ψ(x) = √
βx for x ∈ R. Take c = 1 in (8):

λ2β2z2 − 2λβ
√

βz + β − λβ2 = 0.

Let A be a solution of the quadratic equation above, that is,

A =
√

β ± β
√

λ

λβ
.

It is easy to see that Aψ(x) − ψ(x + 1)/λψ(1) is a solution of the functional equation (39). By
Theorem 3, the solution of (39) is of the form (40). �
Remark 3. Let ψ be as in Corollary 7. It is obvious that ψ does not hold (10) for any c, x, y ∈
R \ {0}. On the other hand, the functional equation (39) has a solution by Corollary 7. Therefore,
(10) is not necessary but sufficient for Eq. (6) to have a solution.

Corollary 8. Let λ, ρ, α, β be complex numbers with λ �= 0, ρ �= 0 and α �= β . Then the functional
equation

f (x + y) + λf (x)f (y) = ρ
(
eαx − eβx

)(
eαy − eβy

)
(x, y ∈ R) (41)
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has a solution and the solution is given by

f (x) = ±
√

1 + 4λρ

2λ

(
eαx − eβx

) − 1

2λ

(
eαx + eβx

)
(x ∈ R).

Proof. Define a complex function ψ on R by

ψ(x) = √
ρ
(
eαx − eβx

)
(x ∈ R). (42)

Clearly, ψ(0) = 0. Take c = πi/(β − α). Then

eβc = exp
βπi

β − α
= exp

(
πi + απi

β − α

)
= expπi exp

απi

β − α
= −eαc. (43)

Hence

ψ(c) = √
ρ
(
eαc − eβc

) = 2
√

ρeαc �= 0. (44)

Also, ψ satisfies the condition (10), because we use (43) and (44) to compute

ψ(x)ψ(y + c) + ψ(x + c)ψ(y)

= √
ρ
(
eαx − eβx

)√
ρ
(
eα(y+c) − eβ(y+c)

) + √
ρ
(
eα(x+c) − eβ(x+c)

)√
ρ
(
eαy − eβy

)
= ρ

(
eαceα(x+y) − eβceαx+βy − eαceβx+αy + eβceβ(x+y)

+ eαceα(x+y) − eαceαx+βy − eβceβx+αy + eβceβ(x+y)
)

= ρeαc
(
eα(x+y) + eαx+βy − eβx+αy − eβ(x+y)

+ eα(x+y) − eαx+βy + eβx+αy − eβ(x+y)
)

= 2ρeαc
(
eα(x+y) − eβ(x+y)

) = 2
√

ρeαc√ρ
(
eα(x+y) − eβ(x+y)

)
= ψ(c)ψ(x + y).

It follows from Corollary 4 that the functional equation (41) has a solution and the solution f is
of the form (11). Moreover, since ψ(3c) = √

ρ(e3αc − e3βc) = 2
√

ρe3αc by (43), (11) becomes

f (x) = ±1

λ

√
λ + 2

√
ρe3αc

(2
√

ρeαc)3

√
ρ
(
eαx − eβx

) − 1

2λ
√

ρeαc

√
ρ
(
eα(x+c) − eβ(x+c)

)

= ±1

λ

√
λ + 1

4ρ

√
ρ
(
eαx − eβx

) − 1

2λeαc

(
eαceαx − eβceβx

)

= ±
√

1 + 4λρ

2λ

(
eαx − eβx

) − 1

2λ

(
eαx + eβx

)
.

The proof is complete. �
Taking α = i, β = −i and ρ = −d/4 in Corollary 8, we have the following:

Corollary 9. Let λ and d be nonzero complex numbers. Then the functional equation

f (x + y) + λf (x)f (y) = d sinx siny (x, y ∈ R)

has a solution and the solution is given by

f (x) = ±
√

λd − 1

λ
sinx − 1

λ
cosx (x ∈ R).
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The case where λ = −1 and d < −1 in Corollary 9 is the result by Rassias:

Corollary 10. (Rassias [6]) Let d be a real number with d < −1. Then the functional equation (1)
has exactly two solutions f (x) = ±√−d − 1 sinx + cosx.

Next we consider the Hyers–Ulam stability of Eq. (41). If α and β are purely imaginary, then
the function ψ defined by (42) is bounded on R. Hence we can apply Theorem 6 and obtain the
following corollary:

Corollary 11. Let λ, ρ be nonzero complex numbers and a, b distinct real numbers. For the
functional equation

f (x + y) + λf (x)f (y) = ρ
(
eiax − eibx

)(
eiay − eiby

)
(x, y ∈ R), (45)

there exists a constant K = K(λ,ρ, a, b) with the following property: For any nonnegative num-
ber ε < 4|ρ| and any complex function g on R satisfying∣∣g(x + y) + λg(x)g(y) − ρ

(
eiax − eibx

)(
eiay − eiby

)∣∣ � ε (x, y ∈ R),

there is a solution f of (45) such that (14) holds.

Taking λ = −1, a = 1, b = −1 and ρ = −d/4 in Corollary 11, we obtain the result by
S.-M. Jung:

Corollary 12. (S.-M. Jung [4]) Let d be a real number with d < −1. For the functional equa-
tion (1), there exists a constant K = K(d) with the following property: For any nonnegative
number ε < |d| and any complex function g on R satisfying∣∣g(x + y) − g(x)g(y) − d sinx siny

∣∣ � ε (x, y ∈ R),

there is a solution f of (1) such that (14) holds.
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