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1. Introduction

Let A denote the class of functions of the form:
f@) =2+ az, (1.1)
k=2

which are analytic in the open unit disk
U={z:zeC and |7]<1}.
We also consider a class M of functions ¢(z) which are analytic and univalent in U such that ¢(U) is convex with
¢(0)=1 and R{¢p(z)} >0 (zeU).
We begin by recalling the principle of subordination between analytic functions.
Definition 1. For two functions f(z) and g(z), analytic in U, f(z) is said to be subordinate to g(z) in U, if there exists an analytic
(Schwarz) function w(z) in U, satisfying the following conditions:
w(0)=0 and |w(z)|<1 (zeU),
such that
f(2) =gw(z)).
Trresponding author.
E-mail addresses: harimsri@math.uvic.ca (H.M. Srivastava), smkhairnar2007@gmail.com (S.M. Khairnar), meenamores@gmail.com (M. More).

0096-3003/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2011.09.026


http://dx.doi.org/10.1016/j.amc.2011.09.026
mailto:harimsri@math.uvic.ca
mailto:smkhairnar2007@gmail.com
mailto:meenamores@gmail.com
http://dx.doi.org/10.1016/j.amc.2011.09.026
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

H.M. Srivastava et al./Applied Mathematics and Computation 218 (2011) 3810-3821 3811

We denote this subordination by
f2)<g@) (zel).

In particular, if g(z) is univalent in U, then the subordination
f2)<gl@) (zeU)

is equivalent to the following conditions:
f(0)=¢g(0) and f(U)cg(U)

(see, for details, [7,18]; see also [29]).

Definition 2. Each of the subclasses S*(¢), K(¢) and C(¢, y) of the analytic function class A for ¢, € M is defined by using
the above subordination principle (cf., e.g., [6,19]):

S(¢) = {f:feA and %<¢(l) (zeU; qbe/\/l)}, (1.2)
s Zf'(2) _
K(¢) = {f.feA and 1+f’(z) <¢(2) (zeU; qbe/\/l)} (1.3)
and
e . ¥ .
Clp, ) == {f.feA, ge8(¢) and 22 <Y(z) (zeU; qb,zpe/\/l)}. (1.4)

In particular, when

#2) = () = 1

in the definitions (1.2) to (1.4), we have the familiar classes S*, K and C starlike, convex and close-to-convex function in U,
respectively. Furthermore, if we set

1+Az
77 1< <
(2 1482 (-1£B<AZ)
in the definitions (1.2) and (1.3), we obtain the following function classes:
S1+HAZN 1+Az\
S <1 +Bz> =S"(A,B) and K(ﬁ) = K(A,B). (1.5)

Let P denote the class of functions of the form:
p@) =1+piz+p2i+--,
which are analytic in U and satisfy the following inequality:
R{p(2)} >0 (zel).

Denote by D* : A — A the Ruscheweyh derivative operator of order 2 defined by the following Hadamard product (or
convolution):

Df(2) = —2——+f(2) (2> 1), (1.6)

(1-2)
so that, obviously, we have

z[z'f(z)]"

D’f@) =f@). Df@) =2 and Df(z)="5— (17)

for
neNg:=NU{0}={0,1,2,...} (N:={1,2,3,...} =Np\{0}).

Recently, Noor et al. (see [22,23]) defined as integral operator I, : A — A, analogous to the Ruscheweyh derivative
operator D, as follows.

Definition 3. Let the functions

F@ = ad e e o)
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be defined such that
z

« FED(Z) = .
@) = fiV(2) 127 (z€ U; n e Np). (1.8)
Then the integral operator I, : A — A is defined by
-1
f(2) = £7(2) + (2) = (ﬁ) f(2) (e, (19)

so that, clearly,

If(2)=2(2) and Lf(2)=f(z) (feA)

The so-called Noor integral operator I, of order n (see [3,16]) is an important operator which is used in defining several
subclasses of analytic functions.
For parameters

a,beC and ceC\7Z; (Z;:={0,-1,-2,...}),

the Gauss hypergeometric function >F;(a, b; c; z) is defined by

> b), z*
Fiabczy=Y el 2 1.10
2Fi(a, ) ; ©, K (1.10)
where (v), denotes the Pochhammer symbol defined, in terms of the Gamma function, by
(V):=1 and (v),:= F(IY(J\:)k):v(v+1)-~-(v+kfl) (k e N). (1.11)

The hypergeometric series in (1.10) converges absolutely for all z € U, so that it represents an analytic function in U.
In particular, the function ¢(a, c; z) given by

nFi(1,6,62) = @(a,c;z) (zeU)

is the incomplete Beta function. Also, since

z
a,1;2)=— (z€ ),
0@z =g (ev)
the function ¢(2, 1; z) is precisely the Koebe function.
Many recent investigations in geometric function theory in Complex Analysis have made use of not only the familiar Gauss
hypergeometric function F;(a, b; c; z), but also of its natural generalizations including (for example) the generalized

hypergeometric function 4F; (q,s € No) with ¢ numerator and s denominator parameters:

O‘jec 0217~q) and /)JJGC\Z(; (j:17--'75)7

defined by
q
~ ljll(ocf)k Zk
qFS(O(17"'7O(q; ﬁl7"'7ﬁs;z):Z]; E
par ,H](ﬁf)k
Jj=

For example, we may cite the widely-investigated Dziok-Srivastava operator involving the generalized hypergeometric
function (F; (q,s € No) (see, for details, [8-10]; see also [2,4,5,12-14,17,30] and the references cited in each of these earlier
investigations).

Shukla and Shukla [28] studied the mapping properties of the function f,(a, b, c)(z) defined by

fula,b,c)(2) == (1 — Wz 2F1(a,b;c;2) + uzz 7F1(a,b; ;)] (ze€ U; u=0). (1.12)
On the other hand, Kim and Shon [15] introduced a linear operator L, : A — A defined by
Lu(a,b,c)(f(2)) = fu(a,b,c)(2) « f(2).

Here, in this paper, we define a function (fu)(*” by the means of the following Hadamard product (or convolution):

. -1 _ Z
fu(@,b,0)(z) * [fu(a,b,c)(2)] " = (1—2

and introduce the linear operator I;"t(a,b7 c) by

(=0, 1> -1) (1.13)
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I(ab,c)f(2) = [fula,b,0)2)]" " «f(2). (1.14)
Upon setting =0 in (1.13), we obtain the operator introduced earlier by Noor [21].
Since
2y ey a0, (1.15)
1-2"" & K

by using (1.10) and (1.15) in (1.13), we get

= (k4 1) (@) (b)y zkﬂ) [ (0 Gt Dy e
ST ) sk [fu(a,b0)(2)] T = kZk (1.16)
(; () k! : k; k!
We thus obtain the following explicit representation for [f,(a, b, o))
- 2+ 1)(0),
[fula,b,c)( => mzkﬂ (ze ). (1.17)
k=0

Eq. (1.14) now implies that

I,;;(a,b,c)f(z) —z+ zm: (24 1) (0);

Qa2 1.18
2 (pk + 1) (@) (b), ! (118)

In particular, we have

(@, i+1,0f(2) =f(z) and Iy(a,1,0)f(2) = zf (2). (1.19)
It can also be easily shown that

zp;(a,b,c)f(z)]/ = (A + DI (a,b,0f (2) — il (a,b,0f (2) (1.20)
and

zm(a +1,b, c)f(z)}/ = al'(a,b,0)f z) - (a— 1)I(a+1,b,)f (2). (1.21)

In the present sequel to the aforementioned works, by using the operator Ifl(a, b, c), we introduce and investigate the
inclusion properties of each of the following interesting subclasses of analytic functions for

pyeM, i>-1, ¢(z):11’;§ (-1<B<A<1) and puz0:
Si(a.b,)(g):={f:fe A and I (a.b,0f(2) €S ()}, (1.22)
K;(a, b,c)(¢) := {f :feA and I;;(a, b,o)f(z) IC(qS)} (1.23)

and

z(l;;(a, b, c)f(z))

C(ab,o)(¢,y):=<Sf:feA and 3 g(z) € S)(a,b,c)($) such that —;
Ii(a,b,c)g(2)

< ¥(2) (ze[U)}. (1.24)

It is easily seen from the definitions (1.22) and (1.23) that

f@) e K(a,b,c)(¢) <= 2f'(2) € S} (a,b,c)($). (1.25)
For the sake of convenience, we write
. 1+Az ;
). —_. G 1< <
S"(a’b’c)(lJrBz) .Sﬂ(a,b,c,A,B) (-1<B<AZL), (1.26)
; 1+Az ;
A ik QSN o 1< <
K”(a’b’c)<l+Bz> .lCu(a,b,c,A,B) (-1<B<AZ1) (1.27)
and
+Az 1+Az ;
; = 1< <
C (a b,c )<1 Bz 1 +Bz) .Cﬂ(a,b,c,A,B) (-1SB<A<T). (1.28)
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The main objective of this paper is to investigate the inclusion properties of each of the above-defined function classes
Su(a,b,0)(¢), Kla,b,c)(¢) and ¢ (a,b,c)(¢,).
Since

1+z

1-z

Sé(a,i+1,a)< —

>:s*, Ki(a /1+la)<1+z>:lc (1.29)

and

1 1
+z +z> _c,

Cola,7+1,a) (ﬁﬁ (1.30)

the results presented in this paper can be suitably specialized to deduce the corresponding (known or new) results for the
familiar function classes S*, K and C.

2. Inclusion properties involving the operator Ij;(a, b,c)
The following lemmas will be required in our investigation.

Lemma 1 (see [20]). Let the function ¢(z) be convex univalent in U. Suppose that the function B(z) is analytic in U with
R{B(2)} ZE (E0).

If g € P is analytic in U, then
E’Z’g"(2) + B(2)28'(2) + 8(2) < $(2) (z€ V) (2.1)

implies that
g@2) <92 (zel).

Lemma 2 (see [26]). Let f € K and g € S". Then, for every analytic function Q in U,
(f = Qg)
fxg

where CO[Q(U)] denotes the closed convex hull of Q(U).

(U) c COQ(V)]; (2.2)

Lemma 3 (see [25]). For complex numbers  and v, let ¢(z) be a convex univalent function in U with
¢(0)=1 and R{pH(z)+7y}>0 (z€U).

Also let the function q € A satisfy the following subordination condition:
q(2) < ¢(2) (zel).

If the function p € P is analytic in U, then

_Zp'(2)
p@) + GRS <M) (zeU) (2.3)

implies that
p@) < ¢(z) (zel).

Lemma 4 (see [11]). Let the parameters § and n be complex numbers. Also let ¢(z) be a convex univalent function in U with

¢(0)=1 and R{ép(z)+n} >0 (zel).

If the function p € P is analytic in U, then the following subordination condition:

P+ o < D) ZEU) 24)

implies that
p() < $(z) (zeU).

Our first main result is contained in Theorem 1 below.
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Theorem 1. Let the function ¢(z) be convex univalent in U with
¢(0)=1 and R{p(2)} =20 (zeU).
Then
St (a,b,c)(¢) C Sy(a,b,0)(¢) (A>-1; u=0).

Proof. Let f(z) € Sj‘f (a,b,c)(¢) and suppose that

2(I(a.b,0f(2))
Ii(a,b,o)f (2)
Then, by using (1.2) in (2.5) and differentiating the resulting equation, we get

p(2) = (p(2) € P). (2.5)

z(lffl (a,b
I:‘j‘ (a,b
where

I (a,b,0f 2)

“”zlﬂmthn

and
q(2) < ¢(2) (zel).
Hence, by applying Lemma 3, we obtain
z(lj;(a, b,o)f z))l
L, (a, b,o)f (z)
which, in view of (1.22), yields
f2) € S,(a,b,c)(¢).

Our proof of Theorem 1 is thus completed. O

<¢(2) (zel),

Theorem 2. Let the function ¢(z) be convex univalent in U with
¢(0)=1 and R{p(z)} =20 (z€ ).

Then
Si(a,b,c)(¢p) C Sy(a+1,b,c)(¢) (2>—1; u=0).

Proof. Applying the same technique as in the proof of Theorem 1, and using (1.21) in conjunction with Lemma 4, we obtain
the result asserted by Theorem 2. O

Upon setting

1+Az
@) =118

in Theorems 1 and 2, we obtain the following result.

(-1<B<A<1)

Corollary 1. For 2> —1, u =0 and R(a) > 1, the following inclusion properties hold true:
1 7
S, (a,b,c.A,B) C S;(a,b,c.A,B)
and

Su(a, b,c,A,B) C Syla+1, b,c,A,B).
If we set
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W0 =172 @ev)

in Theorems 1 and 2, we obtain the following result.
Corollary 2. For 2> -1, u=0 and %R(a) > 0,

I (a,b,0)f(z) € S = I'(a,b,c)f(2) € S".
Furthermore,

L@ bcfz) €S = I(a+1,bc)es

Corollary 3. For 2> -1, u=0 and %R(a) > 0,

K (a,b,¢)(¢) C K (a,b,c)(¢)
and

Kj.(a,b,0)(¢) C Ky(a+1,b,c)(4).

Proof. It is easily observed that

f@) € K, (a,b,c)(¢) <= 2f'(2) € 5,7 (a,b,c)(9),
= 7f'(z) € S,(a,b,0)(¢),
= I,(a,b,0)(zf (2) € 5 (9),
= 2(I,(a,b,0f(2)) € 5'(¢),
< L(a,b,c)f (2) € K(¢),
< f(z) € Ky(a,b,0)(¢).

The second assertion of Corollary 3 can be proved similarly. O

Theorem 3. Let the function ¢(z) be convex univalent in U with
¢(0)=1 and R{¢(2)} =0.

If f(z) € A satisfies the following condition:
f(2) € S,(a,b,c)(¢)

then
F(z) € 5,(a,b.c)(9),

where the function F(z) is given by a one-parameter integral operator as follows:

:t’;l/o £ fz)dt (> —1).

F(2)

Proof. First of all, we find from the definition (2.6) that

z(Ii;(mbm)F(z))l = (0 + Dl (a,b,0)f (2) - bl (a,b, O)F(2).

Let

Thus, by using (2.7), we get

(0+ D (a,b,c)f (2)
I(a,b,o)Fz)

p(z) +d=
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Differentiating both sides of (2.8) logarithmically, we obtain
w #(@bof@)
PE)+d  I(abof(2)

by means of the hypothesis of Theorem 3.
Finally, by applying Lemma 4, we have

z(lj;(m b, C)F(Z)),
I.(a,b,c)F(z)

p() + <¢(z) (zel)

<¢(z) (zel),

that is,
F(z) € 8,(a,b,c)($),

as asserted by Theorem 3. O

In its special case when

1+Az
= 1< <

$(2)
Theorem 3 yields the following result.
Corollary 4. Let /> -1, u =0 and d > —1. Also let the function F(z) be given by (2.6). If f(z) Sj;(a,b,c,A,B), then

F(z) € S(a,b,c,A,B).

Corollary 5. Let 2> -1, p =0 and d > —1. Also let the function F(z) be given by (2.6). If f(z) € Ici;(a, b,c)(¢), then

F(z) € Kj(a,b,c) ().

Proof. It is fairly easy to see that

f(2) e Ky(a,b,c)(¢) <= 2f'(2) € Sy (a.b,c)(9)
—> 2(F(2)) € S,(a,b,c)(¢)
— F@z) e K,(a,b,c)(¢). O

Theorem 4. Let f(z) € A. Then

¢l (a.b.c.g.y) C Ci(a.b.c.gy) (%(a)>0).

Proof. Let f(z) € C;“(a,b,c, ¢, ¥). Then, by definition, we have

2(1(@,b.c. 6, 0)f(2))
I (a,b,c,¢,9)g(2)
for some g(z) € S;;” (a,b,c)(¢). Next, by setting

<y(z) (zelU)

I'(a,b ’
h(z) = w (2.9)
I,(a,b,c)g(2)

and

, (2.10)

we notice that

h(zye P and H(z) € P.
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Thus, by Theorem 2, g(z) € Sﬁ(a,b, c)(¢) and so R{H(z)} > 0. Moreover, (2.9) implies that
2(I(a.b,0f(2)) = (I'(a,b,c)g(@))h(2).
Differentiating both sides of (2.9), we get
2(2(I(a,b.0f () )
I,(a,b,c)g(2)
which, in view of the identity (1.20), yields

!

= H(2)h(z) +zh'(2)

Z(’ZH ((17 b7 C)f(Z))/ _ 1;4‘ ! (a, b7 C) (Zf/(Z)) _ Z(I;;(a, b7 C) (Zf/(Z))>, + AI;(‘L b7 C) (Zf/(Z))

I (a,b,)g(2) I, (a,b,0)g(2) 2(Ii(a,b, c)g(z))/ + il (a,b,c)g(2)
z(I,’;(a,b,C) (zf’(Z))), L (a,b,c)(zf'(2))
~ I(a,b,0g(2) I,(a,b,08(z)  H(@)h(z) + 2l (2) + 7h(z) hiz
= ; ’ = HZ) + 2 = h@)+
Z(Iu(a,b,c)g(z)) N

I.(a,b,0)g(2)

Now, by applying Lemma 1 for

E=0 and B(z)= H(z;—s-i
with
1
we get

h(z) < y(2) (zeU),
which, by virtue of (2.9), implies that f(z) € C;(a,b,c, ¢,¢). O

Theorem 5. Let f € A. Then

Ci(ab,c,d,9) CChla+1,b,c,p,%) (Ra)>0).

Proof. By using arguments similar to those in the proof of Theorem 4, we get

zH (2)

h(z) +W <Yz (zelU)
for
he) z(Ifl(a +1,b, c)f(z))/ Cp
I'(a+1,b,0g(2)
and
Hio) - z(Ifl(a +1,b, c)g(z)>/ p
[(a+1,b,c)g2) ’
Now, by applying Lemma 1 for
1
E=0 and B(2) :W
with
1 D) —

we obtain the required result. O

(2.11)

(2.12)
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Theorem 6. Let d > —1 and suppose that F(z) is given by (2.6). If f(z) € Cl’;(a,b7 C, ¢, ), then
F(z) € Ci(a,b,c. 6. ).

Proof. By employing the same technique as in proof of Theorem 4, we get

zH (2)
Ha) o5+ he <@
for
iy _ 2@ b OFR)
I'(a.b,c)g(2)
and
Hiy _ 2lu@b0s@)
I'(a,b,0)g(2)
Now, by applying Lemma 1 for
1
E=0 and B:H(z)+b
with

we arrive at the result asserted by Theorem 6. [

3. Inclusion properties by convolution

In this section, we show that the function classes
Su(a.b.c)(¢), K,(a,b,c)(¢) and C,(a,b,c.¢,¥)

are invariant under convolution with convex functions.

Theorem 7. Let a>0, b>0 and c € R\ Z;. Suppose also that ¢,y € M and g € K. Then

(i) f € S(a,b.c)($p) = g+f € S)(a,b,c)($);
(i) f € Kj(a,b,c)(¢) = g +f € K} (a,b,c)(¢)

and

(iii) f € Cia,b.c. ) = g +f € C(@,b,c.¢,).

Proof. We consider the following three cases:
(i) Let f € Sj(a,b,c)(¢). Then
z(IL(a, b,c)f)/
I'(a,b,0)f
which yields

< ¢wz) (zel),

’

2(L(@b,o)g+N@) 82 +2(L(@b.0f@) gz« pwil(ab of@)

L(a,b.c)(g+f)(2) g@)+I(ab.of) g+l (a.bf()
Thus, by using Lemma 2, we conclude that
{g+ oWl (ab,of

, (U) € TCO(L)] € $(U),
{g+L@b,or}

3819

(3.1)
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since ¢ is convex univalent and I;;(a, b,c)f € §'(¢). By the definition of subordination, we see that the function quotient
in (3.1) is subordinate to ¢(z) in U, and so we have

g+feS,(ab,c)(e)

(ii) Suppose that f € IC;;(a,b,c)(qS). Then, by (1.23), zf'(z) € S;(a, b, c)(¢). Hence, by means of (i), we have
g+2f'(2) € S}(a,b,0)(¢).
We notice also that

8(2) 2 (2) = 2(g + f) (2).
Thus, by applying (1.23) again, we get

g+f ek (ab,c)(e).
(iii) Let f € C;(a,b,c, ¢, ). Then there exists a function q € S(a, b, c)(¢) such that
2(I}(a.b,0f(2))
I(a.b.c)q(2)

Therefore, we get

<Y(z) (zel). (3.2)

2(I(@,b,0f (1)) = vw@)(a,b.c)az) (z€ V), (33)
where w(z) is an analytic function in U with
w(z)|<1 (zeU) and w(0)=0.

Now, since I;(a, b,c)q € §*(¢), we have

z(lf,(a, b;c)(g *f)(2)>, :g(z) *Z<Ij;(a7 b, c)f(z))/ _82) *IP(W(Z))IZ(a?b:C)Q(Z) “¥(2) (zeu). (3.4)
g«I'(a,bc)g g(2) * I'(a,b,c)q(z) g(z) xI(a,b,0)q(2)

Thus the assertion (iii) of Theorem 7 is proved. We complete the proof of Theorem 7. O

We next investigate the functions w1(z) and w,(z) defined by (see [24,27])

= /et 1
01(2) = ’; (Ei k)z" (R() =2 0; ze U) (3.5)
and
0(2) =5 1;< log (11*_’?) (log1:=0; K| <1 (k#1); z € U), (3.6)

respectively. Then it is known from the earlier works [1,27] that the functions w;(z) and w,(z) are convex univalent in U.
Therefore, we have the following immediate consequences of Theorem 7.

Corollary 6. Leta>0,b>0and c € R\ Z;. Suppose that ¢,y € M. Also let the functions w4(z) and w(z) be defined by (3.5) and
(3.6), respectively. Then

(i) f e Su(a.b,0)(¢) = wj f € Sj(a,b,c)(¢) (=1,2);
(ii) f € K;(aabv o) (¢) = Wj xf e ]C;(a,b,c)((]b) (J =1,2)

and

(1”) f € C;—;(a’bzca d)v ‘//) = Wj *f € C;‘;(avbvc’ ¢7 lﬂ) (.l = 12)
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