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1 Introduction

Two valued logic fits well to mathematical reasoning, indeed, it is the 'meta-
mathematics of mathematics’. Applying two valued logic outside mathematics,
however, rises anomalies that we cannot accept as they contradict our everyday
experiences. An alternative approach to avoid paradoxes rising from seeing real
world’s phenomena only black or white is to accept more than two truth values
true and false. This is the starting point of many-valued logics and fuzzy logic.
Following Lotfi Zadeh [12], the inventor of Fuzzy Set theory, we distinguish
fuzzy logic in broad sense i.e. everything concerning vagueness and fuzziness,
from fuzzy logic in narrow sense, i.e. the formal logical calculus of fuzziness. In
this survey we focus on the latter.

Jan Lukasiewicz [8] was the first to investigate systematically many-valued
logics in 1920’s. In 1935, Morchaj Wajsberg showed! that infinite valued sen-
tential logic was complete with respect to the axioms conjectured by Lukasie-
wicz. Twenty-three years later, in 1958, C.C. Chang introduced MV-algebras,
which allowed him to give another completeness proof for Lukasiewicz logic.
For decades many-valued logic was far from the mainstreams of mathemati-
cal research, it was only after the fuzzy boom’ started in 1965 with Zadeh’s
seminal paper 'Fuzzy Sets’ that the situation has changed a bit. In 1979 Jan
Pavelka [10] published a paper entitled ’On fuzzy logic’ in which he generalized
Lukasiewicz’s logic by introducing fuzzy consequence operations, general fuzzy
rules of inference, fuzzy proofs, etc. Pavelka studied the real unit interval valued
fuzzy sentential logic and proved that necessary and sufficient condition for the
completeness of his logic is the continuity of the implication operation. In this
survey we recall an outline of Lukasiewicz-Pavelka fuzzy logic.

The traditional Greek notion of analogia, meaning ’proportion’ is usually
taken to assert the similarity, or partial identity of two objects. Following Leib-
niz, the founder of mathematical logic, the identity of two objects A and B
means that they share all their properties, hence, objects A and B may be said
to be partially identical if they share some (or most) of their properties. Im-
manuel Kant’s Logik [7] formulated the problem on analogy in the following
terms: 'Analogy concludes from partial similarity of two things to total simi-
larity according to the principle of specification: Things of one genus, which we
know to degree in much, also agree in the remainder as we know it is some of

1 Unfortunately Wajsberg’s proof was never published



the genus but do not perceive it in others’. According to Niiniluoto [9], "The
real challenge - - - is that we have to extend our treatment from simple analogy
to multiple analogy’.

We shall see how generalizing equivalence relation can solve this challenge on
the basis of Lukasiewicz-Pavelka many-valued logic, and applying the generated
many-valued equivalence on Zadeh’s fuzzy sets. We introduce an algorithm to
construct fuzzy IF-THEN inference systems having a special feature that when-
ever the output would not be unique the final decision should be left to human
experts. Thus, as much as possible the intelligence relies on a real controller,
and technical defuzzification methods are not needed. We demonstrate how ap-
proximate reasoning, many classification tasks, case-based reasoning, etc. can be
viewed as applications of many-valued similarity and, thus, Lukasiewicz-Pavelka
logic.

2 The Algebra of Lukasiewicz-Pavelka logic

An axiom system of a logic generates an algebraic structure. In classical logic
this structure is Boolean algebra, while infinite valued Lukasiewicz-Pavelka logic,
being an extension of two-valued logic, generates a more general algebraic struc-
ture, called MV-algebra [1],[2]. To minimize the axioms we first set, however,
the following

Definition 1 Let L be a non-void set, 1 € L and —, * be a binary and a unary
operation, respectively, defined on L such that, for each x,y,z € L,

1—-z=uz, (1)
(roy) > ly—2) - @) =1, )
(z—2y)—y=(y—2z)—>a, (3)
(" =y") = (y—2)=1 (4)
Then the system (L,—,*,1) is called a Wajsberg algebra.
Now define on a Wajsberg algebra (L,—,*,1) a binary relation < by
z<yiffz -y =1. (5)

Then < is an order relation on L and 1 is the greatest element in L and, by
defining two binary operations A and V on a Wajsberg algebra L via

zVy=(z—=y) >y, (6)
TAy = (" Vy")" (7)

we obtain a lattice (L, <, A, V). Moreover, by defining on a Wajsberg algebra L
two binary operation ®, for each z,y € L, via

TOy=(z—>y")" (8)
rdy=2x" >y, 9)



the following equations - the original MV-algebra axioms by Chang [1]- are
satisfied in every Wajsberg algebra.

rhy=ydzr , rOy=you, (10)
r®ydz)=@dy)dz , z0Woz2)=(0yY) Oz, (11)
zdz*=1 , zOz*=0, (12)

rdl=1 , z600=0, (13)

zd0=2 , 7O1=u, (14)

oy =z"0y" , @oy) =2"0y", (15)
=z , 1"=0, (16)

zVy=yVz , zAy=yAc, (17)
zV(yVvz)=(@Vy)Vz , zAYAz)=(xAy) Az, (18)
)

toyAz)=(zoyAlrdz) , 20HVz)=(oyVEosz). (19

Conversely, given an MV-algebra (L, ®,®,*,0,1), we can define an operation
— forall z,y € L by x — y = 2" @ y. Then the Wajsberg algebra axioms hold.
Thus, there is a one-to-one correspondence between MV-algebras and Wajsberg
algebras. An MV-algebra is called complete if it contains lowest upper bound
and least lower bound of any of its subset {z; | i € I'}, denoted by \/{z; | i € '}
and A{z; | i € T'}, respectively.

In the real unit interval, the most used MV-algebra structure called Lukasie-
wicz algebra, too, is obtained by setting 1 = 1, 0 = 0 and, for all z,y € [0, 1],

r—y=min{l-z+y,1} r**=1—-=z
zr@y=max{r+y—1,0} , z®y=min{z+y,1}
z Ay = min{z,y} ) zVy = max{z,y}.

These algebraic operations will offer us an elegant tool to interpret the logical

connectives implication, negation and two kinds of conjunction and disjunction,

respectively. Moreover, for equivalence in Lukasiewicz-Pavelka logic we have the

operation = <+ y = 1 — |z — y| which, in general setting, is defined by
zeoy=( -y Ay — ).

3 Lukasiewicz-Pavelka Logic

Now we start to develop logic, which allows more truth values than only ’false’
and ’true’. We assume all the time that the set L of values of truth forms a
complete MV-algebra. The formalized language of this logic is composed of four
kinds of building blocks:

(i) The set of propositions is an infinite set L = {p;;i € N'}. Propositions are
sometimes denoted by p,q, 7, s, t, w, too.

(ii) For any element a € L there is an inner truth value a in the language.

iii) The logical connectives are imp (read ’implies’) and and (read ’and’ or
’conjunction’).

(iv) There are auxiliary symbols },],), (, [, { in the language of the logic.



Inner truth-values and propositional variables are atomic formulas.

Definition 2 The set F of well-formed formulas is constructed in the following
way:

(i) atomic formulas are in F,

(ii) if « and B are in F then (o imp B) and (o and () are in F.

Propositional variables correspond statements like it is raining, etc. The main
difference between two-valued sentential logic and Lukasiewicz-Pavelka logic are
the inner truth-values, which can be regarded as generalizations of the falsum
sign L of classical logic. We follow the idea of intuitionistic logic and abbreviate
(o imp 0) by (non — ). The logical connective non (read 'non’) is called nega-
tion. Giving semantic interpretation to a formula a € F means we associate
a value of truth v(a) € L to «, in other words, we define truth value function
v:F \y L by setting

Definition 3 A function v : F \, L such that, for any inner truth value a and
for any formulas «, 3,

v(a) = a, (20)
v(e imp ) = v(@) — v(p), (21)
v(e and ) = v(e) © v(B), (22)

is called (fuzzy) valuation or (fuzzy) truth value function.

We introduce a logical connective or (read ’or’ or ’disjunction’) as an abbrevi-
ation

(a or ) = [non-(non-a and non-73)].

This generalizes the state of affairs in classical sentential logic and makes the
formalized language of many-valued logic easier to read.

Remark 1 For any valuation v, any o, 8 € F,
v(non-a) = v(a)*, (23)
vla or B) = v(a) ® v(A). (24)

Generally, v(a and ) < v(a) Av(B) and v(a) Vo(F) < v(a or ). In appli-
cation we may need, however, disjunctive and conjunctive connectives, denote
them by and and oF, respectively, such that

v(e amd §) = v(a) Av(B), v(a oF A) = v(@) V v(B).
Abbreviating can do this
(aor f) = [( imp f3) imp f3)]

(o and ) = [non- (non-a oF non-73)],



even if the abbreviation of the logical connective oF is far from being obvious.
We also introduce a logical connective equiv by abbreviating

(a equiv B) = [(a imp B) and [(8 imp )],

thus generalizing the situation in classical logic. Then we have, for any valuation
v, any formulas «, § € F,

v(a equiv B) = v(a) + v(F).
In classical logic truth value functions v : F N\ {0, 1} satisfy the truth tables
vl or A) [v(B) =1 v(B) =0

v(a) =1 1 1
v(a) =0 1 0
o(a and 7) [ W) =1 [v(B) =0
v(a) = 1 0
v(a) = 0 0
v(eimp fB) | v(B) =1 | v(B) =0
v(a) =1 1

v(a) =0 1 1

v(non-q)

It is easy to verify that fuzzy valuations satisfy these tables and that in two
valued case the truth value tables of the logical connectives and and and as well
as or and or coincide. Complete truth tables are not, of course, possible in logic
with infinite many values of truth. We may, however, write instances of them.

As an example, we calculate that if v(a) = 0.2, v(8) = 0.6 and v(y) = 0.9
then

v([o imp (non-for non-v)] imp ) = 0.9

In logic we are interested in the logical consequences of given statements. From
semantic point of view this raises a question

Associating fized values of truth to a set of well-formed formulas T C F,
what is the least degree of truth, or greatest lower bound of such degrees, of an
arbitrary formula o € F with respect to T ?

This leads us to the following semantic definitions

Definition 4 A fuzzy set T of formulas is a function T : F \, L. A truth value
function v : F N\ L satisfies T if T'(«) < v(a) for any formula o € F. If there
ezists a valuation v such that v satisfies T the T is called satisfiable.

The void set () can be regarded as a fuzzy set of formulas by defining () = 0
for all formulas oo € F. The void set is of course satisfiable.



Definition 5 The degree of validity of a formula a € F (with respect to a fuzzy
set of formulas T') is a value

C**™(T)(a) = /\{v(a) | v satisfies T'}. (25)

In particular, if T is the void set we define the degree of tautology of a formula
a by

C**™a) = /\{v(a) | v is a valuation }. (26)

This definition is very natural and generalizes the concept of tautology in clas-
sical logic. If C**™(T)(«a) = a we write T |=, «, in particular =, « if T is the
void set. Of special interest will be formulas a such that |=; «. Evidently, if
=1 a, then T =1 a for any fuzzy set T of formulas (even for those 7' which are
not satisfied by any valuation v!)

Proposition 1 Let a, 3, v, a1, B1, as, B2 be formulas and ¢ any inner truth
value. Then the following forms of formulas are universally valid at the degree
1, except for, of course, the inner truth value c, which is universally valid at the
degree ¢, i.e.

Firoaimp o,  (27)

1 (a imp ) imp [(8 imp 7) imp (a imp )],  (28)
F1 (c1impBi) imp {(B2impaz) imp [(B1impfs) imp (eximpas)]},  (29)
Firoimp 1,  (30)

F10imp a, (31

1 (0 and non-a) imp O, (32)
Fec, (33)

Fiaimp (8 imp @),  (34)

Ei (1 imp «) imp a, (35)

F1 [( imp ) imp 5] imp [(B imp ) imp af,  (36)
1 (non-a imp non-f) imp (S imp «). (37)
The definitions of valuation and the degree of validity of formula « are

natural and relatively easy generalizations of the corresponding concepts in two
valued logic. Now we consider the following related non-trivial problem

Knowing that a formula « is valid at a certain degree, do there exist a fuzzy
set of axioms and fuzzy rules of inference by which we can infer a at the same
degree?

In other words, is Lukasiewicz-Pavelka logic axiomatizable? To find an answer
to this question, we start by defining on what we mean by fuzzy axiom, fuzzy
rule of inference, fuzzy proof, etc.

A rule of inference in Classical Propositional Logic is an n-ary operation
on the set of well-formed formulas which with a finite sequence of formulas



ay, - ,a, (1 < n) in a formalized language associates another formula § in
this language in such a way that 8 is a logical consequence of the formulas

ai, -+, an. This fact is usually denoted as follows
Qp, -, 0p
B
Formulas ay,---,a; are called premises and 3 the conclusion of this rule of

inference. For example,

non — (non — «)
«

and

@, (o imp f)
B

are rules of inference in Classical Propositional Logic, called Rule of Double
Negation and Modus Ponens, respectively. By saying that a formula § is a
logical consequence of a set S of formulas we mean that if every formula «
belonging to S is acknowledged to be true, then 8 must be accepted as true.
Thus, the most important property of rule of inference is soundness, i.e. rule of
inference preserves truth.

We define a fuzzy rule of inference as consisting of two components. The
first component operates on formulas and is, in fact, a rule of inference in the
usual sense; the second component operates on truth values and says how the
truth value of the conclusion is to be computed from the truth-values of the
premises such that the degree of truth is preserved. More accurately, we set

Definition 6 An n-ary fuzzy rule of inference is a scheme

1, ap at, -, an
R : ,
Tsyn(ala"')an) Tsem(aly"')an)
where the well-formed formulae aq,- - -, ay, are the premises and the well-formed
formula r¥™(ay, - - -, ay,) is the conclusion.
The values ay,---,a,, r**™(ai,---,a,) € L are the corresponding truth-

sem

values. The mapping r3°" : L™ \, L is semi-continuous on each variable, i.e. it

holds always that

sem( sem(

r ar, gy, 5 an), 1 <k <n.

alv"':\/jel“akjv"'aan) = \/jel“r
We assume the fuzzy rule of inference is sound, i.e. for each valuation v holds
reet(v(en), -+ vlan)) S o™ (o, an))-

Proposition 2 The following schemes are fuzzy rules of inference in Lukasie-
wicz-Pavelka logic



Generalized Modus Ponens:

Raump : ;
B8 a®b
a-Consistency-testing rules:
a b
R, —crRr : )
0 c

where a is an inner truth value, and ¢ =0 if b < a and c = 1 elsewhere.
a-Lifting Rules:

« b
R._Lr : )
(a imp «) a—b
where a is an inner truth value.
Rule of Bold Conjunction:
a, B a,b

Rrpo : )
(o and f) a®b

Definition 7 A fuzzy set A of logical axioms is a finite set of forms of formulas
each being an inner truth value a, then A(a) = a, or a tautology a at the degree
1, then A(a) = 1. Elsewhere A(a) = 0.

For example, the following set of forms of formulas is, by (27)-(37), a set of
logical axioms:

(Ax.1) «imp «,

(Ax.2) (o imp B) imp [(8 imp 7) imp (a imp )],

(Ax.3)  (e1imppy) imp {(B2impaz) imp [(B1impf) imp (aimpas)]},

(Ax4) « imp 1,

(Ax.5) 0 imp a,

(Ax.6) [(@ and non-a) imp O,

(Ax.7) a

(Ax.8) « imp (B imp «),

(Ax.9) (1 imp «) imp a,

(Ax.10)  [( imp f) imp f] imp [(8 imp ) imp o,

(Ax.11) (non-a imp non-f) imp (B imp «).

where «, 3, v, a1, as, 1, B2 are well-formed formulas and a any inner truth-
value. Values A(J) are obvious.

)

Definition 8 Let A be a fized set of logical axioms, R a fixed finite set of fuzzy
rules of inference and T fuzzy set of formulas called non-logical axioms. Then a
(zero-order) fuzzy theory is a triplet (AR, T'). In particular, if the set of logical
axioms A is composed of Ax.1 - Az.11, and the set of fuzzy rules of inference R
contains Rayp, Ro—crr, Ra—Lr, RrBC, we denote a fuzzy theory simply by
T, and if T is the void set we talk about Fuzzy Propositional Calculus.



A metaproof of a well-formed formula « in a fuzzy theory (A,R, T'), denoted by
w, is a finite sequence

ar o, a1

Am 5, Gm

of pairs (a;,a;) € F x L such that the following holds: (i) ay, = a, (ii) for each
i,1 <i < m,q; is a logical axiom, or «; is a non-logical axiom, or there are a

fuzzy rule of inference in R and formulas «;,, -, a;, with 41,--,4, < i such
that o; = (e, - -, a4, ), (iii) for each i,1 < i < m, the value q; is given by
a if o; is the axiom a
o = 1 if a; is some other logical axiom
Y T(ap) if «; is a non-logical axiom
™ (a; -y aq,) i =y, Q).

The value a,, is denoted by Valg r)(w) and is called the degree of the
metaproof w. Because a formula a may have many metaproofs with different
degrees, we define the degree of deduction of the formula a in fuzzy theory
(A,R, T') by

CoR (T () = \/{ Valy g, 7y (w)|w is a metaproof for « in (A,R, T')}.

The case C*7*AR)(T)(a) = a is denoted by (A,R, T)F, «, in particular, F, a if
the set of logical axioms A is composed of Ax.1 - Ax.11, the set of fuzzy rules
of inference R contains Rayp, Roe—crr, Ra—LRr, Rreo and T is the void set.

Let the set of logical axioms A be composed of Ax.1 - Ax.11, and the set of
fuzzy rules of inference R contains the fuzzy rules of inference Rgayp, Ro—cTR,
R._1Rr, Rrpc. Fuzzy theories are thus identified by means of their sets T of
non-logical axioms. We will write C®™ instead of C*™®) Obviously, for any
fuzzy theory T, if by « then T F; «a, and by Ax.7, for any inner truth value a,
a < C*™(T)(a). This leads us to the following

Definition 9 A fuzzy theory T is consistent if, for any inner truth value a,
a = C*(T)(a), and otherwise T is contradictory.

Proposition 3 A fuzzy theory T is contradictory iff T b1 « holds for each
acF.

Proof. Assume T is contradictory. Then there exists an inner truth value a such
that a # C®™(T)(a). If for each metaproof w for a holds Valr(w) < a, then
a < C*(T)(a) < a, hence C*™(T)(a) = a, which is not the case. Therefore
there exists a metaproof w for a such that Valr(w) £ a. For every formula
a € F, we have now the following metaproof:

a , Valp(w) , assumption
0 ) 1 ) RafoTR
0 imp a , 1 , Ax.4
a ) 1 ’ RGMP



We conclude that T F; a holds for each o € F. Conversely, if T' 1 a holds for
each a € F, then, in particular, T+, 0, i.e. C*™(T)(0) =1 # 0.

Proposition 4 A fuzzy theory T is contradictory iff the following condition
holds (C):

There is a formula o and metaproofs w, w' for o, non-a, respectively,
such that Valr(w) = a, Valr(w') = band 0 < a ©®b.

Let T be a fuzzy theory. The choice of the logical axioms Ax.1 - Ax.11
and soundness of fuzzy rules of inference guarantee, for each formula «, each
metaproof w for a in T, each valuation v which satisfies T', that Valr(w) <
v(a). Thus,

V{Valr(w) | w is a metaproof for a in T} < A{v(a) | v satisfies T},

by symbols, C37(T')(a) < C**™(T')(c). (This (in-)equality holds even if T' is not
satisfiable as A {0} = 1.) We write

Theorem 1 (Soundness Theorem for Fuzzy Propositional Calculus) Let T be
a fuzzy theory. For each formula o, if T F, a, T = «, then a < b.

Corollary 1 Any satisfiable fuzzy theory T is consistent.

The most important theoretical result concerning Lukasiewicz-Pavelka logic
is the Completeness Theorem of Fuzzy Propositional Calculus; for any fuzzy
theory 7', for each formula « € F and for any value a € L, holds

T+, aif, and only if T =, a.

The rather long proof of this fact is, however, omitted. We conclude this section
by giving an easy example, which should illustrate a possible application of
Lukasiewicz-Pavelka logic.

Example Assume p stands for It is raining enough and ¢ stands for Potato
is growing fast. We study a fuzzy theory T' such that
T'(non — p imp non — ¢q) = 1 standing for If it is not raining enough then potato
is not growing fast and T'(¢) = 0.7 standing loosely for Potato is growing more
or less fast. Now we are interested in the degree of deduction of p. We find the
following metaproof for p:

(non — p imp non — ¢) imp (¢ impp) , 1 , Ax.11
(non — p imp non — q) , 1 non-logical axiom
(¢ imp p) S Ramp
q , 0.7 |, mnon-logical axiom
» , 0.7, Ramp

Therefore 0.7 < C3(p). Since a valuation v such that v(p) = v(q) = 0.7 satisfies
T, we have, by Completeness Theorem, 0.7 < C*%™(T)(p) = C**™(T)(p) < 0.7.
Thus, the degree of deduction of p is 0.7. Freely speaking, Is is raining more or
less enough.

10



4 Similarity-based reasoning

The objective in approximate reasoning is to draw conclusions from partially
true premises. Our idea is to look for the most similar premise, the IF-part, and
fire the corresponding conciliation, the THEN-part. Moreover, the degree of
similarity may be composed of various partial similarities. Lukasiewicz-Pavelka
logic provides a reasonable method to do this task, in a sense Lukasiewicz-
Pavelka logic is the only many-valued logic to come off this challenge as we shall
now see.

Recall a binary operation ® : [0,1]% Y\, [0,1] is called t-norm if, for all
elements z,y,z € [0,1], (1) f e <y, thenz 0 2z<y oz (i) 20y =y Oz, (iii)
rOl=z (iV)zoyo2)=(z0y)oz (v)zo0=0.

In particular, continuous t-norms ® and their residua — play a fundamental
role in fuzzy logic. The most frequently used continuos t-norms in various fuzzy
inference systems generate the following algebraic structures
Godel algebra:

1 ife<y

r Oy =min{z,y},z >y = { y  otherwise.

Product t-algebra:

1 ife<y
TOY=TY, T 2Y=1 4 otherwise.
T
Lukasiewicz algebra:
1 ifx <y

x@y:max{O,:r+y—1},x—)y:{ 1—x+y otherwise.

These three examples are fundamental since, in a certain sense, they characterize
all possible continuos t-norms (for details, see [3],[4]). They are the generators
of all BL-algebras of the real unit interval, too; by fixing a continuous ¢-norm
we fix a Basic Logic, a well-defined many-valued logic modeling mathematically
fuzzy reasoning. Lukasiewicz-Pavelka logic is, in particular, a Basic Logic. The
operations ® and — are the algebraic counterparts of the logical connectives
conjunction and implication, respectively. In particular, the complement z*
of an element = € [0,1] defined by z* = x — 0, is the algebraic counterpart
of negation, while many-valued equivalence is interpreted algebraically by bi-
residuum defined, for all z,y € [0,1], via

z <y =min{(z = y), (y = z)}.

In any BL-algebra, a bi-residuum < has the following properties (cf. [11])

[
oo

T =1,

THY=y o,

oy olye)sees,
T 1l=nx.

>
[ew]

A~ o~~~
SN w
= =}
- ==z

Now we can set the following [13] important

11



Definition 10 Let A be a non-void set and © a continuos t-norm. Then a
fuzzy similarity S on A is such a binary fuzzy relation that, for each z,y,z € A,
(1) S{x,x) = 1 (everything is similar to itself),
(11) S(x,y) = S{y,x) (fuzzy similarity is symmetric),
(iii) S{z,y) © S{y,z) < S{(x,z) (fuzzy similarity is weakly transitive).
Trivially, fuzzy similarity is a generalization of classical equivalence relation,
thus called many-valued equivalence, too. Notice that, by weak transitivity,
partial similarity of x and y, and y and z imply only a lower bound for the
degree of similarity of = and z.

Recall a fuzzy set X is an ordered couple (A, ux), where the reference set A
is a non-void set and the membership function px : A N\, [0,1] tells the degree
to which an element a € A belongs to the fuzzy set X.

Theorem 2 Any fuzzy set (A, ux) on a reference set A generates a fuzzy sim-
ilarity S on A, defined by

S(x,y) = px (z) < px(y), where x,y are elements of A.
Moreover,
if px(y) =1 then S(z,y) = px (z).
Proof. By (38)-(41).

It is worth noting that, in Lukasiewicz-Pavelka logic, 'the negation of equiv-
alence is distance’. Indeed, for all a,b € [0,1],

(ab)*=1-[1-]a—0|] =a—1|,
the Euclidean distance between a and b.

Theorem 3 Consider n Lukasiewicz valued fuzzy similarities S;, t = 1,---,n
on a set X. Then

S(z,y) = 73, Sil, )

is a Lukasiewicz valued fuzzy similarity on X. More generally, the weighted
mean

S(.’I},g) = %Ei=1mi . Sl<may>7

where M = X% m;,m; € N, is again a Lukasiewicz valued fuzzy similarity on
X, called total fuzzy similarity relation.

Proof. Since all S;, ¢ = 1,---,n are reflexive and symmetric so is S. The
weak transitivity of S can be seen in the following way. Let A = S{z,y)®S(y, 2).
If A=0, then trivially A < S(z, z), therefore assume A > 0. Then

12



A = (33,8, y) © (X1, Si(y, 2))
= (3P Si(x,y) + 2, Si(y, 2) —n)
= Z[(Si{z,y) + 81y, 2) — 1) + -+ + (Sn(z,y) + Snly, z) — 1)]
< §<(51(36,2)+---+(Sn(x,z>)

thus, S is weakly transitive, and therefore a Lukasiewicz valued fuzzy similarity
on X. The other part is now an easy generalization of this result. The proof is
complete.

Theorem 2 does not hold for other BL-algebras than Lukasiewicz algebra.
Indeed, consider the following two fuzzy similarities Sy and Sy on a set {a, b, c}
(with respect to any BL-algebra on the real unit interval!), defined by

Silal|bl|ec Sy lal|bl|e
a [1]1]0 a [1]0]0
1111024 011
0]0]1 011

The combined fuzzy relation is not a fuzzy similarity on the set {a,b,c} if one
uses Godel algebra or Product t-algebra; in general, weak transitivity does hold.

4.1 Algorithm to Construct Fuzzy Inference Systems

A control situation comprehends a system S, an input universe of discourse
X, the IF-parts, and an output universe of discourse Y, the THEN-parts. We
assume there are n input variables and one output variable. The dynamics of
S are characterized by a finite collection of IF-THEN-rules; e.g.

Rulel IF xis A; andyis B; and zis C;, THEN wis D,

Rule2 IF xis A and y is B and zis C;, THEN w is Dy

Rule ¥ IF xzis Ar and y is By and z is C), THEN w is Dy

where Ay, ---, Dy are fuzzy sets of height 1, that is, in each fuzzy set there is at
least one element that obtains the membership degree 1. Generally, the output
fuzzy sets Dy, -, Dy should obtain all the same values € [0, 1] the input fuzzy
sets Aq,--+,C do, however, the outputs can be crisp actions, too. All these
fuzzy sets are to be specified by the fuzzy control engineer. We avoid disjunction
between the rules by allowing some of the output fuzzy sets D; and Dj,i # j, be
possibly equal . Thus, a fixed THEN-part can follow various IF-parts. Some of
the input fuzzy sets may be equal, too (e.g. B; = B, for some i # j). However,
the rule base should be consistent; a fixed IF-part precedes a unique THEN-
part. Moreover, the rule base can be incomplete; if an expert is not able to
define the THEN-part of some combination ’IF z is A; and y is B; and z is C;’
then the rule should be skipped.

Now we are in the position to formulate an algorithm a fuzzy control engineer
has to perform to construct a total fuzzy similarity based inference system.
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Step 1. Create the dynamics of S, i.e. define the IF-THEN rules, give the
shapes of the input fuzzy sets (e.g. Aj,---,C) and the shapes of the output
fuzzy sets (e.g. D1,--+, Dg).

Step 2. Give weights to various parts of the input fuzzy sets (e.g. to A;.s,
B;.s and C.s) to emphasize the mutual importance of the corresponding input
variables.

Step 3. Put the IF-THEN-rules in a linear order with respect to their mu-
tual importance, or give some criteria on how this can be done when necessary.

Step 4. For each THEN-part ¢, give a criteria on how to distinguish outputs
with equal degree on membership (e.g. wo and vy such that up, (we) = up, (vo),

Wo ;é ’Uo).

A general framework for the inference system is now ready. Assume then
that we have actual input values, e.g. (zo,%0,20). The corresponding output
value wyq is found in the following way.

Step 5. Consider each IF-part of the rule base as a crisp case, and compare
the actual input values separately with each IF-part, in other words, count total
fuzzy similarities between the actual inputs and each IF-part of the rule base;
by the above Theorems, this is equivalent to counting weighted means, e.g.

mipa, (To) + mapp, (Yo) + mspc, (20) = Similarity(actual,Rule 1)
mipa,(To) + mapp, (Yo) + mapc, (20) = Similarity(actual,Rule 2)
mipa, (o) + mapp, (Yo) + mspc, (z0) =  Similarity(actual,Rule k)

where my, ms and mg are the weights given in Step 2.
Step 6. Fire an output value wqg such that

wp; (wp) = Similarity(actual,Rule 7)

corresponding to the maximal total fuzzy similarity Similarity (actual,Rule 7), if
such Rule ¢ is not unique, use the mutual order given in Step 3, and if there are
several such output values wy utilize the criteria given in Step 4.

Of course, we can specify our algorithm by putting extra demands, for ex-
ample, in some cases the degree of total fuzzy similarity of the best alternative
should be greater than some fixed value a € [0, 1], sometimes all the alternatives
possessing the highest fuzzy similarity should be indicated, or the difference be-
tween the best candidate and second one should be larger than a fixed value
B € [0,1]. All this depends on an expert’s choice.

4.2 Multi-phase Vehicle Control

The first example to illustrate the Algorithm origins from traffic signal control.
Consider a T-junction? (Figure 1), where traffic flow on the main street (phase
A) is assumed to be from two to ten times more intensive than traffic flow from
the other direction. Normally the green traffic signal phase order is A-B-C-A,

2This traffic signal control system is operating in Kontula, Helsinki
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however, if there is low request, i.e. very few or no vehicles in the next phase B
or C, then this phase can be skipped. Thus, the order can be e.g. A-C-A-B-C or
A-B-A-B-C. The task is to determine the right phase order; fuzzy phase selector
- imitating traffic policeman’s action - decides the next signal group.

Figure 1.

L

Phase A

Phase B

Phase C

=

L S

Layout and three phases of a T-junction

The basic principle is that phase B can be skipped if there is no request or
if total waiting time of vehicles V(B) in phase B is low, and similarly, phase C
can be skipped if there is no request or if total waiting time of vehicles V(C) in
phase C is low. Therefore, after phase B the next phase is C or A, and after
phase C the next phase is A. In details, the dynamics of the inference is the

following
After phase A,
IF V(B) is high AND V(C) is any
IF V(B) is medium AND V(C) is over saturated
IF V(B) is low AND V(C) is more than medium
IF V(B) is less than low  AND V(C) is more than medium

THEN phase is B
THEN phase is C

THEN phase is C
THEN phase is C

The corresponding fuzzy sets are defined by the following membership func-

tions
Total wait time V(B) [10 sec]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
less than low | 1.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
low 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
medium 0.0 0.0 0.0 0.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0
high 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.5 0.7 0.8 1.0 1.0 1.0 1.0
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Total wait time V(C) [10 sec]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

over saturated |0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 1.0 1.0
more than medi | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 1.0 1.0 1.0
any 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Corresponding to Step 3 of the Algorithm, if the maximal total similarity is not
unique, the phase with the longest waiting time will be fired, or in the worst
case, the next phase will not be skipped. The performance of the fuzzy phase
control is now straightforward; for example, after phase A, if there are 7 vehicles
in phase B and 3 vehicles in phase C, then the next phase will be B.

HUTSIM traffic simulator simulated the performance of this control system,
constructed at Helsinki University of Technology, and the results were compared
to those determined by a fuzzy phase control based on a Mamdani-style fuzzy
controller and a non-fuzzy control algorithm. The average waiting time per
vehicle turned out to be the shortest in fuzzy similarity based control as can be
seen in Table 1, Table 2 and Table 3.

veh/hour | 200 | 400 | 600 | 800 | 1000 | 1200 [ 1400 | 1600 |

Tot.sim 1221122 | 126 | 13.1 | 129 | 13.8 | 146 | 15.5
Mamdani | 12.1 | 13.0 | 12.7 | 149 | 144 | 15.7 | 17.2 | 17.6
Non-fuz 1211129 | 135 | 139 | 146 | 16.1 | 17.2 | 17.5

Table 1. Average waiting time/vehicle. Vehicle flow ratio 10:1.

veh/hour | 200 | 400 | 600 | 800 | 1000 | 1200 | 1400 | 1600 |
Tot.sim | 12.9 [ 12.7 [ 132 [ 12.7 | 12.8 | 139 | 158 | 17.2
Mamdani | 12.7 | 13.0 | 13.7 | 14.0 | 142 | 153 | 168 | 215
Nou-fuz | 13.7 | 12.8 | 13.3 | 13.1 | 143 | 153 | 17.8 | 19.9

Table 2. Average waiting time/vehicle. Vehicle flow ratio 10:2.

veh/hour | 200 | 400 | 600 | 800 | 1000 | 1200 | 1400 | 1600 |
Totsim | 112 | 11.9 | 12.4 | 134 | 14.1 | 180 | 174 | 205
Mamdani | 11.7 | 13.2 | 13.5 | 13.9 | 14.0 | 18.1 | 18.1 | 22.0
Nonfuz | 124 | 11.9 | 134 | 14.1 | 142 | 17.6 | 183 | 77.6

Table 3. Average waiting time/vehicle. Vehicle flow ratio 10:5.

4.3 Determining Athlete’s Anaerobic Thresholds

The second example on how to utilize the Algorithm takes us to the realm of
sports medicine. The maximal performance capacity is essential in many sports
like football, while in some other sports like long distance cycle racing the sub-
maximal endurance capacity play a more important role. At low exercise levels
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energy is yielded mostly aerobically, but when approaching maximal exercise
level, the aerobic process with increasing lactate production start to play a more
perceptible role. To guide successfully athlete’s training programs, it is there-
fore of importance to be able to identify his aerobic and anaerobic thresholds,
which are functions of blood lactate, ventilation and oxygen uptake. The test
protocol of a continuous incremental exercise, which is performed e.g. by bicycle
ergometer, starts with a 3 minutes warm up, then the load is increased every
second minute and blood lactate, ventilation and oxygen uptake are measured.
The planned duration of the test is about 20-25 minutes, the test is carried out
until volitional exhaustion so usually there are z1, - - -, z, measurements, where
n = 10---12. Here is a part of a possible test result:

¢|= measured oxygen uptake

X| = measured ventilation

o |= measured blood lactate

pulse
150 175 [Leats

min

According to skilled sports medicine specialists, the anaerobic threshold is
such a pulse (beats/min) that

e the amount of blood lactate is increasing rapidly (more that 0.2 mmol/1)

e ventilation is increasing clearly

e oxygen uptake is decreasing

e pulse is 15-25 (+-5) beats/min less than maximal pulse.

For example, in the case above, the anaerobic threshold would be about 170
beats/min. We construct® an expert system based on total fuzzy similarity to
imitate sports medicine specialists’ reasoning. First we connect the measured
values x; with lines as done above (in fact, they are first order spline functions!).
Then, corresponding to each test, we create a fuzzy set called

Ventilation is increasing clearly
such that the x; possessing the absolutely highest positive change of ventilation
will have the membership degree 1, the x; with the absolutely lowest positive
change or non-positive change will have the membership degree 0 and all the
other z;:s with positive change will have a linearly scaled degree of membership
in this fuzzy set. Due to the spline function, also the values in between measured

3 A prototype can be found in [5]
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ones will have a reasonable degree of membership. In a similar manner we define
another fuzzy set called
Oxygen uptake is decreasing.
The last fuzzy set we need is called
The amount of blood lactate is increasing rapidly
and is context independent. It has the following shape

’The amount of blood lactate is increasing rapidly’

0.5

Change of blood lactate
0.15 0.2 [mmol /1]

We assume there is an ’ideal object’ a which belongs to all these fuzzy sets at
the highest degree; we compare each measured value z and the values obtained
by the spline functions with a; the one(s) which has (have) the highest degree
of total similarity will be the anaerobic threshold(s) if it (they) fulfils the last
crisp criteria 'pulse is 10 to 30 beats/min less than maximal pulse’. It may
happen, however, that even the found highest degree of total fuzzy similarity
is too low, or that there are too many possible anaerobic thresholds to draw a
reliable conclusion. This fact is informed to the user with a recommendation
that something went wrong and the test should be repeated.

Example Having the following test results, define the anaerobic threshold

Pulse | A blood lactate | A ventilation | A oxygen uptake
142 0.14 +21 +0.1
147 0.13 -3 +0.1
156 0.19 -2 -0.1
161 0.20 +1 -0.2
169 0.29 +27 -0.7
174 0.30 +26 -0.7
181 0.35 +26 -0.5
186 0.37 +27 -0.6

For simplicity, we consider only the measured values and calculate the cor-
responding fuzzy sets and the degrees of total fuzzy similarity. In this test the
measured maximal pulse is 186 beats/min so, to fulfill the crisp rule ’pulse is
10 to 30 beats/min less than maximal pulse’, we do not have to consider all the
cases. We obtain the following fuzzy sets and results
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Pulse | Blood Lac.inc. | Vent.inc. | Oxygen Up.inc. | Tot.sim.
156 0.8 0 0 0.27
161 1 0.04 0.17 0.40
169 1 1 1 1
174 1 0.96 1 0.97

The maximal fuzzy similarity is obtained at the value 169 beats/min, while
the value 174 beats/min is quite good, too. Since there is always uncertainty
involved in the measurements, sports medicine specialists would drive into a
conclusion: Anaerobic threshold is close to 170 beats/min.

4.4 Classification Tasks

Theory of total fuzzy similarity offers us a powerful tool to handle with partial
similar objects. For example, consider the following table of information which
was collected from The World Almanac and Book of Facts 1998.

State GDT | area | pop | bir | mor | life | 65 | lite | tel car

Finland 18.2 | 130,1 | 5.1 11 5 74 | 14 | 100 | 1.8 2.7
Denmark | 21.7 16,6 5.3 12 5 74 | 15 | 100 | 1.6 3.1
Belgium 19.5 11.8 | 10.2 | 12 6 74 | 16 | 99 2.2 24
France 18.7 210 58.0 | 11 6 75 | 16 | 99 1.8 2.4
Italy 18.7 | 116.3 | 57.5 | 10 7 75 | 17 | 97 2.3 1.9
Spain 14.3 | 1954 | 39.2 | 10 6 75 | 16 | 97 2.6 2.8
Slovakia 7.2 18.9 5.4 13 11 69 | 11 | 100 | 4.8 5.4

Bulgaria 4.9 42.9 8.7 8 15 67 | 16 | 98 3.3 5.4

Romania 4.6 92.0 | 214 | 10 23 66 | 13 | 97 7.6 | 10.7
Colombia 5.3 4408 | 374 | 21 25 70 | 5 91 | 10.0 | 32.5
Tanzania 0.8 364.0 | 29.5 | 41 | 105 | 40 | 3 68 | 328 | 589

Nepal 1.2 56.8 | 22.6 | 37 7 54 | 3 28 | 276 -
GDP = per capita GDP $ 1000 area = area sq.mi

pop = population 10° bir = births per 1000 pop

mor = infant mortality /1000 live births life = life expect. at birth

65 = age distrib. % 65+ lite = literacy%

tel = 1 telephone per x persons car = 1 car per x persons

We may express the information of this table by fuzzy set in various ways.
For example, corresponding to the first column, we may construct a fuzzy set
High GDT by scaling, i.e.

(GDT of state x) — (Lowes GDT)
(Highest GDT) — (Lowest GDT)

IHigh GDT(State x) =
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In a similar manner we construct the fuzzy sets

Huge Area

High Population High Amount of Births
High Infant Mortality Long Life Expectancy
Many 01d Aged High Literacy

corresponding to the columns 2-8. For the last two columns it is more reasonable
to define a fuzzy set Telephone Per Person by

1

1 telephone per x persons in state x

HUTelephone Per Person (State X) =

and similarly a fuzzy set Car Per Person. This results

Finland 0.82 0.27 0.09 0 0.97 | 0.79 1 0.56 | 0.37
Denmark 1 0.01 0.12 0 0.97 | 0.86 1 0.63 | 0.32
Belgium 0.89 0 0.1 0.12 | 0.01 | 0.97 | 0.93 | 0.99 | 0.45 | 0.42
France 0.86 0.46 1 0.09 | 0.01 1 0.93 | 0.99 | 0.56 | 0.42
Italy 0.86 0.24 | 0.99 | 0.06 | 0.02 1 1 0.96 | 0.43 | 0.53
Spain 0.65 0.43 | 0.64 | 0.06 | 0.01 1 0.93 | 0.96 | 0.38 | 0.36
Slovakia 0.31 0.02 | 0.01 | 0.15 | 0.06 | 0.83 | 0.57 1 0.21 | 0.19
Bulgaria 0.20 0.07 | 0.07 0 0.10 | 0.77 | 0.93 | 0.97 | 0.30 | 0.19
Romania 0.18 0.19 | 0.31 | 0.06 | 0.18 | 0.74 | 0.71 | 0.96 | 0.13 | 0.09
Colombia | 0.22 1 0.61 | 0.39 | 0.20 | 0.86 | 0.14 | 0.88 | 0.10 | 0.03
Tanzania 0 0.82 | 0.46 1 1 0 0 0.56 0 0
Nepal 0.02 0.11 | 0.33 | 0.88 | 0.72 | 0.40 0 0 0 0

State GDT | area | pop bir mor life 65 lite tel car
0
0

Example 1 Clearly, Romania, Bulgaria and Slovakia are countries mutually
equal with respect to the above information. By maximal fuzzy similarities
generated by the above fuzzy sets we calculate Similar(Slovakia,Bulgaria) =
0.9050, Similar(Slovakia,Romania) = 0.8380 and Similar(Romania,Bulgaria) =
0.8420.

Example 2 Typical features of an undeveloped country are low GDP per
capita, high rate of birth, high infant mortality, short life expectancy at birth
and low literacy percentage. In the light of above facts, which are the three
most undeveloped countries? It is reasonable to use the following fuzzy sets

Low GDP = (High GDP)*

High Amount of Births

High Infant Mortality

Short Life Expectancy = (Long Life Expectancy)”

Low Literacy =(High Literacy)*
and to assume that a ’typical undeveloped country’ belongs to each fuzzy set at
the degree 1. Comparing now each state with such a typical country results the
following degrees of total fuzzy similarity: Finland 0.06, Denmark 0.03, Belgium
0.06, France 0.05, Italy 0.05, Spain 0.09, Slovakia 0.21, Bulgaria 0.23, Romania
0.27, Colombia 0.33, Tanzania 0.89 and Nepal 0.84.

The result is right, however, by utilizing more specified fuzzy sets than those
obtained by simple scaling would result even more divergence in the group.
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4.5 Case-based Reasoning

Many-valued similarity can be used to model Case-based Reasoning, too. Hav-
ing n model cases, we want to consider a new one similar enough to be compared
with the cases in the database. We illustrate the idea by an example, which is
again from medicine.

Maximal heartbeat rate, HRmax, is a good measure of cardiorespritory fit-
ness, indeed, population studies have shown that low fit individuals have a signif-
icantly greater risk of all-cause mortality compared with high fit subjects, indi-
cating health-related validity of this measure. Direct measurements of HRmax,
however, require expensive apparatus and laboratory facilities and the test pro-
tocols require the individual to exercise to the exhaustion. Sub-maximal test
protocols provide inexpensive, safe and feasible way of testing healthy adults.
Several HRmax prediction methods, based on sub-maximal exercise tests are
already available. The prediction accuracy and their ability to classify fitness
are acceptable on group level, but not so for individuals.

At The Tampere Research Center of Sports Medicine the following prelim-
inary research was carried out. 57 healthy females of age 34 to 51 years got
through a 2 kilometers walk test including a test for sub-maximal heartbeat
rate HRsub and another test for HRmax, and resulting the following informa-
tion

age | W-ind | mlk | HRgyup | ww% | time | weight | length | HRmax
C1 34 23.39 36.4 174 75.2 15.7 68.4 171 197
C2 34 25.16 33.5 165 73.8 16.8 72.7 170 192
C3 35 21.77 38.4 150 68.7 16.1 58.9 165 192
Ch7 51 18.48 39.7 140 69.0 15.7 53.4 170 173

The range of each variable was calculated first, for e.g. Body Mass Index
(W-ind) it was from 18.48 to 32.66, and on this bases eight scaled fuzzy sets
were greaten. Fach of them generated a fuzzy similarity relation, and an expe-
rienced medical doctor weighted each factor by weights 5, 7, 4, 20, 50, 7, 5 and
2, respectively. This yield 57 total similarity relations corresponding to each
case. The relevance of such treatment was tested by calculating the internal
dependence of the cases. It turned out that whenever total fuzzy similarity of
two different cases was greater than 0.925, then the corresponding difference in
HRmax values was less or equal to 10 beats/min. Such a result is superior to
other methods. The database can be used to predict HRmax for objects that
go through a 2 kilometers walk test.
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