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1. Introduction, definitions and preliminaries

The theory of the families of the L-functions and the partial zeta type functions, and also the family of zeta functions
themselves, have become a very important part of Analytic Number Theory. In this paper, by using a new type of generating
functions of the classes of special numbers and polynomials, we construct and investigate various properties of a unified
family of meromorphic functions, which is related to many known functions such as a unified family of partial zeta type
functions, a unified family of L-functions, and so on. Moreover, we compute the residues of this family of meromorphic func-
tions at their poles and also give some applications and remarks involving this family of meromorphic functions.

Throughout our present investigation, we use the following standard notations:

N:={1,2,3,...}, No:={0,1,2,3,...} =NU{0}
and
7" :={-1,-2,-3,...} =75 \ {0}.

Here, as usual, Z denotes the set of integers, R denotes the set of real numbers and C denotes the set of complex numbers.
We also tacitly assume that logz denotes the principal branch of the multi-valued function logz with the imaginary part
J(logz) constrained by
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-1 < 3(logz)<m
In recent years, many authors introduced and investigated various interesting unifications of the clnouolynomials B, (x),
the classical Euler polynomials E, (x) and the classical Genocchi polynomials G,(x), together with their familiar Apostol type
generalizations B, (x; 1), Eq(X; 4) and Gn(x; 1) (2 € C), which are defined by means of the following generating functions (see,
for example, [1,13-15,19,30,31]; see also [22-24,26-28] and the references cited in each of these earlier works):

n

Zzsnx; —' (1.1

(|t <2mr when 1=1; |t|<]logl] when 21#1),

ZeX[ o0 X tn
o1 = 26 2) o (It] < [log(=A))) (1.2)
i n=0 :

and
2t & ¢ .
ot 1= 202 o (It < [log(=2)), (1.3)
i n=0 :

so that, obviously,
Bu(x) = Bn(x;1), En(X) =&n(x;1) and  Gp(X) = Gu(x;1).

For x =0, (1.1) to (1.3) reduce immediately to the generating functions for the Apostol-Bernoulli numbers B,(1), the
Apostol-Euler numbers &,() and the Apostol-Genocchi numbers G,(1) (4 € C), respectively, that is,

Bu(2) = Bu(0;2),  &n(2) = En(0;2) and  Gu(4) := Ga(0;2) (L€ C).

Moreover, for the classical Bernoulli numbers B, the classical Euler numbers E,, and the classical Genocchi numbers G,, we
have

By :=By(0) = Bu(1), En:=En(0)=&n(1) and Gy :=Gu(0) = Ga(1).
Ozden [15] (see also Ozden et al. [19]) introduced and systematically studied the following family of generating functions

which provides a unification of the generating functions (1.1)-(1.3) of the Apostol-Bernoulli polynomials 5,(x; 1), the
Apostol-Euler polynomials &,(x; ) and the Apostol-Genocchi polynomials B,(x; 2) (cf. [[19,p. 2779, Eq. (1)]:

2k ¢k > "
gﬁ(X, t, k7 a, b) = b/j(t‘ k7 a, b) . eX[ = (ﬁbetab) . ext = ;yn/;(x, k,a7 b) m (]4)

<|t|<27r when B=aq; |t\<‘blog<§)‘ when B#a; ke Np; feC; a,beC\{O}).

Remark 1. Upon comparing the generating function (1.4) with the generating functions (1.1)-(1.3), we are led easily to the
following relationships with the Apostol-Bernoulli polynomials By(x; 1), the Apostol-Euler polynomials &£,(x; 1) and the
Apostol-Genocchi polynomials B, (x; ):

Bn(%;2) = Yna(x;1,1,1), (1.5)

gn(X; /“) :yn,i(x; 07_1?1) (]6)
and

Go(%:2) = Vs (1, -1,1). (1.7)

Many other closely-related recent works on this subject include (for example) [3,4,7,10,16-18,21] and [29,34-36].

Remark 2. The generalized Apostol type polynomials
FP X2 1) (2,10 € C; v € N)

of order o are defined by means of the following generating function (see, for details, [14,31]):

2,utv o t"
<W> : Zf X; 25 J; V) —, (It} < [log(=A)]), (1.8)
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where it is tacitly assumed that the parameters o and v are restricted in such a way that the generating function on the left-
hand side of (1.8) is analytic within the disk

[t] < |log(—4)| (4 €C).

In terms of the similarly generalized Apostol-Bernoulli polynomials B\ (x; /) of order o, Apostol-Euler polynomials £ (x; 1)
of order o and Apostol-Genocchi polynomials G (x; 2) of order , it readily follows from the definition (1.8) that

BY(x;2) = (-1)"FP (%, —40; 1), (1.9)

EX (X 2) = FY (x4 1;0) (1.10)
and

G (x: ) = FP (x4 1;1), (1.11)

so that, obviously,
Bu(x;2) = BV (%, 2), Ea(x;0) =&V (%2) and  Ga(x;2) = GV (x; 2) (1.12)

for the Apostol-Bernoulli polynomials B,(x; 1), the Apostol-Euler polynomials &,(x; %) and the Apostol-Genocchi polynomi-
als Gy(x; 2), which are defined by means of the generating function (1.1)-(1.3), respectively. Moreover, by comparing the
generating functions (1.4) and (1.18), we have the following relationship:

Ynp(x;k,a,b) = %]—' <x —ﬁ— i1 —k; k) (1.13)

We next recall here the general Hurwitz-Lerch zeta function ®(z,s,a) defined by (see, for details, [32, p. 121 et seq.] and
[[33, p. 194 et seq.] see also [5-8,12,20,30])

00

®(z,s,q) Z Ay (1.14)

n=0

(aeC\Zy; seC when |z <1; R(s)>1 when [z]=1),

which contains, as its special cases, not only the Riemann zeta function {(s) and the Hurwitz (or generalized) zeta function
{(s,a) (see, for details, [33, Chapter 2]; see also [41, p. 265 et seq.]):

o0 1 o
—=®0(1,5,1) and {(s,a) -=®(1,s,a 1.15
nZ”‘ It ; . ) (1.15)
and the Lerch zeta function ¢(¢) defined by
. P e gy (o2mic :
0s(8) = > R e *CD(e °.s, 1) (EeR; R(s)>1), (1.16)

but also such other important functions of Analytic Number Theory as the Polylogarithmic function (or de Jonquiére’s function)
Lis(2):

0 n
Lis2) = > £ = 20(z,5,1) (1.17)

(seC when |z]<1; R(s)>1 when |z]=1)
and the Lipschitz-Lerch zeta function ¢(¢,a,s) [32,p. 122, Eq. 2.5(11)]:

= ®(e*™ s,a) =: L(¢,s,q) (1.18)

(aeC\Zy;R(s) >0 when ¢eR\Z;R(s)>1 when ¢&e2z),

which was first studied by Rudolf Lipschitz (1832-1903) and Matyas Lerch (1860-1922) in connection with Dirichlet’s fa-
mous theorem on primes in arithmetic progressions (see also [39].

Remark 3. A systematic study of the extended (multi-parameter) Hurwitz-Lerch zeta function

(P1+-Pp 01 1--,0q)

i el (z.s,0)
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defined by

::]_Q [Nt

(j' )Tlpl Zn

(n+ay

00
(P15--:Pp 01 J
Q. z s.a) E
n=0 pn|

(1.19)
()

Il
—_

j
(p,quo; 4eC(l=1,....,p); a, ), €C\Zy (j=1,...,q);

P ok €RT (j=1,....,p;k=1,...,q);A>—-1 when s,z¢cC;

A=-1 and seC when [z]<V';A=-1 and ER(E)>% when \z\:V*)

was initiated recently by Srivastava et al. [37] in which one can also find many references to the earlier attempts at
unification (and generalization) of the familiar Hurwitz-Lerch zeta function ®(z,s,a) defined by (1.14) (see also [11] and
the references cited therein). Here, as usual, (1), (4,v € C) denotes the Pochhammer symbol defined by

PRI (v=0;1eC\{0})
(4)y 1= ) {/1()+1) (A+n-1) (veN;1eC),

(1.20)

it being assumed conventionally that (0), := 1 and understood tacitly that the I'-quotient exists,

) p q
-> p; and V"= (Hpjpf) : (Hoff). (1.21)
j=1 Jj=1 Jj=1

Now, in terms of a Dirichlet character y with conductor f € N, Ozden et al. [19] introduced and studied such y-extended
polynomials and y-extended numbers as those associated with the generating function (1.4). Each of these y-extended
polynomials and y-extended numbers are potentially useful in many different areas of Mathematics and Mathematical
Physics.

A=

q
j=1

Definition 1 (Ozden et al. [19, p. 2783, Definition 2]). Let y be a Dirichlet character with conductor f € N. Then the
aforementioned y-extended generalized Bernoulli-Euler-Genocchi numbers Yy, ;(k,a,b) and the aforementioned
y-extended generalized Bernoulli-Euler-Genocchi polynomials Y, ,;(x;k,a,b) are given by the following generating
functions:

21k ¢k ) 00 I
¥,k ab) = < T abf) Z?’U ( ) r:;yw(k,a, b) (1.22)

<|t| <2n when B=a;|t| < ‘blog(é)‘ when B#a; keNy; feC(|fl<1); a,be C\{O})
and

9, 5. t:k,a,b) :=§,,(t:k,a,b) - e = Zyw (x:k,a, b) — (1.23)

n=0

(|t|<2n when ﬁ:a;|t\<‘blog<§>‘ when f#a; ke Ny BeC(|f] <1); a,beC\{0}>.

Definition 2 (Ozden et al. [19, p. 2785, Definition 3]). For
peC (|fl<1) and seC,

a unification {4(s, x;k,a, b) of the zeta type functions is given by

1 k-1 ~ ﬁbn
(s, x;k,a,b) = <7j) Zm (BeC (Il <1);RE6) > 1), (1.24)

which, in the special case when x = 1, yields the following unification of the Riemann type zeta functions:

k-1 o0 pb(n-1)
Gskab) = (-3) e BeC(A< 1% > 1. (1.25)

2 abn ns
=1
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Remark 4. In terms of the general Hurwitz-Lerch zeta function ®(z,s,a) defined by (1.13) and the Polylogarithmic (or de
Jonquére’s) function Lis(z) defined by (1.17), the above-defined zeta type functions (4(s,x; k,a,b) and (4(s; k,a,b) can easily
be rewritten as follows:

1 k-1 ﬂb
(s, x;k,a,b) = (f §> ab® (ab’ ,x) (1.26)
and
k-1 b
{y(s;k,a,b) = (f %) B Lis (f;) (1.27)

The relationship (1.26) appeared erroneously in the aforecited work by Ozden et al [19, p. 2786, Eq. (4.14)].
Lastly, we present the following potentially useful results (see also [15,18,19]).

Theorem 1. Let y be a Dirichlet character with conductor f € N. Suppose also that

yn./f(k7 avb) = yn/f(07 kra7 b) and yn,){./f(kvavb) = yn,x.ﬁ(o;kva'/ b) (]28)
Then
n n .
Vnp(X;k,a,b) = Z(}, )x“*fyj,,;(k,a,b), (1.29)
j=0
n n .
YaypX:k,a,b) = <]. )x"*fyj_z,/;(k a,b) (1.30)
j=0

and

Yhnys(k.a,b) f”"Z,{(J() n,yG;k,af,b) (1.31)

The last assertion (1.31) of Theorem 1 can be proven fairly easily by first combining the definitions in (1.4) and (1.22) as
follows:

8yt k,a,b) = ZXU() g,;r(rftkafb)

which, in light of the generating functions in (1.4) and (1.22), yields

n

Zyn,ﬁ (k,a,b) fﬂ Zy([ () iyn/ﬂg;k,af,byfn#r. (1.32)

Upon comparing the coefficients of t" from both sides of (1.32), we are led immediately to the assertion (1.31) of Theorem 1
(cf. [18, Theorem 1]).

Theorem 2 (Ozden et al. [19, p. 2786, Theorem 7]). Let n € N and k € Ng. Then

(n—1)!
(n+k-1)!
In Section 2 of our paper, we make use of the Umbral Calculus convention in order to derive a recurrence relation for the
unification Y, 4(k,a, b) of the generalized Bernoulli, Euler and Genocchi numbers, which is defined by (1.28). Our systematic
investigation of a unification of the partial zeta type functions Ug(s, x; k, a, b; ¢) is carried out in Section 4. Finally, in Section 4,
we present a number of new relationships involving a unified family of L-functions which are shown to enable us to compute
residues of the related family of partial zeta type functions Uy(s, x; k, a, b; ¢) at their poles.

{(1 —n,x;k,a,b) = (-1) Vi (X k,a,b). (1.33)

2. A recurrence relation for Y, ;(k,a,b)

In this section, we derive a recurrence relation for the unification Y;(k, a, b) of the Apostol-Bernoulli, Apostol-Euler and
Apostol-Genocchi numbers. In fact, by using the Umbral Calculus convention, we get

zl—ktk
ﬂbef —ab

— ey,;(k‘a.b)t‘
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which readily yields
B ¢ o0 tn 00 tn
21k = ﬁbg[yﬂ(k, a,b) +1]" o abZ; Yuplk.a,b) . (2.1)

where [V;(k,a, b)}" is replaced conventionally by Y, ;(k,a,b). From this last Eq. (2.1), we arrive at the following recurrence
relation for the numbers Y, ;(k, a, b).

Theorem 3. The following recurrence relation holds true:

2% (n=k)

0 (n#k), @2)

B [Vs(k,a,b) +1]" — a® Yy s(k,a,b) = {

where [Vy(k, a, b)}" is replaced conventionally by Y, 4(k,a,b).
By applying Theorem 3, we can calculate all the numbers Y, 4(k, a, b). For example, if we set n = 0 in Theorem 3, we have

21—k
Yos(k.a.b) =5 (#=a). (2.3)

Thus, by means of the number Y, 4(k,a,b) given by (2.3), the other numbers Y, ;(k,a,b) are easily calculated.

3. A unification of the family of partial zeta type functions

In this section, we define a new type of functions which unifies the family of partial zeta type functions. We derive many
properties of this family of partial zeta type functions including (for example) its relationships with a unification of the
Hurwitz type zeta functions and with a unification of the L-type functions.

Definition 3. Let s € C and let d,F € Z (0 < d < F). Suppose also that € C (|f] < 1). A unification Uyg(s;k,a,b;d) of the
family of partial zeta type functions is then defined by

1\ - o
Upelsikeabid) = () ) . 3.1
n=d

bnns
(modF) an
(neN)

More generally, we define the family Ug(s, x; k, a, b; d) of partial zeta type functions by

U . . = _1 k-1 00 ﬁbn
pe(s,x:k, @b d) = (=5 > —_— - (3.2)

abm+(n +x)*

Obviously, by comparing the definitions (3.1) and (3.2), we have
Ugr(s, 1;k,a,b;d) = Ugr(s; k, a,b; d).

Remark 5. Upon setting a = b = 1 in the definition (3.1), we have

K ~ gD
Uplsik1.1d) = (=5) Y B gecu<), 33)
n = d(modF)
(neN)

which, for k =1 and g — 1, yields the partial Riemann zeta type functions {(s;d) given by (cf. [40]; see also [25])
. S 1
{p(s;d) = > s (B(E)>1). 34
n = d(modF)
(neN)
Moreover, if we let
k=0 and B— -k (K =1;rez),

we find from the definition (3.1) that (cf. [4,21,25,32])
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U0t td=2 Y U worren 35)
n = d(modF)
(neN)

Theorem 4. Let the zeta type function (4(s,x; k,a,b) be defined by (1.18). Then

D xd—1
Upe(s, x;k,a,b; d) = ﬁ,:sabd Ly (s, T .k, aF,b> (3.6)
and
ﬁb(d—l) 3 d -
Upelsikoabid) =iy 0 (s, sk ). 37)

Proof. If we set n = d + mF (m € Np) in the definition (3.1), in terms of the zeta type function {4(s,x; k, a, b) defined by (1.24),
we find that

1 k-1 ﬁb(d+mF—])
Upr(s,k;a,b;d) = | —= —
/J\F( ) ) ( > n;)ab(d+mF)(d+mF)

1 1 k=1 o0 ﬁbmF
_ ﬂb(dfl)abd — <_ _> Z -
F 2) pmamt(m+f)

_ S d
= pPVF A ¢y (S’F'*k* a, b>,

which proves the simpler assertion (3.7) of Theorem 4.
Similarly, by setting n=d+mF —1 (m € Ng) in the definition (3.2), we can derive the general assertion (3.6) of
Theorem 4. Our demonstration of Theorem 4 is thus completed. O

We next give an explicit formula for the family Ugr(s, x; k, a, b; d) of partial zeta type functions defined by (3.2) at negative
integers. Indeed, upon setting s =1 —n (n € N) in the assertion (3.6) of Theorem 4, if we apply the known result (1.33)
asserted by Theorem 2, we are led to Theorem 5 below.

Theorem 5. Let n € N and k € Ng. Then

_ . o (n—1)1 pvpT x+d—1
U/f\F(l — 1, X; I<7a7ba d) = (_1) (n +k — 1)' abd 'yn+k—1,/iF kaa aF’b . (38)

Remark 6. The importance of Theorem 5 lies in the fact that, by suitably specializing the parameters involved, we can make
use of the partial zeta type function Uyg(s,x; k,a,b;d) defined by (3.2) in order to interpolate not only the polynomials
Ynp(x;k,a,b) generated by (1.4), but also various other polynomial systems which we have referred to in Section 1 (see,
for example, [3,4,10,25], [32, p. 59 et seq.] and [33, p. 91 et seq.]).

Another important property of the general partial zeta type function Uy (s, x; k, a, b; d) defined by (3.2) is given by the fol-
lowing theorem which provides its relationship with general Hurwitz-Lerch zeta function ®(z, s, a) which is defined here by
(1.14).

Theorem 6. The following relationship holds true:

1\k1 pbe BF xtd—1
Upr(s, x; k,a, by d) = <—§> Fpdn i\ ST F ) (3.9)

Proof. The relationship (3.9) between the general partial zeta type function Ugg(s,x;k, a,b;d) defined by (3.2) and the
general Hurwitz-Lerch zeta function ®(z, s, a) defined here by (1.14) follows readily from (1.26) and (3.6). O

Remark 7. As already observed above (see Remark 3 and Ozden et al. [19, p. 2787, Remark 21], several interesting multi-
parameter generalizations of the Hurwitz-Lerch zeta function ®(z,s,a) were investigated by (for example) Garg et al. [7],
Lin et al. [12] and Choi et al. [5]. Moreover, the interested reader should refer also to the works by (among others) Raducanu
and Srivastava [20] and by Gupta et al. [8] for some recent applications of the general Hurwitz-Lerch zeta function ®(z,s, a) in
Geometric Function Theory of Complex Analysis and in Probability Distribution Theory, respectively (cf. [29,34,35]).
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4. Relations involving a unified family of L-functions

In this section, we present various relationships between a unified family of L-functions and the partial zeta type function
Ugpr (s, x; k,a,b; d) defined by (3.2). We also show that of the function Ugr(s, x; k, a, b; d) is meromorphic in the complex s-plane
and compute the residues at its simple poles at

s=1,2,... k.

Let y be a Dirichlet character with conductor f € N. For s, 8 € C (|| < 1), Ozden and Simsek [18] considered the unified
two-variable L-function L, 4(s, x; k,a,b) defined by

1\ K1 g
Lys(s,x:k,a,b) : fk< —> nZ;mmm (4.1)
(BeC (Bl <1); R(s) > 1),
with, as usual,
Ly s(s;k,a,b) ==L, 4(s,1;k,a,b). (4.2)
Indeed, by applying the elementary series identity:
00 f-1 o
> An A+ (FeN), 4.3)

n=0 j=0 n=0

it is not difficult to derive the following alternative form of the definition (4.1):

L, (s, %k, a,b) = fHk Z,{(] < )bC/;,(s,XTH;lc,af,b), (4.4)

in terms of the zeta type function {4(s, x; k,a,b) defined by (1.24). The above formula (4.4) may be compared with a result
proven by Ozden and Simsek [[18] Theorem 2] for a Dirichlet character y with conductor f € N.

Obviously, upon setting ¥ = 1 in the definition (4.1) or in the formula (4.4), we immediately obtain the zeta type function
{4(s,x;k,a,b) defined by (1.24) (cf. [2, p. 137 et seq.]; see also the recent works [9,38,42] dealing with several different aspects
of the L-functions).

In terms of the generating function g,(x, t; k, a, b) occurring in (1.4), we have the following integral representation for the
zeta type function {(s, x; k, a, b) defined by (1.24), which involves the Mellin transformation was given earlier by Ozden et al.
(cf. [19, p. 2784, Eq. (4.1)]):

{g(s,x;k,a,b) :% /0 £ g, (x, —t; k,a,b)dt  (min{R(s), R(x)} > 0), (4.5)
where the additional constraint R(x) > 0 is required for the convergence of the infinite integral occurring on the right-hand
side at its upper terminal. In fact, it was the integral representation (4.5) involving the Mellin transformation that led to the
definition (1.24) by Ozden et al. [19, p. 2785, Definition 3]. Thus, upon substituting from (4.5) into the right-hand side of
(4.4), we obtain the following formula involving the Mellin transformation (cf. [18, Eq. (2.7)]):

L (sx~kab)—#f§:"(j) b bj-/xrsf’H Xt _tkd b)de (min{si(s), K} > 0). (4.6)
V8 ACIEATIAR R 2] _fSJrkr(S) i /{ a Jo g/;f f .
We now recall the following functional equation (cf. [18, Eq. (2.3)]):

$,5(%,t;k,a,b) = Z/U < >bj 8y (x]fj Stkd b) (4.7)

which involves the generating functions g,(x, t;k,a,b) and $, 4(x, t;k,a, b) occurring in (1.4) and (1.23), respectively. We mul-
tiply both sides of the functional Eq. (4.7) (with t+— — % by %! and integrate each member with respect to t over the
semi-infinite interval (0, ). Then, by appealing once again to the Mellin transormation in (4.5), we obtain

/0 h tsfkflgm<x,—Ji;/ga,b)dt_ I'c) ji 20) <a>Jb (f%f;k,af,b) 4.8)

(min{R(s), R(x)} > 0).

A relationship between the functions L, 4(s,x; k,a,b) and Ugg(s, x; k,a, b; d) is provided by Theorem 7 below.
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Theorem 7. Let s € C. Also let y be a Dirichlet character with conductor f € N and suppose that F is any multiple of f. Then

ghd B b X+j+d-1
Latsxckab) = i > 70) () Upe(s 250k d ). (4.9)
=0

Proof. By using (3.6) and (4.8), we easily arrive at the desired result (4.9) asserted by Theorem 7. O

As asserted by Theorem 8 below, the unified L-function L, 4(s, x; k,a, b) can be used to interpolate the unified Bernoulli-
Euler-Genocchi polynomials Yy, s(x; k,a,b) defined by the generating function (1.23) attached to the Dirichlet character y
with conductor f € N.

Theorem 8. Let n € N. Then

(-D* (n-1)
f m yn+k—1.1.ﬂ

Ly (1 —n,x;k,a,b) = (x;k,a,b). (4.10)

Proof. By substituting from (3.8) into (4.9), one can easily obtain the desired result (4.10) asserted by Theorem 8. O

Remark 8. A different proof of the assertion (4.10) of Theorem 8 was given by Ozden and Simsek [18], Theorem 3]; it was
based essentially upon the formula (4.4).
Next, upon substituting from (1.29) into (3.8), we get

. o ‘ (n _ 1)! ﬂb(dfl)[;n—k n+k-1 n+k-1 x+d—1 n—j+k-1 .
Ugr(1 —n,x;:k,a,b;d) = (1) R VR ,; j —F Y,y (k,af.b), (4.11)

which, upon setting n—n — k + 1, yields

— k) b(d—])Fn—k n n d—1 n—j
U/;‘F(k— n,x; k?a7 b.d) = (—1)k %ﬁT (J > <)%) yjt/jF<lcyaF7b)' (412)
! =
Since
(n—kt_ k 0<k<n), (4.13)

n! n—k+1)(n-k+2)---(n—T1)n

it is not difficult to derive the primitive (original) corresponding to this last formula (4.12), which is asserted by Theorem 9
below.

Theorem 9. Let
s,peC (|pl<1), deN, beR, keNy and aeR.
Then

. o gD x rk—s\ /x+d—1\7 E
U,;‘F(s,x,k,a,b,d)_(S_1)(5_2)..'(S_k+])(S_k)abdFs.j;< ; ><f> Y, (k. a,b), (4.14)

provided that each member of (4.14) exists.

Remark 9. Obviously, since

k—s k—s k—s/k—-s-1 )
< ):1 and ( ) )=Q( . ) (eN),
0 J J j-1
the only singularities of the meromorphic function Uyg(s, x; k,a, b;d) in the complex s-plane are simple poles at
s=1,2,--- k.
The residues of this meromorphic function Uy (s, X; k, a, b; d) at the simple polesats =1, s =2, s=k—1and s = k are given,
respectively, by

(71)k—1’3b(d71) k-1

k—1\ /x+d—1\7"
Re55:1{U,;‘F(s,x;k,a,b;d)}:m~z< j )(T) Y (k. b), (4.15)
! 4
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(71) ﬁb(d 1) <k_2><x+d71)k—j—2 .
Ress_{Upr(s,x; k,a,b;d)} = —————- . —_— ~r(k,a’,b), 4.16
esafUplsxkabid)) = a2 F Vi (o) @19

fb (d-1) 1 X+ d -1
Res__1{Ugr(s,x;k,a,b;d)} = i F"[ ; Z( )( ) yj_ﬁF (k,af, b)
k

| 45
o 21~ x+d—
“wE T\ F ) kD) (5" #a”) @17
and
21k ghid-1)
Res, i {Upr(s,X;k,a,b;d)} = (8"~ @), (4.18)

abd F* (/3“ - abF) (k=1)!

where, in the very last step in both (4.17) and (4.18), we have made use of the formula (2.3). In fact, the residues of the
meromorphic function Uyg(s, x; k,a, b; d) at its simple poles at

s=1,2,....k

can also be found by using the Euler-Maclaurin Summation Formula which would provide us with the meromorphic
continuation of this function on C.

Acknowledgments

The present investigation was supported, in part, by the Scientific Research Project Administration of Akdeniz University and
the Commission of Scientific Research Projects of Uludag University under Project Numbers UAP (F) 2011/38,2012/16 and 2012/
19.

References

[1] T.M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951) 161-167.
[2] T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, Heidelberg and Berlin, 1976.
[3] A.A. Aygunes, Y. Simsek, Remarks on interpolation function of higher order (h, q)-Bernoulli numbers, in: Proceedings of the International Conference on
Numerical Analysis and Applied Mathematics (2009), Amer. Inst. Phys. Conf. Proc., vol. 1168, 2009, pp. 61-64.
[4] LN. Cangiil, H. Ozden, Y. Simsek, Generating functions of the (h, q)-extension of twisted Euler polynomials and numbers, Acta Math. Hungar. 120 (2008)
281-299.
[5] J. Choi, D.S. Jang, H.M. Srivastava, A generalization of the Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct. 19 (2008) 65-79.
[6] J. Choi, H.M. Srivastava, Some applications of the Gamma and polygamma functions involving convolutions of the Rayleigh functions multiple Euler
sums and log-sine integrals, Math. Nachr. 282 (2009) 1709-1723.
[7] M. Garg, K. Jain, H.M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions,
Integral Transforms Spec. Funct. 17 (2006) 803-815.
[8] P.L. Gupta, R.C. Gupta, S.-H. Ong, H.M. Srivastava, A class of Hurwitz-Lerch zeta distributions and their applications in reliability, Appl. Math. Comput.
196 (2008) 521-531.
[9] T. Kim, A note on Dirichlet L-series, Proc. Jangjeon Math. Soc. 6 (2003) 161-166.
[10] T. Kim, S.-H. Rim, Y. Simsek, D. Kim, On the analogs of Bernoulli and Euler numbers, related identities and zeta and L-functions, J. Korean Math. Soc. 45
(2008) 435-453.
[11] S.-D. Lin, H.M. Srivastava, Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations,
Appl. Math. Comput. 154 (2004) 725-733.
[12] S.-D. Lin, H.M. Srivastava, P.-Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch zeta functions, Integral Transforms Spec.
Funct. 17 (2006) 817-822.
[13] D.-Q. Lu, H.M. Srivastava, Some series identities involving the generalized Apostol type and related polynomials, Comput. Math. Appl. 62 (2011). 3591-
2602.
[14] Q.-M. Luo, H.M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math.
Comput. 217 (2011) 5702-5728.
[15] H. Ozden, Unification of generating function of the Bernoulli, Euler and Genocchi numbers and polynomials, in: Proceedings of the International
Conference on Numerical Analysis and Applied Mathematics (2010), Amer. Inst. Phys. Conf. Proc., vol. 1281, 2010, pp. 1125-1128.
[16] H. Ozden, Y. Simsek, A new extension of q-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008) 934-
939.
[17] H. Ozden, Y. Simsek, Interpolation function of the (h, q)-extension of twisted Euler numbers, Comput. Math. Appl. 56 (2008) 898-908.
[18] H. Ozden, Y. Simsek, Unified representation of the family of L-functions, Presented at the International Congress in Honour of Professor Hari M.
Srivastava at Uludag University, Bursa, Turkey, August 23-26, 2012.
[19] H. Ozden, Y. Simsek, H.M. Srivastava, A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials,
Comput. Math. Appl. 60 (2010) 2779-2787.
[20] D.Raducanu, H.M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function,
Integral Transforms Spec. Funct. 18 (2007) 933-943.
[21] Y. Simsek, g-Analogue of the twisted I-series and g-twisted Euler numbers, J. Number Theory 110 (2005) 267-278.
[22] Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005) 205-218.
[23] Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, ]. Math. Anal. Appl. 324 (2006)
790-804.
[24] Y. Simsek, On twisted g-Hurwitz zeta function and g-two-variable L-function, Appl. Math. Comput. 187 (2007) 466-473.
[25] Y. Simsek, Twisted p-adic (h, q)-L-functions, Comput. Math. Appl. 59 (2010) 2097-2110.



H.M. Srivastava et al./Applied Mathematics and Computation 219 (2012) 3903-3913 3913

[26] Y. Simsek, Complete sum of products of (h, q)-extension of Euler polynomials and numbers, ]. Difference Equations Appl. 16 (2010) 1331-1348.

[27] Y. Simsek, D. Kim, S.-H. Rim, On the two-variable Dirichlet g-L-series, Adv. Stud. Contemp. Math. 10 (2005) 131-142.

[28] Y. Simsek, T. Kim, L.-S. Pyung, Barnes’ type multiple Changhee g-zeta functions, Adv. Stud. Contemp. Math. 10 (2005) 121-129.

[29] Y. Simsek, H.M. Srivastava, A family of p-adic twisted interpolation functions associated with the modified Bernoulli numbers, Appl. Math. Comput.
216 (2010) 2976-2987.

[30] H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77-84.

[31] H.M. Srivastava, Some generalizations and basic (or g-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5 (2011)
390-444.

[32] H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.

[33] H.M. Srivastava, ]. Choi, Zeta and g-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York,
2012.

[34] H.M. Srivastava, M. Garg, S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russian J. Math. Phys. 17 (2010) 251-261.

[35] H.M. Srivastava, M. Garg, S. Choudhary, Some new families of generalized Euler and Genocchi polynomials, Taiwanese J. Math. 15 (2011) 283-305.

[36] H.M. Srivastava, T. Kim, Y. Simsek, g-Bernoulli numbers and polynomials associated with multiple g-zeta functions and basic L-series, Russian J.
Math. Phys. 12 (2005) 241-268.

[37] H.M. Srivastava, R.K. Saxena, T.K. Pogany, R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch zeta function, Integral
Transforms Spec. Funct. 22 (2011) 487-506.

[38] H.M. Srivastava, H. Tsumura, Certain classes of rapidly convergent series representations for L(2n, ) and L(2n + 1, ), Acta Arith. 100 (2001) 195-201.

[39] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, second ed., Clarendon (Oxford University) Press, Oxford and London, 1951 (Revised by D.R.
Heath-Brown, 1986).

[40] L.C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, second ed., vol. 83, Springer-Verlag, Berlin, Heidelberg and New
York, 1997.

[41] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with
an Account of the Principal Transcendental Functions, fourth ed. (reprinted)., Cambridge University Press, Cambridge, London and New York, 1963.

[42] P.T. Young, On the behavior of some two-variable p-adic L-functions, J. Number Theory 98 (2003) 67-88.



	A unified presentation of certain meromorphic functions related  to the families of the partial zeta type functions and the L-functions
	1 Introduction, definitions and preliminaries
	2 A recurrence relation for ? 
	3 A unification of the family of partial zeta type functions
	4 Relations involving a unified family of L-functions
	Acknowledgments
	References


