FISEVIER

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Inclusion properties of a subclass of analytic functions defined by an integral operator involving the Gauss hypergeometric function

H.M. Srivastava a,*, S.M. Khairnar b, Meena More b

ARTICLE INFO

Keywords

Analytic functions and integral operators
Gauss generalized hypergeometric
functions
Starlike and convex functions
Ruscheweyh derivative operator
Dziok-Srivastava operator
Gamma function and incomplete Beta
function
Closed convex hull
Integral-preserving and subordination
properties

ABSTRACT

In the present paper, we introduce and investigate a new subclass of analytic functions in the open unit disk \mathbb{U} , which is defined by the convolution $(f_u)^{-1} * f(z)$, where

$$f_{\mu}(z) := (1 - \mu)z \, {}_2F_1(a,b;c;z) + \mu z [z \, {}_2F_1(a,b;c;z)]' \quad (z \in \mathbb{U}; \ \mu \geqq 0).$$

Several interesting properties including (for example) integral-preserving properties of this analytic function class are also considered.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let A denote the class of functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \tag{1.1}$$

which are analytic in the open unit disk

$$\mathbb{U} = \{z : z \in \mathbb{C} \quad \text{and} \quad |z| < 1\}.$$

We also consider a class \mathcal{M} of functions $\phi(z)$ which are analytic and univalent in \mathbb{U} such that $\phi(\mathbb{U})$ is convex with

$$\phi(0) = 1$$
 and $\Re{\{\phi(z)\}} > 0$ $(z \in \mathbb{U})$.

We begin by recalling the principle of subordination between analytic functions.

Definition 1. For two functions f(z) and g(z), analytic in \mathbb{U} , f(z) is said to be subordinate to g(z) in \mathbb{U} , if there exists an analytic (Schwarz) function w(z) in \mathbb{U} , satisfying the following conditions:

$$w(0) = 0$$
 and $|w(z)| < 1$ $(z \in \mathbb{U})$,

such that

$$f(z) = g(w(z)).$$

^a Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada

^b Department of Mathematics, Maharashtra Academy of Engineering, Alandi, Pune 412 105, Maharashtra, India

^{*} Corresponding author.

E-mail addresses: harimsri@math.uvic.ca (H.M. Srivastava), smkhairnar2007@gmail.com (S.M. Khairnar), meenamores@gmail.com (M. More).

We denote this subordination by

$$f(z) \prec g(z) \quad (z \in \mathbb{U}).$$

In particular, if g(z) is univalent in \mathbb{U} , then the subordination

$$f(z) \prec g(z) \quad (z \in \mathbb{U})$$

is equivalent to the following conditions:

$$f(0) = g(0)$$
 and $f(\mathbb{U}) \subset g(\mathbb{U})$

(see, for details, [7,18]; see also [29]).

Definition 2. Each of the subclasses $S^*(\phi)$, $\mathcal{K}(\phi)$ and $\mathcal{C}(\phi, \psi)$ of the analytic function class \mathcal{A} for $\phi, \psi \in \mathcal{M}$ is defined by using the above subordination principle (cf., e.g., [6,19]):

$$\mathcal{S}^*(\phi) := \left\{ f : f \in \mathcal{A} \quad \text{and} \quad \frac{zf'(z)}{f(z)} \prec \phi(z) \quad (z \in \mathbb{U}; \ \phi \in \mathcal{M}) \right\},\tag{1.2}$$

$$\mathcal{K}(\phi) := \left\{ f : f \in \mathcal{A} \quad \text{and} \quad 1 + \frac{zf''(z)}{f'(z)} \prec \phi(z) \quad (z \in \mathbb{U}; \ \phi \in \mathcal{M}) \right\}$$

$$\tag{1.3}$$

and

$$\mathcal{C}(\phi,\psi) := \left\{ f: f \in \mathcal{A}, \ g \in \mathcal{S}^*(\phi) \quad \text{and} \quad \frac{zf'(z)}{g(z)} \prec \psi(z) \quad (z \in \mathbb{U}; \ \phi, \psi \in \mathcal{M}) \right\}. \tag{1.4}$$

In particular, when

$$\phi(z) = \psi(z) = \frac{1+z}{1-z}$$

in the definitions (1.2) to (1.4), we have the familiar classes S^* , K and C starlike, convex and close-to-convex function in \mathbb{U} , respectively. Furthermore, if we set

$$\phi(z) = \frac{1 + Az}{1 + Bz} \quad (-1 \le B < A \le 1)$$

in the definitions (1.2) and (1.3), we obtain the following function classes:

$$S^*\left(\frac{1+Az}{1+Bz}\right) = S^*(A,B) \quad \text{and} \quad \mathcal{K}\left(\frac{1+Az}{1+Bz}\right) = \mathcal{K}(A,B). \tag{1.5}$$

Let \mathcal{P} denote the class of functions of the form:

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots,$$

which are analytic in \mathbb{U} and satisfy the following inequality:

$$\Re\{p(z)\} > 0 \quad (z \in \mathbb{U}).$$

Denote by $D^{\lambda}: \mathcal{A} \to \mathcal{A}$ the Ruscheweyh derivative operator of order λ defined by the following Hadamard product (or convolution):

$$D^{\lambda}f(z) = \frac{z}{(1-z)^{\lambda+1}} * f(z) \quad (\lambda > -1), \tag{1.6}$$

so that, obviously, we have

$$D^0 f(z) = f(z), \quad D^1 f(z) = z f'(z) \quad \text{and} \quad D^n f(z) = \frac{z \left[z^{n-1} f(z)\right]^{(n)}}{n!}$$
 (1.7)

for

$$n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} = \{0, 1, 2, \ldots\} \quad (\mathbb{N} := \{1, 2, 3, \ldots\} = \mathbb{N}_0 \setminus \{0\}).$$

Recently, Noor et al. (see [22,23]) defined as integral operator $I_n : A \to A$, analogous to the Ruscheweyh derivative operator $D^i f$, as follows.

Definition 3. Let the functions

$$f_n(z) = \frac{z}{(1-z)^{n+1}}$$
 and $f_n^{(-1)}(z)$ $(n \in \mathbb{N}_0)$

be defined such that

$$f_n(z) * f_n^{(-1)}(z) = \frac{z}{(1-z)^2} \quad (z \in \mathbb{U}; \ n \in \mathbb{N}_0).$$
 (1.8)

Then the integral operator $I_n : A \to A$ is defined by

$$I_n f(z) = f_n^{(-1)}(z) * f(z) = \left(\frac{z}{(1-z)^{n+1}}\right)^{-1} * f(z) \quad (f \in \mathcal{A}),$$

$$\tag{1.9}$$

so that, clearly.

$$I^0f(z) = zf'(z)$$
 and $I_1f(z) = f(z)$ $(f \in A)$

The so-called Noor integral operator I_n of order n (see [3,16]) is an important operator which is used in defining several subclasses of analytic functions.

For parameters

$$a,b \in \mathbb{C}$$
 and $c \in \mathbb{C} \setminus \mathbb{Z}_0^ (\mathbb{Z}_0^- := \{0,-1,-2,\ldots\}),$

the Gauss hypergeometric function ${}_2F_1(a, b; c; z)$ is defined by

$${}_{2}F_{1}(a,b;c;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}, \tag{1.10}$$

where $(v)_k$ denotes the Pochhammer symbol defined, in terms of the Gamma function, by

$$(v)_0 := 1 \quad \text{and} \quad (v)_k := \frac{\Gamma(v+k)}{\Gamma(v)} = v(v+1) \cdots (v+k-1) \quad (k \in \mathbb{N}). \tag{1.11}$$

The hypergeometric series in (1.10) converges absolutely for all $z \in \mathbb{U}$, so that it represents an analytic function in \mathbb{U} . In particular, the function $\varphi(a, c; z)$ given by

$$z_2F_1(1, a; c; z) =: \varphi(a, c; z) \quad (z \in \mathbb{U})$$

is the incomplete Beta function. Also, since

$$\varphi(a,1;z) = \frac{z}{(1-z)^a} \quad (z \in \mathbb{U}),$$

the function $\varphi(2, 1; z)$ is precisely the Koebe function.

Many recent investigations in *geometric function theory* in Complex Analysis have made use of not only the familiar Gauss hypergeometric function ${}_2F_1(a, b; c; z)$, but also of its natural generalizations including (for example) the generalized hypergeometric function ${}_qF_s$ $(q, s \in \mathbb{N}_0)$ with q numerator and s denominator parameters:

$$\alpha_i \in \mathbb{C} \quad (j = 1, \dots, q) \quad \text{and} \quad \beta_i \in \mathbb{C} \setminus \mathbb{Z}_0^- \quad (j = 1, \dots, s),$$

defined by

$$_{q}F_{s}(\alpha_{1},\ldots,\alpha_{q};\;\beta_{1},\cdots,\beta_{s};z)=\sum_{k=0}^{\infty}\frac{\prod\limits_{j=1}^{q}(\alpha_{j})_{k}}{\prod\limits_{i=1}^{s}(\beta_{j})_{k}}\;rac{z^{k}}{k!}.$$

For example, we may cite the widely-investigated Dziok–Srivastava operator involving the generalized hypergeometric function ${}_qF_s$ ($q,s \in \mathbb{N}_0$) (see, for details, [8–10]; see also [2,4,5,12–14,17,30] and the references cited in each of these earlier investigations).

Shukla and Shukla [28] studied the mapping properties of the function $f_u(a, b, c)(z)$ defined by

$$f_{\mu}(a,b,c)(z) := (1-\mu)z \,_{2}F_{1}(a,b;c;z) + \mu z[z \,_{2}F_{1}(a,b;c;z)]' \quad (z \in \mathbb{U}; \ \mu \ge 0). \tag{1.12}$$

On the other hand, Kim and Shon [15] introduced a linear operator $L_{\mu}: \mathcal{A} \to \mathcal{A}$ defined by

$$L_{\mu}(a,b,c)(f(z)) = f_{\mu}(a,b,c)(z) * f(z).$$

Here, in this paper, we define a function $(f_{ij})^{(-1)}$ by the means of the following Hadamard product (or convolution):

$$f_{\mu}(a,b,c)(z) * [f_{\mu}(a,b,c)(z)]^{(-1)} = \frac{z}{(1-z)^{\lambda+1}} \quad (\mu \ge 0, \ \lambda > -1)$$
 (1.13)

and introduce the linear operator $I_{\mu}^{\lambda}(a,b,c)$ by

$$I_{u}^{\lambda}(a,b,c)f(z) = \left[f_{u}(a,b,c)(z)\right]^{(-1)} *f(z). \tag{1.14}$$

Upon setting μ = 0 in (1.13), we obtain the operator introduced earlier by Noor [21]. Since

$$\frac{z}{(1-z)^{\lambda+1}} = \sum_{k=0}^{\infty} \frac{(\lambda+1)_k}{k!} z^{k+1} \quad (z \in \mathbb{U}; \ \lambda \in \mathbb{C}), \tag{1.15}$$

by using (1.10) and (1.15) in (1.13), we get

$$\left(\sum_{k=0}^{\infty} \frac{(\mu k+1)(a)_k(b)_k}{(c)_k} \frac{z^{k+1}}{k!}\right) * \left[f_{\mu}(a,b,c)(z)\right]^{(-1)} = \sum_{k=0}^{\infty} \frac{(\lambda+1)_k}{k!} z^{k+1}.$$
(1.16)

We thus obtain the following explicit representation for $[f_{\mu}(a, b, c)(z)]^{(-1)}$:

$$[f_{\mu}(a,b,c)(z)]^{(-1)} = \sum_{k=0}^{\infty} \frac{(\lambda+1)_k(c)_k}{(\mu k+1)(a)_k(b)_k} z^{k+1} \quad (z \in \mathbb{U}).$$
(1.17)

Eq. (1.14) now implies that

$$I_{\mu}^{\lambda}(a,b,c)f(z) = z + \sum_{k=1}^{\infty} \frac{(\lambda+1)_k(c)_k}{(\mu k+1)(a)_k(b)_k} a_{k+1} z^{k+1}. \tag{1.18}$$

In particular, we have

$$I_{\Lambda}^{1}(a,\lambda+1,a)f(z) = f(z)$$
 and $I_{\Lambda}^{1}(a,1,a)f(z) = zf'(z)$. (1.19)

It can also be easily shown that

$$z[I_{\mu}^{\lambda}(a,b,c)f(z)]' = (\lambda+1)I_{\mu}^{\lambda+1}(a,b,c)f(z) - \lambda I_{\mu}^{\lambda}(a,b,c)f(z)$$
(1.20)

and

$$z \Big[I_{\mu}^{\lambda}(a+1,b,c)f(z) \Big]' = a I_{\mu}^{\lambda}(a,b,c)f(z) - (a-1)I_{\mu}^{\lambda}(a+1,b,c)f(z). \tag{1.21}$$

In the present sequel to the aforementioned works, by using the operator $I^{\lambda}_{\mu}(a,b,c)$, we introduce and investigate the inclusion properties of each of the following interesting subclasses of analytic functions for

$$\phi, \psi \in \mathcal{M}, \quad \lambda > -1, \quad \phi(z) = \frac{1+Az}{1+Bz} \quad (-1 \le B < A \le 1) \quad \text{and} \quad \mu \ge 0:$$

$$\mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi) := \Big\{ f : f \in \mathcal{A} \quad \text{and} \quad I^{\lambda}_{\mu}(a,b,c)f(z) \in \mathcal{S}^{*}(\phi) \Big\}, \tag{1.22}$$

$$\mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi) := \left\{ f : f \in \mathcal{A} \quad \text{and} \quad I^{\lambda}_{\mu}(a,b,c)f(z) \in \mathcal{K}(\phi) \right\} \tag{1.23}$$

and

$$\mathcal{C}^{\lambda}_{\mu}(a,b,c)(\phi,\psi) := \left\{ f: f \in \mathcal{A} \quad \text{and} \quad \exists \quad g(z) \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi) \text{ such that } \frac{z\Big(I^{\lambda}_{\mu}(a,b,c)f(z)\Big)}{I^{\lambda}_{\mu}(a,b,c)g(z)} \prec \psi(z) \quad (z \in \mathbb{U}) \right\}. \tag{1.24}$$

It is easily seen from the definitions (1.22) and (1.23) that

$$f(z) \in \mathcal{K}(a,b,c)(\phi) \iff zf'(z) \in \mathcal{S}_{\mu}^{\lambda}(a,b,c)(\phi).$$
 (1.25)

For the sake of convenience, we write

$$S_{\mu}^{\lambda}(a,b,c) \left(\frac{1+Az}{1+Bz} \right) =: S_{\mu}^{\lambda}(a,b,c,A,B) \quad (-1 \le B < A \le 1), \tag{1.26}$$

$$\mathcal{K}_{\mu}^{\lambda}(a,b,c)\left(\frac{1+Az}{1+Bz}\right) =: \mathcal{K}_{\mu}^{\lambda}(a,b,c,A,B) \quad (-1 \leq B < A \leq 1) \tag{1.27}$$

and

$$\mathcal{C}^{\lambda}_{\mu}(a,b,c) \left(\frac{1+Az}{1+Bz}, \frac{1+Az}{1+Bz} \right) =: \mathcal{C}^{\lambda}_{\mu}(a,b,c,A,B) \quad (-1 \leq B < A \leq 1). \tag{1.28}$$

The main objective of this paper is to investigate the inclusion properties of each of the above-defined function classes

$$\mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi), \quad \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi) \quad \text{and} \quad \mathcal{C}^{\lambda}_{\mu}(a,b,c)(\phi,\psi).$$

Since

$$\mathcal{S}_0^{\lambda}(a,\lambda+1,a)\left(\frac{1+z}{1-z}\right) = \mathcal{S}^*, \quad \mathcal{K}_0^{\lambda}(a,\lambda+1,a)\left(\frac{1+z}{1-z}\right) = \mathcal{K} \tag{1.29}$$

and

$$C_0^{\lambda}(a,\lambda+1,a)\left(\frac{1+z}{1-z},\frac{1+z}{1-z}\right) = \mathcal{C},\tag{1.30}$$

the results presented in this paper can be suitably specialized to deduce the corresponding (known or new) results for the familiar function classes S^* , K and C.

2. Inclusion properties involving the operator $I_n^{\lambda}(a,b,c)$

The following lemmas will be required in our investigation.

Lemma 1 (see [20]). Let the function $\phi(z)$ be convex univalent in \mathbb{U} . Suppose that the function B(z) is analytic in \mathbb{U} with $\Re\{B(z)\} \ge E \quad (E \ge 0)$.

If $g \in \mathcal{P}$ is analytic in \mathbb{U} , then

$$E^2 z^2 g''(z) + B(z) z g'(z) + g(z) \prec \phi(z) \quad (z \in \mathbb{U})$$

$$(2.1)$$

implies that

$$g(z) \prec \phi(z) \quad (z \in \mathbb{U}).$$

Lemma 2 (see [26]). Let $f \in \mathcal{K}$ and $g \in \mathcal{S}^*$. Then, for every analytic function Q in \mathbb{U} ,

$$\frac{(f*Qg)}{f*g}(\mathbb{U})\subset\overline{\text{CO}}[Q(\mathbb{U})], \tag{2.2}$$

where $\overline{CO}[Q(\mathbb{U})]$ denotes the closed convex hull of $Q(\mathbb{U})$.

Lemma 3 (see [25]). For complex numbers β and γ , let $\phi(z)$ be a convex univalent function in \mathbb{U} with

$$\phi(0) = 1$$
 and $\Re{\{\beta\phi(z) + \gamma\}} > 0$ $(z \in \mathbb{U})$.

Also let the function $q \in A$ satisfy the following subordination condition:

$$q(z) \prec \phi(z) \quad (z \in \mathbb{U}).$$

If the function $p \in \mathcal{P}$ is analytic in \mathbb{U} , then

$$p(z) + \frac{zp'(z)}{\beta a(z) + \gamma} \prec \phi(z) \quad (z \in \mathbb{U})$$
 (2.3)

implies that

$$p(z) \prec \phi(z) \quad (z \in \mathbb{U}).$$

Lemma 4 (see [11]). Let the parameters δ and η be complex numbers. Also let $\phi(z)$ be a convex univalent function in \mathbb{U} with

$$\phi(0) = 1$$
 and $\Re{\delta\phi(z) + \eta} > 0$ $(z \in \mathbb{U}).$

If the function $p \in \mathcal{P}$ is analytic in \mathbb{U} , then the following subordination condition:

$$p(z) + \frac{zp'(z)}{\delta p(z) + \eta} \prec \phi(z) \quad (z \in \mathbb{U})$$
 (2.4)

implies that

$$p(z) \prec \phi(z) \quad (z \in \mathbb{U}).$$

Our first main result is contained in Theorem 1 below.

Theorem 1. Let the function $\phi(z)$ be convex univalent in \mathbb{U} with

$$\phi(0) = 1$$
 and $\Re{\{\phi(z)\}} \ge 0$ $(z \in \mathbb{U})$.

Then

$$\mathcal{S}_{u}^{\lambda+1}(a,b,c)(\phi) \subset \mathcal{S}_{u}^{\lambda}(a,b,c)(\phi) \quad (\lambda > -1; \ \mu \geq 0).$$

Proof. Let $f(z) \in \mathcal{S}_{u}^{\lambda+1}(a,b,c)(\phi)$ and suppose that

$$p(z) = \frac{z(I_{\mu}^{\lambda}(a,b,c)f(z))'}{I_{\mu}^{\lambda}(a,b,c)f(z)} \quad (p(z) \in \mathcal{P}).$$
 (2.5)

Then, by using (1.2) in (2.5) and differentiating the resulting equation, we get

$$\frac{z\Big(I_{\mu}^{\lambda+1}(a,b,c)f(z)\Big)'}{I_{\mu}^{\lambda+1}(a,b,c)f(z)} = p(z) + \frac{zp'(z)}{(\lambda+1)q(z)},$$

where

$$q(z) = \frac{I_{\mu}^{\lambda+1}(a,b,c)f(z)}{I_{\mu}^{\lambda}(a,b,c)f(z)}$$

and

$$q(z) \prec \phi(z) \quad (z \in \mathbb{U}).$$

Hence, by applying Lemma 3, we obtain

$$\frac{z\Big(I_{\mu}^{\lambda}(a,b,c)f(z)\Big)'}{I_{-}^{\lambda}(a,b,c)f(z)} \prec \phi(z) \quad (z \in \mathbb{U}),$$

which, in view of (1.22), yields

$$f(z) \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi).$$

Our proof of Theorem 1 is thus completed. \Box

Theorem 2. Let the function $\phi(z)$ be convex univalent in \mathbb{U} with

$$\phi(0) = 1$$
 and $\Re{\{\phi(z)\}} \ge 0$ $(z \in \mathbb{U})$.

Then

$$S_{\mu}^{\lambda}(a,b,c)(\phi) \subset S_{\mu}^{\lambda}(a+1,b,c)(\phi) \quad (\lambda > -1; \ \mu \ge 0).$$

Proof. Applying the same technique as in the proof of Theorem 1, and using (1.21) in conjunction with Lemma 4, we obtain the result asserted by Theorem 2. \Box

Upon setting

$$\phi(z) = \frac{1 + Az}{1 + Bz} \quad (-1 \le B < A \le 1)$$

in Theorems 1 and 2, we obtain the following result.

Corollary 1. For $\lambda > -1$, $\mu \ge 0$ and $\Re(a) > 1$, the following inclusion properties hold true:

$$S_{\mu}^{\lambda+1}(a,b,c,A,B) \subset S_{\mu}^{\lambda}(a,b,c,A,B)$$

and

$$\mathcal{S}_{\mu}^{\lambda}(a,b,c,A,B)\subset\mathcal{S}_{\mu}^{\lambda}(a+1,b,c,A,B).$$

If we set

$$\phi(z) = \frac{1+z}{1-z} \quad (z \in \mathbb{U})$$

in Theorems 1 and 2, we obtain the following result.

Corollary 2. For $\lambda > -1$, $\mu \ge 0$ and $\Re(a) > 0$, $I_{\mu}^{\lambda+1}(a,b,c)f(z) \in \mathcal{S}^* \Rightarrow I_{\mu}^{\lambda}(a,b,c)f(z) \in \mathcal{S}^*$.

Furthermore.

$$I_{\mu}^{\lambda}(a,b,c)f(z) \in \mathcal{S}^* \Rightarrow I_{\mu}^{\lambda}(a+1,b,c) \in \mathcal{S}^*.$$

Corollary 3. For $\lambda > -1$, $\mu \ge 0$ and $\Re(a) > 0$,

$$\mathcal{K}_{\mu}^{\lambda+1}(a,b,c)(\phi) \subset \mathcal{K}_{\mu}^{\lambda}(a,b,c)(\phi)$$

and

$$\mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi)\subset\mathcal{K}^{\lambda}_{\mu}(a+1,b,c)(\phi).$$

Proof. It is easily observed that

$$\begin{split} f(z) &\in \mathcal{K}_{\mu}^{\lambda+1}(a,b,c)(\phi) \Longleftrightarrow zf'(z) \in \mathcal{S}_{\mu}^{\lambda+1}(a,b,c)(\phi), \\ &\Rightarrow zf'(z) \in \mathcal{S}_{\mu}^{\lambda}(a,b,c)(\phi), \\ &\iff I_{\mu}^{\lambda}(a,b,c)(zf'(z)) \in \mathcal{S}^{*}(\phi), \\ &\iff z(I_{\mu}^{\lambda}(a,b,c)f(z))' \in \mathcal{S}^{*}(\phi), \\ &\iff I_{\mu}^{\lambda}(a,b,c)f(z) \in \mathcal{K}(\phi), \\ &\iff f(z) \in \mathcal{K}_{\mu}^{\lambda}(a,b,c)(\phi). \end{split}$$

The second assertion of Corollary 3 can be proved similarly. \Box

Theorem 3. Let the function $\phi(z)$ be convex univalent in \mathbb{U} with

$$\phi(0) = 1$$
 and $\Re{\{\phi(z)\}} \ge 0$.

If $f(z) \in A$ satisfies the following condition:

$$f(z) \in \mathcal{S}^{\lambda}_{u}(a,b,c)(\phi)$$

then

$$F(z) \in \mathcal{S}_{\mu}^{\lambda}(a,b,c)(\phi),$$

where the function F(z) is given by a one-parameter integral operator as follows:

$$F(z) = \frac{b+1}{z^b} \int_0^z t^{b-1} f(z) dt \quad (b > -1).$$
 (2.6)

Proof. First of all, we find from the definition (2.6) that

$$z\Big(I_{\mu}^{\lambda}(a,b,c)F(z)\Big)' = (\mathfrak{d}+1)I_{\mu}^{\lambda}(a,b,c)f(z) - \mathfrak{d}I_{\mu}^{\lambda}(a,b,c)F(z). \tag{2.7}$$

Let

$$p(z) = \frac{z \Big(I_{\mu}^{\lambda}(a,b,c)F(z)\Big)'}{I_{\mu}^{\lambda}(a,b,c)F(z)} \quad (p \in \mathcal{P}).$$

Thus, by using (2.7), we get

$$p(z) + \mathfrak{d} = \frac{(\mathfrak{d} + 1)I_{\mu}^{\lambda}(a, b, c)f(z)}{I_{\mu}^{\lambda}(a, b, c)F(z)}.$$
 (2.8)

Differentiating both sides of (2.8) logarithmically, we obtain

$$p(z) + \frac{zp'(z)}{p(z) + \mathfrak{d}} = \frac{z\Big(I^{\lambda}_{\mu}(a,b,c)f(z)\Big)'}{I^{\lambda}_{\mu}(a,b,c)f(z)} \prec \phi(z) \quad (z \in \mathbb{U})$$

by means of the hypothesis of Theorem 3.

Finally, by applying Lemma 4, we have

$$\frac{z\Big(I_{\mu}^{\lambda}(a,b,c)F(z)\Big)'}{I_{\mu}^{\lambda}(a,b,c)F(z)} \prec \phi(z) \quad (z \in \mathbb{U}),$$

that is.

$$F(z) \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi),$$

as asserted by Theorem 3. \Box

In its special case when

$$\phi(z) = \frac{1 + Az}{1 + Bz} \quad (-1 \le B < A \le 1),$$

Theorem 3 yields the following result.

Corollary 4. Let $\lambda > -1$, $\mu \ge 0$ and $\mathfrak{d} > -1$. Also let the function F(z) be given by (2.6). If $f(z) \in \mathcal{S}^{\lambda}_{\mu}(a,b,c,A,B)$, then $F(z) \in \mathcal{S}^{\lambda}_{\mu}(a,b,c,A,B)$.

Corollary 5. Let $\lambda > -1$, $\mu \ge 0$ and $\mathfrak{d} > -1$. Also let the function F(z) be given by (2.6). If $f(z) \in \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi)$, then $F(z) \in \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi)$.

Proof. It is fairly easy to see that

$$\begin{split} f(z) \in \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi) &\iff zf'(z) \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi) \\ &\iff z(F(z))' \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi) \\ &\iff F(z) \in \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi). \end{split}$$

Theorem 4. *Let* $f(z) \in A$. *Then*

$$\mathcal{C}_{\boldsymbol{u}}^{\lambda+1}(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\phi,\psi)\subset\mathcal{C}_{\boldsymbol{u}}^{\lambda}(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\phi,\psi)\quad(\Re(\boldsymbol{a})>0).$$

Proof. Let $f(z) \in C_u^{\lambda+1}(a,b,c,\phi,\psi)$. Then, by definition, we have

$$\frac{z\left(I_{\mu}^{\lambda+1}(a,b,c,\phi,\psi)f(z)\right)'}{I_{\mu}^{\lambda+1}(a,b,c,\phi,\psi)g(z)} \prec \psi(z) \quad (z \in \mathbb{U})$$

for some $g(z) \in \mathcal{S}^{\lambda+1}_{\mu}(a,b,c)(\phi)$. Next, by setting

$$h(z) = \frac{z \left(I_{\mu}^{\lambda}(a,b,c) f(z) \right)'}{I_{\mu}^{\lambda}(a,b,c) g(z)}$$
(2.9)

and

$$H(z) = \frac{z \left(I_{\mu}^{\lambda}(a,b,c)g(z) \right)'}{I_{\mu}^{\lambda}(a,b,c)g(z)}, \tag{2.10}$$

we notice that

$$h(z) \in \mathcal{P}$$
 and $H(z) \in \mathcal{P}$.

Thus, by Theorem 2, $g(z) \in \mathcal{S}^{\lambda}_{u}(a,b,c)(\phi)$ and so $\Re\{H(z)\} > 0$. Moreover, (2.9) implies that

$$z\left(I_{\mu}^{\lambda}(a,b,c)f(z)\right)' = \left(I_{\mu}^{\lambda}(a,b,c)g(z)\right)h(z). \tag{2.11}$$

Differentiating both sides of (2.9), we get

$$\frac{z\left(z\left(I_{\mu}^{\lambda}(a,b,c)f(z)\right)'\right)'}{I_{\mu}^{\lambda}(a,b,c)g(z)} = H(z)h(z) + zh'(z) \tag{2.12}$$

which, in view of the identity (1.20), yields

$$\begin{split} \frac{z\Big(I_{\mu}^{\lambda+1}(a,b,c)f(z)\Big)'}{I_{\mu}^{\lambda+1}(a,b,c)g(z)} &= \frac{I_{\mu}^{\lambda+1}(a,b,c)\big(zf'(z)\big)}{I_{\mu}^{\lambda+1}(a,b,c)g(z)} = \frac{z\Big(I_{\mu}^{\lambda}(a,b,c)\big(zf'(z)\big)\Big)' + \lambda I_{\mu}^{\lambda}(a,b,c)\big(zf'(z)\big)}{z\Big(I_{\mu}^{\lambda}(a,b,c)g(z)\Big)' + \lambda I_{\mu}^{\lambda}(a,b,c)g(z)} \\ &= \frac{z\Big(I_{\mu}^{\lambda}(a,b,c)\big(zf'(z)\big)\Big)'}{I_{\mu}^{\lambda}(a,b,c)g(z)} + \frac{\lambda I_{\mu}^{\lambda}(a,b,c)g(z)}{I_{\mu}^{\lambda}(a,b,c)g(z)} = \frac{H(z)h(z) + zh'(z) + \lambda h(z)}{H(z) + \lambda} = h(z) + \frac{zh'(z)}{H(z) + \lambda} \prec \psi(z) \quad (z \in \mathbb{U}). \end{split}$$

Now, by applying Lemma 1 for

$$E = 0$$
 and $B(z) = \frac{1}{H(z) + \lambda}$

with

$$\Re\{B(z)\} = \frac{1}{|H(z) + \lambda|^2} \Re\{H(z) + \lambda\} > 0,$$

we get

$$h(z) \prec \psi(z) \quad (z \in \mathbb{U}),$$

which, by virtue of (2.9), implies that $f(z) \in \mathcal{C}^{\lambda}_{\mu}(a,b,c,\phi,\psi)$. \square

Theorem 5. *Let* $f \in A$. *Then*

$$C_{\mu}^{\lambda}(a,b,c,\phi,\psi) \subset C_{\mu}^{\lambda}(a+1,b,c,\phi,\psi) \quad (\Re(a) > 0).$$

Proof. By using arguments similar to those in the proof of Theorem 4, we get

$$h(z) + \frac{zh'(z)}{H(z) + a - 1} \prec \psi(z) \quad (z \in \mathbb{U})$$

for

$$h(z) = \frac{z \Big(I_{\mu}^{\lambda}(a+1,b,c)f(z)\Big)'}{I_{\mu}^{\lambda}(a+1,b,c)g(z)} \in \mathcal{P}$$

and

$$H(z) = \frac{z \Big(I_{\mu}^{\lambda}(a+1,b,c)g(z)\Big)'}{I_{\mu}^{\lambda}(a+1,b,c)g(z)} \in \mathcal{P}.$$

Now, by applying Lemma 1 for

$$E = 0$$
 and $B(z) = \frac{1}{H(z) + a - 1}$

with

$$\Re(B(z)) = \frac{1}{|H(z) + a - 1|^2} \Re\{H(z) + a - 1\} > 0,$$

we obtain the required result. \Box

Theorem 6. Let $\mathfrak{d} > -1$ and suppose that F(z) is given by (2.6). If $f(z) \in \mathcal{C}^{\lambda}_{\mu}(a,b,c,\phi,\psi)$, then $F(z) \in \mathcal{C}^{\lambda}_{\mu}(a,b,c,\phi,\psi)$.

Proof. By employing the same technique as in proof of Theorem 4, we get

$$\frac{zh'(z)}{H(z)+\mathfrak{d}}+h(z)\prec\psi(z)$$

for

$$h(z) = \frac{z(I^{\lambda}_{\mu}(a,b,c)F(z))'}{I^{\lambda}_{\mu}(a,b,c)g(z)} \in \mathcal{P}$$

and

$$H(z) = \frac{z(I^{\lambda}_{\mu}(a,b,c)g(z))'}{I^{\lambda}_{\mu}(a,b,c)g(z)} \in \mathcal{P}.$$

Now, by applying Lemma 1 for

$$E = 0$$
 and $B = \frac{1}{H(z) + \mathfrak{d}}$

with

$$\Re\{B(z)\} = \frac{1}{|H(z) + \mathfrak{d}|^2} \Re\{H(z) + \mathfrak{d}\} > 0,$$

we arrive at the result asserted by Theorem 6. \Box

3. Inclusion properties by convolution

In this section, we show that the function classes

$$\mathcal{S}_{u}^{\lambda}(a,b,c)(\phi), \quad \mathcal{K}_{u}^{\lambda}(a,b,c)(\phi) \quad \text{and} \quad \mathcal{C}_{u}^{\lambda}(a,b,c,\phi,\psi)$$

are invariant under convolution with convex functions.

Theorem 7. Let a > 0, b > 0 and $c \in \mathbb{R} \setminus \mathbb{Z}_0^-$. Suppose also that $\phi, \psi \in \mathcal{M}$ and $g \in \mathcal{K}$. Then

(i)
$$f \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi) \Rightarrow g * f \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi)$$
;

(ii)
$$f \in \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi) \Rightarrow g * f \in \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi)$$

and

(iii)
$$f \in C^{\lambda}_{\mu}(a, b, c, \phi, \psi) \Rightarrow g * f \in C^{\lambda}_{\mu}(a, b, c, \phi, \psi)$$
.

Proof. We consider the following three cases:

(i) Let $f \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi)$. Then

$$\frac{z\Big(I_{\mu}^{\lambda}(a,b,c)f\Big)'}{I_{\mu}^{\lambda}(a,b,c)f} \prec \phi(w(z)) \quad (z \in \mathbb{U}),$$

which yields

$$\frac{z\left(I_{\mu}^{\lambda}(a,b,c)(g*f)(z)\right)'}{I_{\mu}^{\lambda}(a,b,c)(g*f)(z)} = \frac{g(z)*z\left(I_{\mu}^{\lambda}(a,b,c)f(z)\right)'}{g(z)*I_{\mu}^{\lambda}(a,b,c)f(z)} = \frac{g(z)*\phi(w)I_{\mu}^{\lambda}(a,b,c)f(z)}{g(z)*I_{\mu}^{\lambda}(a,b,c)f(z)}. \tag{3.1}$$

Thus, by using Lemma 2, we conclude that

$$\frac{\left\{g*\phi(w)I_{\mu}^{\lambda}(a,b,c)f\right\}}{\left\{g*I_{\mu}^{\lambda}(a,b,c)f\right\}}(\mathbb{U})\subset\overline{\mathrm{CO}}[\phi(\mathbb{U})]\subset\phi(\mathbb{U}),$$

since ϕ is convex univalent and $I^{\lambda}_{\mu}(a,b,c)f \in \mathcal{S}^*(\phi)$. By the definition of subordination, we see that the function quotient in (3.1) is subordinate to $\phi(z)$ in \mathbb{U} , and so we have

$$g * f \in \mathcal{S}^{\lambda}_{\mu}(a, b, c)(\phi).$$

(ii) Suppose that $f \in \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi)$. Then, by (1.23), $zf'(z) \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi)$. Hence, by means of (i), we have $g * zf'(z) \in \mathcal{S}^{\lambda}_{\mu}(a,b,c)(\phi)$.

We notice also that

$$g(z) * zf'(z) = z(g * f)'(z).$$

Thus, by applying (1.23) again, we get

$$g * f \in \mathcal{K}^{\lambda}_{\mu}(a, b, c)(\phi)$$
.

(iii) Let $f \in \mathcal{C}^\lambda_u(a,b,c,\phi,\psi)$. Then there exists a function $q \in \mathcal{S}^\lambda_u(a,b,c)(\phi)$ such that

$$\frac{z\left(I_{\mu}^{\lambda}(a,b,c)f(z)\right)'}{I_{\nu}^{\lambda}(a,b,c)q(z)} \prec \psi(z) \quad (z \in \mathbb{U}). \tag{3.2}$$

Therefore, we get

$$z\left(I_{\mu}^{\lambda}(a,b,c)f(z)\right)' = \psi(w(z))I_{\mu}^{\lambda}(a,b,c)q(z) \quad (z \in \mathbb{U}), \tag{3.3}$$

where w(z) is an analytic function in \mathbb{U} with

$$|w(z)| < 1$$
 $(z \in \mathbb{U})$ and $w(0) = 0$.

Now, since $I_u^{\lambda}(a,b,c)q \in \mathcal{S}^*(\phi)$, we have

$$\frac{z\Big(I_{\mu}^{\lambda}(a,b,c)(g*f)(z)\Big)'}{g*I_{\mu}^{\lambda}(a,b,c)q} = \frac{g(z)*z\Big(I_{\mu}^{\lambda}(a,b,c)f(z)\Big)'}{g(z)*I_{\mu}^{\lambda}(a,b,c)q(z)} = \frac{g(z)*\psi(w(z))I_{\mu}^{\lambda}(a,b,c)q(z)}{g(z)*I_{\mu}^{\lambda}(a,b,c)q(z)} \prec \psi(z) \quad (z \in \mathbb{U}). \tag{3.4}$$

Thus the assertion (iii) of Theorem 7 is proved. We complete the proof of Theorem 7. \Box

We next investigate the functions $\omega_1(z)$ and $\omega_2(z)$ defined by (see [24,27])

$$\omega_1(z) := \sum_{k=1}^{\infty} \left(\frac{\mathfrak{c}+1}{\mathfrak{c}+k} \right) z^k \quad (\Re(\mathfrak{c}) \ge 0; \ z \in \mathbb{U})$$
(3.5)

and

$$\omega_2(z) := \frac{1}{1-\kappa} \log \left(\frac{1-\kappa z}{1-z} \right) \quad (\log 1 := 0; \ |\kappa| \le 1 \ (\kappa \ne 1); \ z \in \mathbb{U}), \tag{3.6}$$

respectively. Then it is known from the earlier works [1,27] that the functions $\omega_1(z)$ and $\omega_2(z)$ are convex univalent in \mathbb{U} . Therefore, we have the following immediate consequences of Theorem 7.

Corollary 6. Let a > 0, b > 0 and $c \in \mathbb{R} \setminus \mathbb{Z}_0^-$. Suppose that $\phi, \psi \in \mathcal{M}$. Also let the functions $\omega_1(z)$ and $\omega_2(z)$ be defined by (3.5) and (3.6), respectively. Then

(i)
$$f \in \mathcal{S}_{\mu}^{\lambda}(a,b,c)(\phi) \Rightarrow \omega_{i} * f \in \mathcal{S}_{\mu}^{\lambda}(a,b,c)(\phi) \ (j=1,2);$$

$$\text{(ii) } f \in \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi) \Rightarrow \omega_{j} * f \in \mathcal{K}^{\lambda}_{\mu}(a,b,c)(\phi) \ \ (j=1,2)$$

and

(iii)
$$f \in C^{\lambda}_{\mu}(a, b, c, \phi, \psi) \Rightarrow \omega_j * f \in C^{\lambda}_{\mu}(a, b, c, \phi, \psi) \ (j = 1, 2).$$

Acknowledgements

The second- and the third-named authors are thankful to and acknowledge the support from the research projects funded by the Department of Science and Technology (Government of India) (Ref. No. SR/S4/MS:544/08), the National Board of

Higher Mathematics (Government of India), the Department of Atomic Energy (Government of India) (Ref. No. NBHM/DAE/R.P.2/09), theBCUD Grant (Ref. No. BCUD/14/Engg.109), the University of Pune, and the University Grants Commission (Government of India) (Ref. No. 47-992/09/WRO).

References

- [1] R.W. Barnard, Ch. Kellogg, Applications of convolution operators to problems in univalent function theory, Michigan Math. J. 27 (1980) 81-94.
- [2] B.C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) 737–745.
- [3] N.E. Cho, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl. 283 (2003) 202-212.
- [4] N.E. Cho, Inclusion properties for certain subclasses of analytic functions defined by a linear operator, Abstr. Appl. Anal. 2008 (2008) 1–8 (Article ID 246876).
- [5] N.E. Cho, T.H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc. 40 (2003) 399-410.
- [6] J.H. Choi, M. Saigo, H.M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002) 432-445.
- [7] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- [8] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1-13.
- [9] J. Dziok, H.M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math. 5 (2002) 115–125.
- [10] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003) 7–18.
- [11] P. Eenigenburg, S.S. Miller, P.T. Mocanu, M.O. Reade, On a Briot-Bouquet differential subordination, in: General Inequalities, vol. 3, International Series of Numerical Mathematics, 64 (1983) 339–348, Birkhäuser Verlag, Basel, 1983; see also Rev. Roumaine Math. Pures Appl. 29 (1984) 567–573.
- [12] R.M. Goel, B.S. Mehrok, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math. 12 (1981) 634-647.
- [13] Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vysŝ. Uĉebn. Zaved. Matematika 197 (10) (1978) 83-89.
- [14] W. Janowski, Some external problems for certain families of analytic functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 21 (1973) 17-25.
- [15] J.A. Kim, K.H. Shon, Mapping properties for convolutions involving hypergeometric functions, Internat. J. Math. Math. Sci. 17 (2003) 1083-1091.
- [16] J.-L. Liu, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl. 261 (2001) 441-447.
- [17] J.-L. Liu, H.M. Srivastava, A class of multivalently analytic functions associated with the Dziok-Srivastava operator, Integral Transforms Spec. Funct. 20 (2009) 401-417.
- [18] S.S. Miller, P.T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker Incorporated, New York and Basel, 2000.
- [19] W. Ma, D. Minda, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska. Sect. A 45 (1991) 89–97.
- [20] S.S. Miller, P.T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differ. Equations 67 (1987) 199-211.
- [21] K.I. Noor, Integral operators defined by convolution with hypergeometric functions, Appl. Math. Comput. 182 (2006) 1872-1881.
- [22] K.I. Noor, On new classes of integral operators, J. Nat. Geom. 16 (1999) 71-80.
- [23] K.I. Noor, M.A. Noor, On integral operators, J. Math. Anal. Appl. 283 (1999) 341-352.
- [24] S. Owa, H.M. Srivastava, Some applications of the generalized Libera integral operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986) 125–128.
- [25] K.S. Padmanabhan, R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc. 32 (1985) 321-330.
- [26] St. Ruscheweyh, T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973) 119–135.
- [27] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975) 109-115.
- [28] N. Shukla, P. Shukla, Mapping properties of analytic function defined by hypergeometric function. II, Soochow J. Math. 25 (1999) 29–36.
- [29] H.M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
- [30] H.M. Srivastava, D.-G. Yang, N-E. Xu, Subordinations for multivalent analytic functions associated with the Dziok–Srivastava operator, Integral Transforms Spec. Funct. 20 (2009) 581–606.