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a b s t r a c t

The aim of this paper is to construct a unified family of meromorphic functions, which is
related to many known functions such as a unified family of partial zeta type functions,
a unified family of L-functions, and so on. We investigate and derive many properties of
this family of meromorphic functions. Moreover, we compute the residues of this family
of meromorphic functions at their poles. We also give some applications and remarks
involving this family of meromorphic functions.
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1. Introduction, definitions and preliminaries

The theory of the families of the L-functions and the partial zeta type functions, and also the family of zeta functions
themselves, have become a very important part of Analytic Number Theory. In this paper, by using a new type of generating
functions of the classes of special numbers and polynomials, we construct and investigate various properties of a unified
family of meromorphic functions, which is related to many known functions such as a unified family of partial zeta type
functions, a unified family of L-functions, and so on. Moreover, we compute the residues of this family of meromorphic func-
tions at their poles and also give some applications and remarks involving this family of meromorphic functions.

Throughout our present investigation, we use the following standard notations:
N :¼ f1;2;3; . . .g; N0 :¼ f0;1;2;3; . . .g ¼ N [ f0g
and
Z� :¼ f�1;�2;�3; . . .g ¼ Z�0 n f0g:
Here, as usual, Z denotes the set of integers, R denotes the set of real numbers and C denotes the set of complex numbers.
We also tacitly assume that log z denotes the principal branch of the multi-valued function log z with the imaginary part
I log zð Þ constrained by
. All rights reserved.
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�p < I log zð Þ5p:
In recent years, many authors introduced and investigated various interesting unifications of the clnouolynomials Bn xð Þ,
the classical Euler polynomials En xð Þ and the classical Genocchi polynomials Gn xð Þ, together with their familiar Apostol type
generalizations Bn x; kð Þ; En x; kð Þ and Gn x; kð Þ ðk 2 CÞ, which are defined by means of the following generating functions (see,
for example, [1,13–15,19,30,31]; see also [22–24,26–28] and the references cited in each of these earlier works):
text

ket � 1
¼
X1
n¼0

Bnðx; kÞ tn

n!
ð1:1Þ

ð tj j < 2p when k ¼ 1; tj j < log kj j when k – 1Þ;

2ext

ket þ 1
¼
X1
n¼0

Enðx; kÞ tn

n!
jtj < j logð�kÞjð Þ ð1:2Þ
and
2text

ket þ 1
¼
X1
n¼0

Gnðx; kÞ tn

n!
jtj < j logð�kÞjð Þ; ð1:3Þ
so that, obviously,
Bn xð Þ ¼ Bnðx; 1Þ; En xð Þ ¼ Enðx; 1Þ and Gn xð Þ ¼ Gnðx; 1Þ:
For x ¼ 0, (1.1) to (1.3) reduce immediately to the generating functions for the Apostol–Bernoulli numbers Bn kð Þ, the
Apostol–Euler numbers En kð Þ and the Apostol–Genocchi numbers Gn kð Þ ðk 2 CÞ, respectively, that is,
BnðkÞ :¼ Bn 0; kð Þ; EnðkÞ :¼ En 0; kð Þ and GnðkÞ :¼ Gn 0; kð Þ ðk 2 CÞ:
Moreover, for the classical Bernoulli numbers Bn, the classical Euler numbers En and the classical Genocchi numbers Gn, we
have
Bn :¼ Bnð0Þ ¼ Bnð1Þ; En :¼ Enð0Þ ¼ Enð1Þ and Gn :¼ Gnð0Þ ¼ Gnð1Þ:
Özden [15] (see also Özden et al. [19]) introduced and systematically studied the following family of generating functions
which provides a unification of the generating functions (1.1)–(1.3) of the Apostol–Bernoulli polynomials Bnðx; kÞ, the
Apostol-Euler polynomials Enðx; kÞ and the Apostol–Genocchi polynomials Bnðx; kÞ (cf. [[19,p. 2779, Eq. (1)]:
gbðx; t; k; a; bÞ ¼ hbðt; k; a; bÞ � ext :¼ 21�k tk

bbet � ab

 !
� ext ¼

X1
n¼0

Yn;bðx; k; a; bÞ tn

n!
ð1:4Þ

jtj < 2p when b ¼ a; jtj < b log
b
a

� �����
���� when b – a; k 2 N0; b 2 C; a; b 2 C n f0g

� �
:

Remark 1. Upon comparing the generating function (1.4) with the generating functions (1.1)–(1.3), we are led easily to the
following relationships with the Apostol–Bernoulli polynomials Bnðx; kÞ, the Apostol–Euler polynomials Enðx; kÞ and the
Apostol-Genocchi polynomials Bnðx; kÞ:
Bnðx; kÞ ¼ Yn;kðx; 1;1;1Þ; ð1:5Þ

Enðx; kÞ ¼ Yn;kðx; 0;�1;1Þ ð1:6Þ
and
Gnðx; kÞ ¼ Yn;kðx; 1;�1;1Þ: ð1:7Þ
Many other closely-related recent works on this subject include (for example) [3,4,7,10,16–18,21] and [29,34–36].
Remark 2. The generalized Apostol type polynomials
F að Þ
n x; k;l; mð Þ ðk;l 2 C; m 2 N0Þ
of order a are defined by means of the following generating function (see, for details, [14,31]):
2ltm

ket þ 1

� �a

� ext ¼
X1
n¼0

F að Þ
n x; k;l; mð Þ tn

n!
jtj < j logð�kÞjð Þ; ð1:8Þ
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where it is tacitly assumed that the parameters a and m are restricted in such a way that the generating function on the left-
hand side of (1.8) is analytic within the disk
jtj < j logð�kÞj ðk 2 CÞ:
In terms of the similarly generalized Apostol–Bernoulli polynomials B að Þ
n x; kð Þ of order a, Apostol–Euler polynomials E að Þ

n x; kð Þ
of order a and Apostol–Genocchi polynomials G að Þ

n x; kð Þ of order a, it readily follows from the definition (1.8) that
B að Þ
n x; kð Þ ¼ ð�1ÞaF að Þ

n x;�k; 0; 1ð Þ; ð1:9Þ

E að Þ
n x; kð Þ ¼ F að Þ

n x; k; 1; 0ð Þ ð1:10Þ
and
G að Þ
n x; kð Þ ¼ F að Þ

n x; k; 1; 1ð Þ; ð1:11Þ
so that, obviously,
Bn x; kð Þ ¼ B 1ð Þ
n x; kð Þ; En x; kð Þ ¼ E 1ð Þ

n x; kð Þ and Gn x; kð Þ ¼ G 1ð Þ
n x; kð Þ ð1:12Þ
for the Apostol–Bernoulli polynomials Bn x; kð Þ, the Apostol–Euler polynomials En x; kð Þ and the Apostol–Genocchi polynomi-
als Gn x; kð Þ, which are defined by means of the generating function (1.1)–(1.3), respectively. Moreover, by comparing the
generating functions (1.4) and (1.18), we have the following relationship:
Yn;bðx; k; a; bÞ ¼ � 1
ab
F 1ð Þ

n x;�bb

ab
; 1� k; k

 !
: ð1:13Þ
We next recall here the general Hurwitz–Lerch zeta function Uðz; s; aÞ defined by (see, for details, [32, p. 121 et seq.] and
[[33, p. 194 et seq.] see also [5–8,12,20,30])
Uðz; s; aÞ :¼
X1
n¼0

zn

ðnþ aÞs
ð1:14Þ

a 2 C n Z�0 ; s 2 C when jzj < 1; RðsÞ > 1 when jzj ¼ 1
� �

;

which contains, as its special cases, not only the Riemann zeta function fðsÞ and the Hurwitz (or generalized) zeta function
fðs; aÞ (see, for details, [33, Chapter 2]; see also [41, p. 265 et seq.]):
fðsÞ :¼
X1
n¼1

1
ns
¼ Uð1; s;1Þ and fðs; aÞ :¼

X1
n¼0

1
ðnþ aÞs

¼ Uð1; s; aÞ ð1:15Þ
and the Lerch zeta function ‘sðnÞ defined by
‘sðnÞ :¼
X1
n¼1

e2npin

ns
¼ e2pinU e2pin; s;1

� �
n 2 R; RðsÞ > 1ð Þ; ð1:16Þ
but also such other important functions of Analytic Number Theory as the Polylogarithmic function (or de Jonquière’s function)
LisðzÞ:
LisðzÞ :¼
X1
n¼1

zn

ns
¼ zUðz; s;1Þ ð1:17Þ

s 2 C when zj j < 1; RðsÞ > 1 when zj j ¼ 1ð Þ
and the Lipschitz–Lerch zeta function /ðn; a; sÞ [32,p. 122, Eq. 2.5(11)]:
/ðn; a; sÞ :¼
X1
n¼0

e2npin

ðnþ aÞs
¼ U e2pin; s; a

� �
¼: L n; s; að Þ ð1:18Þ

a 2 C n Z�0 ; RðsÞ > 0 when n 2 R n Z; RðsÞ > 1 when n 2 Z
� �

;

which was first studied by Rudolf Lipschitz (1832–1903) and Matyáš Lerch (1860–1922) in connection with Dirichlet’s fa-
mous theorem on primes in arithmetic progressions (see also [39].
Remark 3. A systematic study of the extended (multi-parameter) Hurwitz–Lerch zeta function
U
ðq1 ;...;qp ;r1 ;...;rqÞ
k1 ;...;kp ;l1 ;...;lq

ðz; s; aÞ
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defined by
U
ðq1 ;...;qp ;r1 ;...;rqÞ
k1 ;...;kp ;l1 ;...;lq

ðz; s; aÞ ¼
X1
n¼0

Qp
j¼1
ðkjÞnqj

n!
Qq
j¼1
ðljÞnrj

zn

ðnþ aÞs
ð1:19Þ

p; q 2 N0; kj 2 C ðj ¼ 1; . . . ; pÞ; a;lj 2 C n Z�0 ðj ¼ 1; . . . ; qÞ;
�

qj;rk 2 Rþ ðj ¼ 1; . . . ;p; k ¼ 1; . . . ; qÞ; D > �1 when s; z 2 C;

D ¼ �1 and s 2 C when jzj < r�; D ¼ �1 and RðNÞ > 1
2

when jzj ¼ r�
�

was initiated recently by Srivastava et al. [37] in which one can also find many references to the earlier attempts at
unification (and generalization) of the familiar Hurwitz–Lerch zeta function Uðz; s; aÞ defined by (1.14) (see also [11] and
the references cited therein). Here, as usual, ðkÞm ðk; m 2 CÞ denotes the Pochhammer symbol defined by
ðkÞm :¼ Cðkþ mÞ
CðkÞ ¼

1 ðm ¼ 0; k 2 C n f0gÞ
kðkþ 1Þ � � � ðkþ n� 1Þ ðm 2 N; k 2 CÞ;

	
ð1:20Þ
it being assumed conventionally that ð0Þ0 :¼ 1 and understood tacitly that the C-quotient exists,
D :¼
Xq

j¼1

rj �
Xp

j¼1

qj and r� :¼
Yp

j¼1

q�qj

j

 !
�
Yq

j¼1

rrj

j

 !
: ð1:21Þ
Now, in terms of a Dirichlet character v with conductor f 2 N, Özden et al. [19] introduced and studied such v-extended
polynomials and v-extended numbers as those associated with the generating function (1.4). Each of these v-extended
polynomials and v-extended numbers are potentially useful in many different areas of Mathematics and Mathematical
Physics.
Definition 1 (Özden et al. [19, p. 2783, Definition 2]). Let v be a Dirichlet character with conductor f 2 N. Then the
aforementioned v-extended generalized Bernoulli–Euler–Genocchi numbers Yn;v;b k; a; bð Þ and the aforementioned
v-extended generalized Bernoulli–Euler–Genocchi polynomials Yn;v;b x; k; a; bð Þ are given by the following generating
functions:
Fv;b t; k; a; bð Þ :¼ 21�k tk

bbf eft � abf

 !
�
Xf�1

j¼0

v jð Þ b
a

� �bj

ejt ¼
X1
n¼0

Yn;v;b k; a; bð Þ tn

n!
ð1:22Þ

jtj < 2p when b ¼ a; jtj < b log
b
a

� �����
���� when b – a; k 2 N0; b 2 C ðjbj < 1Þ; a; b 2 C n f0g

� �
and
Hv;b x; t; k; a; bð Þ :¼ Fv;b t; k; a; bð Þ � ext ¼
X1
n¼0

Yn;v;b x; k; a; bð Þ tn

n!
ð1:23Þ

jtj < 2p when b ¼ a; jtj < b log
b
a

� �����
���� when b – a; k 2 N0; b 2 C ðjbj < 1Þ; a; b 2 C n f0g

� �
:

Definition 2 (Özden et al. [19, p. 2785, Definition 3]). For
b 2 C ðjbj < 1Þ and s 2 C;
a unification fbðs; x; k; a; bÞ of the zeta type functions is given by
fbðs; x; k; a; bÞ :¼ �1
2

� �k�1X1
n¼0

bbn

abðnþ1Þ nþ xð Þs
b 2 C ðjbj < 1Þ; RðsÞ > 1ð Þ; ð1:24Þ
which, in the special case when x ¼ 1, yields the following unification of the Riemann type zeta functions:
fbðs; k; a; bÞ :¼ �1
2

� �k�1X1
n¼1

bbðn�1Þ

abn ns
b 2 C ðjbj < 1Þ; RðsÞ > 1ð Þ: ð1:25Þ
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Remark 4. In terms of the general Hurwitz–Lerch zeta function Uðz; s; aÞ defined by (1.13) and the Polylogarithmic (or de
Jonquère’s) function LisðzÞ defined by (1.17), the above-defined zeta type functions fbðs; x; k; a; bÞ and fbðs; k; a; bÞ can easily
be rewritten as follows:
fbðs; x; k; a; bÞ ¼ �1
2

� �k�1

a�bU
bb

ab
; s; x

 !
ð1:26Þ
and
fbðs; k; a; bÞ ¼ �1
2

� �k�1

b�bLis
bb

ab

 !
: ð1:27Þ
The relationship (1.26) appeared erroneously in the aforecited work by Özden et al [19, p. 2786, Eq. (4.14)].
Lastly, we present the following potentially useful results (see also [15,18,19]).
Theorem 1. Let v be a Dirichlet character with conductor f 2 N. Suppose also that
Yn;bðk; a; bÞ :¼ Yn;bð0; k; a; bÞ and Yn;v;bðk; a; bÞ :¼ Yn;v;bð0; k; a; bÞ: ð1:28Þ
Then
Yn;bðx; k; a; bÞ ¼
Xn

j¼0

n

j

� �
xn�jYj;bðk; a; bÞ; ð1:29Þ

Yn;v;bðx; k; a; bÞ ¼
Xn

j¼0

n

j

� �
xn�jYj;v;bðk; a; bÞ ð1:30Þ
and
Yn;v;bðk; a; bÞ ¼ f n�k
Xf�1

j¼0

vðjÞ b
a

� �bj

Yn;bf
j
f

; k; af ; b
� �

: ð1:31Þ
The last assertion (1.31) of Theorem 1 can be proven fairly easily by first combining the definitions in (1.4) and (1.22) as
follows:
Fv;b t; k; a; bð Þ ¼ 1
f k

Xf�1

j¼0

v jð Þ b
a

� �bj

gbf
j
f
; ft; k; af ; b

� �
;

which, in light of the generating functions in (1.4) and (1.22), yields
X1
n¼0

Yn;v;bðk; a; bÞ
tn

n!
¼ 1

f k

Xf�1

j¼0

v jð Þ b
a

� �bjX1
n¼0

Yn;bf
j
f

; k; af ; b
� �

ðftÞn

n!
: ð1:32Þ
Upon comparing the coefficients of tn from both sides of (1.32), we are led immediately to the assertion (1.31) of Theorem 1
(cf. [18, Theorem 1]).

Theorem 2 (Özden et al. [19, p. 2786, Theorem 7]). Let n 2 N and k 2 N0. Then
fb 1� n; x; k; a; bð Þ ¼ ð�1Þk n� 1ð Þ!
nþ k� 1ð Þ! Ynþk�1;b x; k; a; bð Þ: ð1:33Þ
In Section 2 of our paper, we make use of the Umbral Calculus convention in order to derive a recurrence relation for the
unification Yn;bðk; a; bÞ of the generalized Bernoulli, Euler and Genocchi numbers, which is defined by (1.28). Our systematic
investigation of a unification of the partial zeta type functions Ubðs; x; k; a; b; cÞ is carried out in Section 4. Finally, in Section 4,
we present a number of new relationships involving a unified family of L-functions which are shown to enable us to compute
residues of the related family of partial zeta type functions Ubðs; x; k; a; b; cÞ at their poles.
2. A recurrence relation for Yn;bðk;a;bÞ

In this section, we derive a recurrence relation for the unification Ybðk; a; bÞ of the Apostol–Bernoulli, Apostol–Euler and
Apostol–Genocchi numbers. In fact, by using the Umbral Calculus convention, we get
21�ktk

bbet � ab
¼ eYbðk;a;bÞt;
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which readily yields
21�ktk ¼ bb
X1
n¼0

Ybðk; a; bÞ þ 1

 �n tn

n!
� ab

X1
n¼0

Yn;bðk; a; bÞ
tn

n!
; ð2:1Þ
where Ybðk; a; bÞ

 �n is replaced conventionally by Yn;bðk; a; bÞ. From this last Eq. (2.1), we arrive at the following recurrence

relation for the numbers Yn;bðk; a; bÞ.

Theorem 3. The following recurrence relation holds true:
bb Ybðk; a; bÞ þ 1

 �n � abYn;bðk; a; bÞ ¼

21�k ðn ¼ kÞ
0 ðn – kÞ;

(
ð2:2Þ
where Ybðk; a; bÞ

 �n is replaced conventionally by Yn;bðk; a; bÞ.

By applying Theorem 3, we can calculate all the numbers Yn;bðk; a; bÞ. For example, if we set n ¼ 0 in Theorem 3, we have
Y0;bðk; a; bÞ ¼
21�k

bb � ab
bb – ab
� �

: ð2:3Þ
Thus, by means of the number Y0;bðk; a; bÞ given by (2.3), the other numbers Yn;bðk; a; bÞ are easily calculated.

3. A unification of the family of partial zeta type functions

In this section, we define a new type of functions which unifies the family of partial zeta type functions. We derive many
properties of this family of partial zeta type functions including (for example) its relationships with a unification of the
Hurwitz type zeta functions and with a unification of the L-type functions.

Definition 3. Let s 2 C and let d; F 2 Z ð0 < d < FÞ. Suppose also that b 2 C ð bj j < 1Þ. A unification UbjFðs; k; a; b; dÞ of the
family of partial zeta type functions is then defined by
UbjFðs; k; a; b; dÞ :¼ �1
2

� �k�1 X1
n � dðmodFÞ
ðn 2 NÞ

bbðn�1Þ

abnns
: ð3:1Þ
More generally, we define the family UbjFðs; x; k; a; b; dÞ of partial zeta type functions by
UbjFðs; x; k; a; b; dÞ :¼ �1
2

� �k�1 X1
n � d� 1ðmodFÞ

ðn 2 N0Þ

bbn

abðnþ1Þðnþ xÞs
: ð3:2Þ
Obviously, by comparing the definitions (3.1) and (3.2), we have
UbjFðs;1; k; a; b; dÞ ¼ UbjFðs; k; a; b; dÞ:
Remark 5. Upon setting a ¼ b ¼ 1 in the definition (3.1), we have
UbjFðs; k;1;1; dÞ ¼ �1
2

� �k�1 X1
n � dðmodFÞ
ðn 2 NÞ

bðn�1Þ

ns
b 2 C ðjbj < 1Þð Þ; ð3:3Þ
which, for k ¼ 1 and b! 1, yields the partial Riemann zeta type functions fFðs; dÞ given by (cf. [40]; see also [25])
fFðs; dÞ :¼
X1

n � dðmodFÞ
ðn 2 NÞ

1
ns

RðsÞ > 1ð Þ: ð3:4Þ
Moreover, if we let
k ¼ 0 and b! �j ðjr ¼ 1; r 2 ZÞ;
we find from the definition (3.1) that (cf. [4,21,25,32])
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U�jjFðs; 0;1;1; dÞ ¼ 2
X1

n � dðmodFÞ
ðn 2 NÞ

ð�jÞn

ns
ðjr ¼ 1; r 2 ZÞ: ð3:5Þ
Theorem 4. Let the zeta type function fbðs; x; k; a; bÞ be defined by ð1:18Þ. Then
UbjFðs; x; k; a; b; dÞ ¼ bbðd�1Þ

Fsabd
fbF s;

xþ d� 1
F

; k; aF ; b
� �

ð3:6Þ
and
UbjFðs; k; a; b; dÞ ¼ bbðd�1Þ

Fsabd
fbF s;

d
F

; k; aF ; b
� �

: ð3:7Þ
Proof. If we set n ¼ dþmF ðm 2 N0Þ in the definition (3.1), in terms of the zeta type function fbðs; x; k; a; bÞ defined by (1.24),
we find that
UbjFðs; k; a; b; dÞ ¼ �1
2

� �k�1X1
m¼0

bbðdþmF�1Þ

abðdþmFÞ dþmFð Þs

¼ bbðd�1Þabd 1
Fs �1

2

� �k�1X1
m¼0

bbmF

abmF mþ d
F

� �s

" #

¼ bbðd�1ÞFsabd fbF s;
d
F

; k; aF ; b
� �

;

which proves the simpler assertion (3.7) of Theorem 4.
Similarly, by setting n ¼ dþmF � 1 ðm 2 N0Þ in the definition (3.2), we can derive the general assertion (3.6) of

Theorem 4. Our demonstration of Theorem 4 is thus completed. h

We next give an explicit formula for the family UbjFðs; x; k; a; b; dÞ of partial zeta type functions defined by (3.2) at negative
integers. Indeed, upon setting s ¼ 1� n ðn 2 NÞ in the assertion (3.6) of Theorem 4, if we apply the known result (1.33)
asserted by Theorem 2, we are led to Theorem 5 below.

Theorem 5. Let n 2 N and k 2 N0. Then
UbjFð1� n; x; k; a; b; dÞ ¼ ð�1Þk n� 1ð Þ!
nþ k� 1ð Þ!

bbðd�1ÞFn�1

abd
� Ynþk�1;bF

xþ d� 1
F

; k; aF ; b
� �

: ð3:8Þ
Remark 6. The importance of Theorem 5 lies in the fact that, by suitably specializing the parameters involved, we can make
use of the partial zeta type function UbjFðs; x; k; a; b; dÞ defined by (3.2) in order to interpolate not only the polynomials
Yn;bðx; k; a; bÞ generated by (1.4), but also various other polynomial systems which we have referred to in Section 1 (see,
for example, [3,4,10,25], [32, p. 59 et seq.] and [33, p. 91 et seq.]).

Another important property of the general partial zeta type function UbjFðs; x; k; a; b; dÞ defined by (3.2) is given by the fol-
lowing theorem which provides its relationship with general Hurwitz–Lerch zeta function Uðz; s; aÞ which is defined here by
(1.14).

Theorem 6. The following relationship holds true:
UbjFðs; x; k; a; b; dÞ ¼ �1
2

� �k�1 bbðd�1Þ

FsabðdþFÞ U
bbF

abF
; s;

xþ d� 1
F

 !
: ð3:9Þ
Proof. The relationship (3.9) between the general partial zeta type function UbjFðs; x; k; a; b; dÞ defined by (3.2) and the
general Hurwitz–Lerch zeta function Uðz; s; aÞ defined here by (1.14) follows readily from (1.26) and (3.6). h
Remark 7. As already observed above (see Remark 3 and Ozden et al. [19, p. 2787, Remark 21], several interesting multi-
parameter generalizations of the Hurwitz–Lerch zeta function Uðz; s; aÞ were investigated by (for example) Garg et al. [7],
Lin et al. [12] and Choi et al. [5]. Moreover, the interested reader should refer also to the works by (among others) Răducanu
and Srivastava [20] and by Gupta et al. [8] for some recent applications of the general Hurwitz-Lerch zeta function Uðz; s; aÞ in
Geometric Function Theory of Complex Analysis and in Probability Distribution Theory, respectively (cf. [29,34,35]).
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4. Relations involving a unified family of L-functions

In this section, we present various relationships between a unified family of L-functions and the partial zeta type function
UbjFðs; x; k; a; b; dÞ defined by (3.2). We also show that of the function UbjFðs; x; k; a; b; dÞ is meromorphic in the complex s-plane
and compute the residues at its simple poles at
s ¼ 1;2; . . . ; k:
Let v be a Dirichlet character with conductor f 2 N. For s; b 2 C ðjbj < 1Þ, Özden and Simsek [18] considered the unified
two-variable L-function Lv;bðs; x; k; a; bÞ defined by
Lv;bðs; x; k; a; bÞ :¼ 1
f k
�1

2

� �k�1X1
n¼0

vðnÞ bbn

abðnþf Þðnþ xÞs
ð4:1Þ

b 2 C ðjbj < 1Þ; RðsÞ > 1ð Þ;
with, as usual,
Lv;bðs; k; a; bÞ :¼ Lv;bðs;1; k; a; bÞ: ð4:2Þ
Indeed, by applying the elementary series identity:
X1
n¼0

KðnÞ ¼
Xf�1

j¼0

X1
n¼0

Kðfnþ jÞ ðf 2 NÞ; ð4:3Þ
it is not difficult to derive the following alternative form of the definition (4.1):
Lv;bðs; x; k; a; bÞ ¼ 1
f sþk

Xf�1

j¼0

vðjÞ b
a

� �jb

fbf s;
xþ j

f
; k; af ; b

� �
; ð4:4Þ
in terms of the zeta type function fbðs; x; k; a; bÞ defined by (1.24). The above formula (4.4) may be compared with a result
proven by Özden and Simsek [[18] Theorem 2] for a Dirichlet character v with conductor f 2 N.

Obviously, upon setting v � 1 in the definition (4.1) or in the formula (4.4), we immediately obtain the zeta type function
fbðs; x; k; a; bÞ defined by (1.24) (cf. [2, p. 137 et seq.]; see also the recent works [9,38,42] dealing with several different aspects
of the L-functions).

In terms of the generating function gb x; t; k; a; bð Þ occurring in (1.4), we have the following integral representation for the
zeta type function fbðs; x; k; a; bÞ defined by (1.24), which involves the Mellin transformation was given earlier by Ozden et al.
(cf. [19, p. 2784, Eq. (4.1)]):
fbðs; x; k; a; bÞ ¼ 1
CðsÞ

Z 1

0
ts�k�1gb x;�t; k; a; bð Þdt minfRðsÞ;RðxÞg > 0ð Þ; ð4:5Þ
where the additional constraint RðxÞ > 0 is required for the convergence of the infinite integral occurring on the right-hand
side at its upper terminal. In fact, it was the integral representation (4.5) involving the Mellin transformation that led to the
definition (1.24) by Ozden et al. [19, p. 2785, Definition 3]. Thus, upon substituting from (4.5) into the right-hand side of
(4.4), we obtain the following formula involving the Mellin transformation (cf. [18, Eq. (2.7)]):
Lv;bðs; x; k; a; bÞ ¼ 1
f sþkCðsÞ

Xf�1

j¼0

vðjÞ b
a

� �bj

�
Z 1

0
ts�k�1gbf

xþ j
f

;�t; k; af ; b
� �

dt minfRðsÞ;RðxÞg > 0ð Þ: ð4:6Þ
We now recall the following functional equation (cf. [18, Eq. (2.3)]):
Hv;b x; t; k; a; bð Þ ¼ 1
f k

Xf�1

j¼0

v jð Þ b
a

� �bj

gbf
xþ j

f
; ft; k; af ; b

� �
; ð4:7Þ
which involves the generating functions gbðx; t; k; a; bÞ and Hv;b x; t; k; a; bð Þ occurring in (1.4) and (1.23), respectively. We mul-
tiply both sides of the functional Eq. (4.7) with t # � t

f

� �
by ts�k�1 and integrate each member with respect to t over the

semi-infinite interval ð0;1Þ. Then, by appealing once again to the Mellin transormation in (4.5), we obtain
Z 1

0
ts�k�1Hv;b x;� t

f
; k; a; b

� �
dt ¼ CðsÞ

f k

XF�1

j¼0

vðjÞ b
a

� �jb

fbf s;
xþ j

f
; k; af ; b

� �
ð4:8Þ

minfRðsÞ;RðxÞg > 0ð Þ:
A relationship between the functions Lv;bðs; x; k; a; bÞ and UbjFðs; x; k; a; b; dÞ is provided by Theorem 7 below.
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Theorem 7. Let s 2 C. Also let v be a Dirichlet character with conductor f 2 N and suppose that F is any multiple of f. Then
Lv;bðs; x; k; a; bÞ ¼ abd

bbðd�1Þ f k

XF�1

j¼0

vðjÞ b
a

� �jb

UbF jF s;
xþ jþ d� 1

f
; k; aF ; b; d

� �
: ð4:9Þ
Proof. By using (3.6) and (4.8), we easily arrive at the desired result (4.9) asserted by Theorem 7. h

As asserted by Theorem 8 below, the unified L-function Lv;bðs; x; k; a; bÞ can be used to interpolate the unified Bernoulli–
Euler-Genocchi polynomials Yn;v;b x; k; a; bð Þ defined by the generating function (1.23) attached to the Dirichlet character v
with conductor f 2 N.

Theorem 8. Let n 2 N. Then
Lv;bð1� n; x; k; a; bÞ ¼ ð�1Þk

f
ðn� 1Þ!
ðnþ k� 1Þ! Ynþk�1;v;b x; k; a; bð Þ: ð4:10Þ
Proof. By substituting from (3.8) into (4.9), one can easily obtain the desired result (4.10) asserted by Theorem 8. h
Remark 8. A different proof of the assertion (4.10) of Theorem 8 was given by Özden and Simsek [18], Theorem 3]; it was
based essentially upon the formula (4.4).

Next, upon substituting from (1.29) into (3.8), we get
UbjFð1� n; x; k; a; b; dÞ ¼ ð�1Þk n� 1ð Þ!
nþ k� 1ð Þ!

bbðd�1ÞFn�k

abd
�
Xnþk�1

j¼0

nþ k� 1
j

� �
xþ d� 1

F

� �n�jþk�1

Yj;bF k; aF ; b
� �

; ð4:11Þ
which, upon setting n # n� kþ 1, yields
UbjFðk� n; x; k; a; b; dÞ ¼ ð�1Þk n� kð Þ!
n!

bbðd�1ÞFn�k

abd
�
Xn

j¼0

n

j

� �
xþ d� 1

F

� �n�j

Yj;bF k; aF ; b
� �

: ð4:12Þ
Since
ðn� kÞ!
n!

¼ 1
ðn� kþ 1Þðn� kþ 2Þ � � � ðn� 1Þn ð0 5 k 5 nÞ; ð4:13Þ
it is not difficult to derive the primitive (original) corresponding to this last formula (4.12), which is asserted by Theorem 9
below.
Theorem 9. Let
s; b 2 C jbj < 1ð Þ; d 2 N; b 2 R; k 2 N0 and a 2 R:
Then
UbjFðs; x; k; a; b; dÞ ¼ bbðd�1Þ

ðs� 1Þðs� 2Þ � � � ðs� kþ 1Þðs� kÞabd Fs �
X1
j¼0

k� s

j

� �
xþ d� 1

F

� �k�s�j

Yj;bF k; aF ; b
� �

; ð4:14Þ
provided that each member of (4.14) exists.
Remark 9. Obviously, since
k� s

0

� �
¼ 1 and

k� s

j

� �
¼ k� s

j
k� s� 1

j� 1

� �
ðj 2 NÞ;
the only singularities of the meromorphic function UbjFðs; x; k; a; b; dÞ in the complex s-plane are simple poles at
s ¼ 1;2; � � � ; k:
The residues of this meromorphic function UbjFðs; x; k; a; b; dÞ at the simple poles at s ¼ 1; s ¼ 2; s ¼ k� 1 and s ¼ k are given,
respectively, by
Ress¼1 UbjFðs; x; k; a; b; dÞ
� 

¼ ð�1Þk�1bbðd�1Þ

abdF � ðk� 1Þ! �
Xk�1

j¼0

k� 1
j

� �
xþ d� 1

F

� �k�j�1

Yj;bF k; aF ; b
� �

; ð4:15Þ
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Ress¼2 UbjFðs; x; k; a; b; dÞ
� 

¼ ð�1Þk bbðd�1Þ

abd F2 � ðk� 2Þ!
�
Xk�2

j¼0

k� 2
j

� �
xþ d� 1

F

� �k�j�2

Yj;bF k; aF ; b
� �

; ð4:16Þ

Ress¼k�1 UbjFðs; x; k; a; b; dÞ
� 

¼ � bbðd�1Þ

abd Fk�1 � ðk� 2Þ!

X1

j¼0

1
j

� �
xþ d� 1

F

� �1�j

Yj;bF k; aF ; b
� �

¼ bbðd�1Þ

abd Fk�1 � ðk� 2Þ!
21�k

abF � bbF

xþ d� 1
F

� �
� Y1;bF k; aF ; b

� �" #
bbF – abF
� �

ð4:17Þ
and
Ress¼k UbjFðs; x; k; a; b; dÞ
� 

¼ 21�k bbðd�1Þ

abd Fk bbF � abF
� �

� ðk� 1Þ!
bbF – abF
� �

; ð4:18Þ
where, in the very last step in both (4.17) and (4.18), we have made use of the formula (2.3). In fact, the residues of the
meromorphic function UbjFðs; x; k; a; b; dÞ at its simple poles at
s ¼ 1;2; . . . ; k
can also be found by using the Euler-Maclaurin Summation Formula which would provide us with the meromorphic
continuation of this function on C.
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