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Abstract

This paper presents and discusses several methods for reasoning from inconsistent

knowledge bases. A so-called argued consequence relation, taking into account the

existence of consistent arguments in favour of a conclusion and the absence of

consistent arguments in favour of its contrary, is particularly investigated. Flat

knowledge bases, i.e., without any priority between their elements, are studied under

different inconsistency-tolerant consequence relations, namely the so-called

argumentative, free, universal, existential, cardinality-based, and paraconsistent

consequence relations. The syntax-sensitivity of these consequence relations is

studied. A companion paper is devoted to the case where priorities exist between the

pieces of information in the knowledge base.

Key words: inconsistency, argumentation, nonmonotonic reasoning, syntax-

sensitivity.

*  Some of the results contained in this paper were presented at the Ninth Conference on Uncertainty in
Artificial Intelligence (UAI'93) and published in the proceedings (Benferhat, et al.1993).
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1. Introduction

An important problem in the management of knowledge-based systems is the handling of

inconsistency. Inconsistency may be present for mainly three reasons:

- The knowledge base includes default rules (e.g., "birds fly", "penguins are

birds", "penguins do not fly") and facts (e.g., "Tweety is a bird") and later a new

information is received (e.g., "Tweety is a penguin") which contradicts a plausible

conclusion which could be previously derived from the knowledge base;

- In model-based diagnosis, where a knowledge base contains a description of the

normal behavior of a system, together with observations made on this system. Failure

detection occurs when observations conflict with the normal functioning mode of the

system and the hypothesis that the components of the system are working well; this leads

to diagnose what component(s) fail(s);

 - Several consistent knowledge bases pertaining to the same domain, but coming

from n different sources of information, are available. For instance, each source is a

reliable specialist in some aspect of the concerned domain but is less reliable on other

aspects. A straightforward way of building a global base ∑ is to concatenate the

knowledge bases ∑i provided by each source. Even if ∑i is consistent, it is unlikely that

∑1∪∑2…∪∑n will be consistent also.

These three causes of inconsistency are in general the most common ones. There are two

attitudes in front of inconsistent knowledge. One is to revise the knowledge base and

restore consistency. The other is to accept inconsistency and to cope with it. The first

approach meets two difficulties: there are several ways of restoring consistency yielding

different results; moreover part of the information is thrown away and we no longer have

access to it. This approach may be natural when handling exceptions, as in the above

example where it seems more intuitively reasonable to delete ¬bird∨ fly than

¬penguin∨¬fly from {bird, penguin, ¬penguin∨¬fly, ¬bird∨fly, ¬penguin∨bird}.

Restoring consistency also makes sense in model-based diagnosis, since it comes down

to find the reasons for a failure. In the case of multiple sources, restoring consistency

looks debatable, since the goal of retaining all available information is quite legitimate in

this case. However we must take a step beyond classical logic, since the presence of

inconsistency enables anything to be entailed from a set of formulas. Gabbay and Hunter

(1991, 1993) claim that inconsistency in a database exists on purpose and may be useful

if its presence triggers suitable actions that cope with it. They give the example of

overbooking in airline booking systems. They suggest the specification of an "action

language" on top of the object language, with a view to trigger external actions that
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eventually may modify the contents of the database in a suitable way, depending on the

environment surrounding the database.

This paper is primarily devoted to the treatment of inconsistency caused by the use

of multiple sources of information rather than the one caused by the use of default rules

with exceptions. This paper investigates several methods for coping with inconsistency

by suitable notions of consequence relations capable of inferring non-trivial conclusions

from an inconsistent knowledge base. These consequence relations coincide with the

classical definition when the knowledge base is consistent. Knowledge bases considered

in this paper are flat, i.e., finite sets of equally reliable propositional formulas. The

proposal made by Rescher and Manor (1970) is often used: compute first the set of

maximal consistent subsets of the knowledge base; then a formula is accepted as a

consequence when it can be classically inferred from all maximal consistent subsets of

propositions (this is the so-called universal consequence) or from at least one maximal

consistent subset (this is the so-called existential consequence).

It turns out that the universal consequence relation is very conservative hence rather

unproductive while the existential one is too permissive and leads to pairs of mutually

exclusive conclusions. A mild inference approach is proposed in this paper, that is more

productive than the universal consequence but does not lead to conclusions which are

pairwise contradictory. It is based on the idea of arguments that goes back to Toulmin

(1956), and is related to previous proposals by Poole (1985), Pollock (1987), and Simari

and Loui (1992) that were suggested in the framework of defeasible reasoning for

handling exceptions. We suggest that a conclusion can be inferred from an inconsistent

knowledge base if the latter contains an argument that supports this conclusion, but no

argument that supports its negation.

The paper is organized as follows. Section 2 introduces the notion of argument and

defines the argued consequence relation. Section 3 compares different notions of

consequence relations that are inconsistency-tolerant, including several ones that come

from the nonmonotonic logic literature. In Section 4, we study the syntax-sensitivity of

these consequence relations (namely to what extent a consequence relation depends on the

syntax of the knowledge base) according to the following syntax properties: the

insensitiveness to the addition of consequences of consistent sub-bases, including the

duplication of formulas, and the insensitiveness with respect to the clausal form. Section

5 contains a thorough analysis of our argument-based inference process.
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2. Definition of an argument-based consequence relation

In this paper, for the sake of simplicity, we only consider a finite propositional language

denoted by . We denote the set of classical interpretations by Ω, by  the classical

consequence relation, Greek letters α,β,δ,… represent formulas. Let ∑ be a multiset of

propositional formulas, possibly inconsistent but not deductively closed. ∑ is a multiset

since the same formula may be present several times. This is why we consider ∑ as a

multiset. Cn(∑) denotes the deductive closure of ∑, i.e., Cn(∑)={φ∈ , ∑ φ}. Cn(∑)

is a set, not a multiset. The knowledge bases considered in this paper are flat, which

means that all formulas in ∑ have the same reliability. In the following, sub(multi)sets of

∑ are denoted by capital letters A,B,C,…. They will be called subbases of ∑.

When the knowledge base ∑ is not deductively closed, we call it a "belief base",

following Nebel (1991), while bases which are deductively closed are called "belief sets"

after Gärdenfors (1988). Our view of a belief base ∑ is syntactic in the sense that, for

instance, ∑ = {φ} is not the same as ∑' = {φ, φ}. A formula in ∑ is called a "belief"

because it represents a proposition taken for granted, that does not require justification. In

the presence of inconsistency, the approaches developed in this paper must be syntactic in

nature, since they explicitly use formulas that appear in the belief base originally, while

two inconsistent belief bases over the same language are semantically equivalent (in a

trivial way). Moreover, in the context of belief revision, logically equivalent (consistent)

belief bases may be revised differently. For example, the two belief bases ∑1={α,β} and

∑2={ α∧β} are logically equivalent but can be revised differently if we learn the new

information {¬α}. In some approaches, we get Cn({¬α∧β}) in the case of adding ¬α
to ∑1, while with other approaches adding ¬α to ∑2 we get Cn({¬α}). Other aspects of

syntax-sensitivity are discussed in Section 4. This syntactic treatment of inconsistency-

handling is very different from the one advocated by Rescher and Brandom (1980). These

authors adopt a semantic treatment of inconsistent sets of propositional sentences, in

which the classical set of interpretations is imbedded in a larger set of non-standard

possible worlds.

In the present paper, the method that copes with inconsistency is to extract from an

inconsistent belief base consistent arguments supporting a proposition or refuting it. The

following definitions are helpful to formalize this view.

Definition 1: A sub-base A of ∑ is said to be consistent if it is not possible to deduce a

contradiction from A, namely, it is not true that A ⊥. A is said to to be maximally
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consistent if i) it is consistent and ii) either A = ∑ or adding any formula φ from ∑-A to A

entails the inconsistency of A ∪ {φ}.

Definition 2: A sub-base A of ∑ is said to be an argument for a formula φ, if it satisfies

the following conditions:

(i) A  ⊥ (A is consistent),

(ii) A   φ, and

(iii) ∀ψ∈A, A – {ψ}  φ

An argument for φ is then a minimal (for set- inclusion) consistent subset of formulas that

implies φ. Other authors (for instance Elvang-Goransson et al.(1993), Dung(1993),

Cayrol(1995) ) call "argument" the pair (A, φ). Notice that our notion of argument is

identical to the one proposed by Simari and Loui (1992). These authors apply it to default

reasoning (arguments are used to determine the notion of specificity which is also very

similar to the notion of environment used in the ATMS terminology (De Kleer, 1986)1).

Definition 3 (Benferhat, et al.1993): A formula φ is said to be an argued consequence

of ∑, denoted by ∑ 

 

φ, if and only if:

(i) there exists an argument for φ in ∑, and

(ii) there is no argument for ¬φ in ∑.

As a consequence of this definition, if a belief base contains only the two contradictory

statements {φ,¬φ} then the inference φ ∧ ¬φ ψ does not hold for any ψ. In other

words, our approach is in agreement with a basic motivation of paraconsistent logics

(e.g., Da Costa, 1963), where they reject the principle "ex absurdo quodlibet" which

allows the deduction of any formula from an inconsistent base.

The notion of argued consequence used here is rather straightforward and does not

involve a comparison between the strength of arguments in favor of φ and ¬φ. For

instance an argument A in favor of φ can be weaker than an argument B in favor of ¬φ if

A contains formulas ψ such that arguments A' against them exist (A'¬

 

ψ) while this is

not true for arguments in B. Fox et al. (1992), Elvang-Goransson et al.(1993) Krause et

1 An ATMS (assumption-based truth maintenance system) is devoted to hypothetical reasoning. This
system uses two kinds of propositional symbols, the assumption ones and the non-assumption ones. An
ATMS is able to determine under which set of assumptions a given proposition p is true. This set of
assumptions when it is minimal (with respect to the set-inclusion relation) and consistent is called
environment of the proposition p. Therefore an ATMS can be seen as a way to compute arguments, by
considering the formulas of the knowledge base as assumptions, and an environment of a proposition p
can therefore be seen as an argument for p.
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al. (1994), offer an elaborate strategy for performing a comparison of arguments (as

pairs) pertaining to different conclusions, based on ideas of rebuttal and undercutting and

define classes of acceptability for such pairs. Their notion of "probable inference"

coincides with our argument-based inference. Dung (1993) studies properties of the so-

called defeat relation between pairs (A, φ) such that A φ, that is, the relation that

describes how one argument may defeat another. These works are carefully analyzed by

Cayrol (1995) and related to nonmonotonic reasoning.

It is easy to verify that  is nonmonotonic indeed. Let us consider the following

example where our belief base ∑ contains only the formula φ. It is obvious that the

formula φ is an argued consequence of ∑. Let us add to ∑ the information that φ is false,

then φ will no longer be an argued consequence of ∑' = {φ,¬φ} since there exists also an

argument for ¬φ  in ∑'. This nonmonotonicity is only due to the presence of

inconsistency, as seen now.

Proposition 1: if ∑ is consistent, then ∑ φ iff ∑ φ
Proof:

• If a formula φ is a logical consequence of ∑, then there obviously exists in ∑ an

argument for φ. Since ∑ is consistent, then ¬φ cannot be deduced from ∑, which

means that there is no argument for ¬φ in ∑, and therefore by definition φ is also an

argued consequence of ∑.

• The second part of the proof goes in a similar way.

Proposition 1 means that the argued consequence resorts to what Satoh (1990) calls "lazy

nonmonotonic reasoning" because non-monotonicity only appears in the presence of

inconsistency, an idea also advocated by Lin (1987).

3. Comparative Study of Inconsistency-Tolerant Consequence
Relations

In this sub-section we compare argument based inference relations with other

inconsistency-tolerant consequence relations studied in Benferhat et al. (1993). We start

this comparative study by presenting the different approaches from the most conservative

ones to the most adventurous ones. But first we need some further definitions:

Definition 4: A sub-base A of ∑ is said to be minimally inconsistent if and only if it

satisfies the two following requirements:
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• A ⊥, and

• ∀ φ ∈ A, A – {φ} ⊥.

From now on, we denote by Inc(∑) the set of formulas belonging to at least one

minimally inconsistent sub-base of ∑, namely:

Inc(∑) = {φ, ∃ A ⊆ ∑, such that φ ∈ A and A is minimally inconsistent}

The set Inc(∑) can be related to the "base of nogoods" used in the terminology of the

ATMS (De Kleer, 1986)1. Once Inc(∑) is computed, and all elements of Inc(∑) are

removed from ∑, the resulting base is called the free base of ∑, denoted by Free(∑)

(Benferhat et al., 1992). In other words, the set Free(∑) contains all formulae which are

not involved in any inconsistency of the belief base ∑:

Definition 5: A formula φ is said to be free iff it does not belong to any minimally

inconsistent sub-base of ∑, namely:

φ is free if and only if φ∉Inc (∑)

We denote by Free(∑) the set of free formulas in ∑. Now, let us introduce the notion of

the free consequence, denoted by Free:

Definition 6: A formula φ is said to be a free consequence (or a sound consequence) of

∑, denoted by ∑ F

 

r

 

e

 

e

 

 φ, if and only if φ is logically entailed from Free(∑), namely:

∑ F

 

r

 

e

 

e

 

 φ  iff  Free(∑) φ

The free inference relation is very conservative as it will be shown later. It corresponds to

a maximal revision of ∑, deleting all formulas involved in a conflict. Note that if ∑ F

 

r

 

e

 

e

 

φ, then there is a very safe argument A for φ in Free(∑), since the formulas forming this

argument are not involved in any inconsistency of ∑, and are thus not rebutted by any

subset of ∑. Moreover there cannot be any argument against φ. Hence free consequences

are argued consequences, and very safe ones.

1 A no-good is a minimal set of incompatible assumptions. Links between minimal inconsistent sub-
bases and nogoods can be established in the following way: let ∑ be a belief base, and let ∑' be a new
belief base obtained from ∑ by replacing each formula φi in ∑ by ¬Hi∨φi, where Hi is an assumption
symbol (all Hi are different). Then we can show that the sub-base A={φi/ i=1,m} is minimal consistent
sub-base of ∑ iff HA={H i/¬Hi∨φi∈∑', φi∈A} is a nogood.
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Let us now recall the approach first proposed by Rescher and Manor (1970), where they

define the universal (called also the inevitable) consequence relation in the following way.

Let MC(∑) be the set of maximal consistent sub-bases of ∑.

Definition 7: A formula φ is said to be a Universal consequence or MC-consequence or

Inevitable consequence of ∑, denoted by ∑ MC φ, if and only if φ is entailed from each

element of MC(∑), namely:
∑ MC φ  iff ∀ A ∈ MC(∑), A φ

As mentioned above, the free consequence relation is more conservative than the MC-

consequence:

Proposition 2: Each free consequence is also a MC-consequence. The converse is false

Proof:

(i) Let us partition a belief base ∑ into a pair (Inc(∑), Free(∑)), and let ∑1,…, ∑n be

the maximal consistent sub-bases of Inc(∑). It is obvious that ∑1∪Free(∑), …,

∑n∪Free(∑) form the maximal consistent sub-bases of ∑ (since Free(∑) are outside

any conflict). Then each element of MC(∑) contains Free(∑), therefore if a formula is

a free consequence then it is also a MC-consequence.

(ii)  To show that the converse is false, let us consider the following counter-example

where our base contains the five formulas:

∑ = {α, ¬α∨¬β, β, ¬α∨δ, ¬β∨δ}

The base ∑ is inconsistent, and the inconsistency is caused by the first three formulas,

which means that the free base of ∑ is Free(∑)= {¬α∨δ, ¬β∨δ}. It is clear that δ
cannot be entailed from Free(∑).

In contrast with the MC-consequence, the base contains three maximal sub-bases:

 A={¬ α∨¬β, β, ¬α∨δ, ¬β∨δ},

B={ α, β, ¬α∨δ, ¬β∨δ}, and

C={α, ¬α∨¬β, ¬α∨δ, ¬β∨δ}

corresponding to the case where we remove from ∑ each element of Inc(∑). We see

that each sub-base entails δ, therefore δ is a MC-consequence.

In the above example, it is clear that the MC-consequence involves an idea of

parsimony with respect to the removal of inconsistency; each maximal consistent sub-

base is obtained by removing the least number of formulas sufficient to restore

consistency. This is not so when considering Free(∑).
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There is another way to find the proof of the previous proposition noticing that:

Free(∑) = Ai∈ΜC(∑) Ai

Indeed, if a formula φ does not belong to Free(∑) then there exists a minimally

inconsistent sub-base Ak containing φ, and therefore there exists at least one maximally

consistent sub-base which contains Ak except for φ, which means that there exists at least

one element of MC(∑) which does not contain φ, and consequently φ does not belong to

the intersection of the elements of MC(∑). The converse is also true. Indeed, if
φ∉ Ai∈ΜC(∑)Ai then there exists a maximal consistent sub-base A such that φ∉A, and

A∪{ φ} is inconsistent, therefore there exists a minimally inconsistent sub-base of A∪{ φ}

containing φ, hence φ is not free. Then from the properties of Cn, we find:

Cn(Free(∑))=Cn( Ai∈ΜC(∑)Ai) ⊆ Ai∈ΜC(∑)Cn(Ai).

 The next propositions compare the MC-consequence to the argued consequence:

Proposition 3: A formula φ is an argued consequence of ∑ iff ∃ Ai ∈ MC(∑), such

that Ai φ, and Aj ∈ MC(∑), such that Aj ¬φ.
Proof

If φ is an argued consequence of ∑, there is an argument A in favour of φ. There is a
maximal consistent set Ai containing A since A is consistent, hence Ai φ. Besides,

since there is no argument against φ, no maximal consistent sub-base will entails ¬φ.

Conversely, if Ai φ for Ai∈MC(∑) then Ai contains an argument for φ. Now if

there were an argument A against φ, then there would be a maximal consistent sub-set

of ∑ containing A that would entail ¬φ, but such a maximal subset of ∑ does not

exist by hypothesis.

Proposition 4: Each MC-consequence of ∑ is also an argued consequence of ∑. The

converse is false

Proof:

- If φ is a MC-consequence of ∑, then each element of MC(∑) enables us to infer φ.

(hence ∃ Ai ∈ MC(∑), Ai φ). As, each element of MC(∑) is consistent and entails

φ, then it does not exist an element of MC(∑) which enables us to deduce ¬φ. In

other words, Ai ∈ MC(∑), Ai ¬φ.

Then, using the previous proposition, we conclude that φ is an argued consequence of

∑ .
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- The converse is false, indeed let ∑ = {α, ¬α, α → β}. We have:

 MC(∑) = {A, B}

where:

A={ α, α → β}, and

B={¬ α, α → β}.

In this example, β is an argued consequence of ∑, while it is not a MC-consequence.

From the above results, the argued inference is less conservative than the MC-

consequence.

One of the main difficulty for implementing the MC-consequence is the cardinality of

MC(∑) which increases exponentially with the number of conflicts in the base and in

general, it is not possible to take into account all the elements of MC(∑). One may think

of selecting a non-empty subset of MC(∑), denoted by L(∑), which represents maximal

consistent sub-bases that keep as many formulas of ∑ as possible. The set L(∑) is

computed in the following manner:

A∈L(∑) iff A∈MC(∑) and ∀B∈MC(∑), |A| ≥ |B|

where |∑| is the cardinality of ∑. The idea of selecting a subset of MC(∑) using a

cardinality criterion was used independently in diagnosis problems. It corresponds to the

property of parsimony advocated in (Reggia et al., 1985). In model-based diagnosis, the

number of diagnoses (sets of faulty components, also called hitting sets in (Reiter, 1987))

is very high in general. To select a subset of all possible diagnosis, De Kleer (1990)

proposes a probabilistic criterion where he assumes that each component has a very small

probability to fail and that all components fail independently. De Kleer (1990) shows that

the selected diagnosis are those which contain a small number of failing components. A

similar probabilistic justification of L(∑) can be found in (Benferhat et al., 1993). See

also (Lang, 1994) for discussions about links between inconsistency handling and

diagnosis.

In order to generate a set of consequences from an inconsistent belief base, based on

L(∑), a definition similar to the MC-consequence can be used:

Definition 8: A formula φ is said to be a L-consequence (or cardinality-based)1 of ∑,

denoted by ∑ Lφ, if and only if it is entailed from each element of L(∑), namely:

1'L-consequence' is short for 'lexicographic consequence'. This name comes from the prioritized version of
the consequence notion (studied in the companion paper).
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∑ L φ  iff ∀ A ∈ L(∑), A φ

Proposition 5: Each MC-consequence of ∑ is also a L-consequence of ∑. The

converse is false.

This is obvious since the L-consequence uses a subset of MC(∑). However the L-

consequence and the argued consequence are not comparable.

Counter-example

(i) Let ∑ = {α, ¬α, α → β}. This belief base is inconsistent and L(∑)={ { α, α →
β}, {¬ α, α → β} }  = MC(∑). It is obvious that β is not a L-consequence of ∑,

while β is an argued consequence.

(ii) Let us consider the following example where ∑ = {α, β, ¬α, α → β, ¬α →
¬β}. This base is inconsistent and L(∑) has only one element which is the sub-base

{ α, β, α → β, ¬α → ¬β}. β is a L-consequence of ∑, while β is not an argued

consequence since ¬β has an argument {¬α, ¬α → ¬β} in ∑.

The second counter-example indicates that the L-consequence may implicitly delete some

useful pieces of knowledge. It may result in destroying some arguments, as well as some

rebuttals (i.e., formulas whose presence ensures an argument for ¬φ that inhibits

arguments for φ). The argumentative inference looks more respectful of the various points

of view that are expressed in the belief base.

An open question is to see in which situation MC-Consequence and L-consequence

generate the same conclusions. The presence of duplicated formulas in ∑ may prevent the

identity beween L-consequence and MC-consequence. Indeed duplicating formulas in a

maximal consistent subset A can make this multiset the only element in L(∑), while

MC(∑) remains the same. The L-consequence may thus appear as an arbitrary selection

from MC(∑) in some contexts. The following example shows that even if we leave apart

the question of duplicated pieces of information, L-consequence may always generate

more results than MC-consequence. Namely, it is possible to find a belief base ∑ without

duplicated formulas, and where a L-consequence of ∑ is not a MC-consequence of ∑.

Example:

 Let ∑ = {ψ→φ, ψ, ¬ψ, ¬φ∧¬ψ, ¬φ}

This belief base is inconsistent, does not contain duplicated formulas and has three

maximal consistent sub-bases:

A = {ψ→φ, ψ}, Β = {ψ→φ, ¬ψ, ¬φ, ¬φ∧¬ψ}, C = {ψ, ¬φ} and L(∑)={B}.
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It is clear that ¬φ∧¬ψ is not a MC-consequence while it is a L-consequence.

Let us now restrict ourselves to a kind of non-redundant belief base called minimal core

set (Goldszmidt et al., 1990), (Goldszmidt, 1992):

Definition 9: A consistent belief base A is said to be a minimal core set if φ∈A,

A–{ φ} φ.

A is a minimal core set if it is formed of a set of independent axioms. Even when maximal

consistent subsets are minimal core sets, the L-consequence can be more productive than

the MC-consequence. Namely it is possible to find a belief base ∑ such that each of its

maximal consistent sub-base is a minimal core set, and where a L-consequence of ∑ is

not a MC-consequence of ∑.

Example:

 Let ∑ = {φ→ψ, φ∧ξ, ¬ψ∧¬ξ∧φ}. There are two maximal consistent sub-bases,

which are minimal core sets: A = {φ→ψ, φ∧ξ}, Β = {¬ψ∧¬ξ∧φ}and L(∑)={A}.

It is clear that ψ is not a MC-consequence while it is a L-consequence.

In order to let each MC-consequence be also a L-consequence of ∑, it is enough that all

maximal consistent sub-bases of ∑ have the same cardinality.

Rescher and Manor (1970) have also proposed another definition of the consequence

relation, called existential consequence that can be described in the following way:

Definition 10: A formula φ is said to be an existential consequence of ∑, denoted by

∑ ∃φ, if and only if there exists at least one element of MC(∑) which entails φ, namely:

∑ ∃ φ iff ∃ A ∈ MC(∑), A  φ

It is not hard to see that this approach is the most adventurous one, but unfortunately it

has an important drawback, since this approach generally leads to a trivially inconsistent

set of results. Indeed, there may exist Ai φ and Aj ¬φ, in which case both φ and ¬φ
will be entailed.

Figure 1 summarizes the links existing between the different consequence relations

studied here, the edges mean the set inclusion relation between the set of results generated

by each consequence relation. The top of the diagram thus corresponds to the most

conservative inferences. All inferences reduce to the classical one when ∑ is consistent.

Cayrol (1994) has shown that most existing argumentation systems come down to one of

the consequence relations studied here.
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Figure 1: A comparative study of consequence relations
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4. Syntax-Sensitivity of the Consequence Relations

All introduced consequence relations are syntax-sensitive in the presence of

inconsistency. But syntax-sensitivity can be a matter of degree. For instance the L-

consequence can be viewed as very much syntax-sensitive. Namely, the following

situation may happen: let A ∈ L(∑), B ∈ MC(∑) – L(∑) and define C to be logically

equivalent to B but |C| > |A|. To have it, it is enough to duplicate formulas in B and not in

A a sufficient number of times. This duplication gives another multiset of formulas ∑'

where A ∉ L(∑') and B ∈ L(∑'), which means that the set of L-consequences of ∑'

may be noticeably different from the set of L-consequences of ∑, although they differ

only via duplication of formulas. However some inconsistency-tolerant inferences are

insensitive to duplication and can thus be considered as less syntax-sensitive. Less

syntax-sensitive is the duplication-insensitive inference that is moreover not altered by

adding non-trivial consequences of ∑, for instance, adding to ∑ a consequence of all

consistent subsets of ∑. An even less syntax-sensitive inference would be one that is not

affected by adding a consequence of any consistent subset, for instance when all formulas
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of an inconsistent belief base can be put in clausal form without altering the set of

consequences. This would be useful since belief bases are encoded by means of clauses

(Horn or other types) in logic programming.

This section provides a formal discussion of the syntax-sensitivity of the consequence

relations described above. To this aim, and according to the above discussion, it must be

checked if the consequence relations described here satisfy the following properties:

Duplication insensitivity (DI):

An inference relation  is said to be a DI relation if and only if ∀φ∈∑,

 ∑ ψ iff ∑∪{φ} ψ.

Local consequence insensitivity (LCI):

An inference relation  is said to be a LCI relation if and only if ∀φ such that there exists

A∈MC(∑) and A φ, ∑ ψ iff ∑∪{φ} ψ.

Universal consequence insensitivity (UCI):

An inference relation is said to be a UCI relation if and only if ∀φ such that ∑ MC φ,

∑ ψ iff ∑∪{φ} ψ.

Clausal form insensitivity (CFI):

Let ∑' a new belief base obtained by replacing each formula in ∑ by its clausal form.

Then, an inference relation  is said to be a CFI relation if and only if: ∑ ψ iff ∑' ψ.

 It is clear that if a consequence relation is a LCI relation then it is also a DI relation and a

UCI relation. We start discussing the syntax-sensitivity of the MC-consequence relation.

First, MC-consequences are not LCI relations, namely there may exist A∈MC(∑) and φ
such that A φ but ∑ MCψ while ∑∪{φ} MCψ
Counter-example:

The belief base ∑ = {ψ→φ, ψ, ¬ψ, ¬φ} is inconsistent and has three maximal

consistent sub-bases:

A = {ψ→φ, ψ}≡ φ∧ψ
Β = {ψ→φ, ¬ψ, ¬φ} ≡ ¬φ∧¬ψ
C = {ψ, ¬φ} ≡ ¬φ∧ψ

It is clear that A entails φ. Let us now consider the augmented belief base:

∑'=∑∪{φ}={ ψ→φ, ψ, ¬ψ, ¬φ, φ}

∑' has four maximal consistent sub-bases:

A' = {ψ→φ, ψ, φ}=A ∪{φ}
B' = {ψ→φ, ¬ψ, ¬φ}=B
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C' = {ψ, ¬φ}=C

D' = {ψ→φ, ¬ψ, φ} ≡ φ∧¬ψ
So:

∑ MC ψ∨¬φ
while:

∑' MC ψ∨¬φ (since D' does not entail ψ∨¬φ).

To study the UCI property some preliminary results are needed.

Proposition 6: Let A∈MC(∑); then:

i) if A is consistent with φ then A∪{φ}∈MC(∑∪{φ})

ii) if A is inconsistent with φ then A∈MC(∑∪{φ}).

Proof

i) It is enough to show that:

 - A∪{φ} is consistent, and:

 - ∀ψ∈ (∑∪{φ})−(A∪{φ})=∑-A, A∪{φ}∪{ψ} is inconsistent.

The first condition holds since A is a maximal consistent sub-base of ∑ therefore is

consistent, and since A is consistent with φ then adding φ to A always yields a

consistent sub-base. Moreover A is a maximal consistent subset of ∑, so ∀ψ∈∑-

A, A ∪{ψ} is inconsistent, hence A∪{φ}∪{ψ} is also inconsistent.

ii) The proof can be shown in a similar way. A is consistent since it is a maximal

consistent sub-base of ∑. Adding to A any formula of ∑∪{φ}−Α leads to an

inconsistent sub-base. Indeed, adding φ to A yields an inconsistent sub-base (by

hypothesis) and adding ψ∈∑-A to A yields an inconsistent sub-base (since A is

maximal consistent sub-base of ∑).

Immediate consequences of the previous proposition are:

Corollary 1 Let A∈MC(∑), and φ such that Α φ then A∪{φ}∈MC(∑∪{φ}).

Corollary 2: ∀A∈MC(∑), there exists B∈ MC(∑∪{φ}) such that A⊆B

Proof

The proof is obvious, since for each maximal consistent sub-base A of ∑, either A

belongs to MC(∑∪{φ}) or A∪{φ} belongs MC(∑∪{φ}) using Proposition 6

(depending on whether A is consistent with φ or not).



16

Corollary 3: | MC(∑) | ≤ | MC(∑∪{φ}) |

The previous results show that adding a formula φ, which is a consequence of one

maximal consistent subset of ∑, may increase the number of maximal consistent sub-

bases of ∑. This is not the case when the formula is a consequence of all maximally

consistent sub-bases of ∑ as seen in the following proposition:

Proposition 7: The MC-consequence is an UCI-relation, more precisely if φ is a MC-

consequence of ∑ then | MC(∑) | = | MC(∑∪{φ}) | and ∑ MCψ iff ∑∪{φ} MCψ
Proof

From Proposition 6, | MC(∑∪{ φ}) | ≥ | MC(∑) |. Let us show that the cardinality

of MC(∑∪{φ}) is at most equal to the cardinality of MC(∑). Let A∈MC(∑∪{φ})

then A is of the form B∪{φ}. Indeed, if A does not contain φ, it means that A∪{φ}
is inconsistent, and consequently A∈MC(∑); hence A entails φ and this is a

contradiction. Now, since A is of the form B∪{φ} then we can check that B is a

maximal consistent sub-base of ∑. Indeed, assume that B is not maximal, then

there exists C∈MC(∑) such that B⊂C, and since C entails φ, we have that C∪{φ}
is also a maximal consistent sub-base of ∑∪{φ} (using Proposition 6). Therefore

B∪{φ}=Α⊂C∪{φ}. Mind that the inclusion remains strict because we are not

dealing with sets but with multi-sets (e.g., {φ} is strictly included in {φ,φ}). This

contradicts the fact that A is a maximal consistent sub-base of ∑∪{φ}. So, we have

proved that | MC(∑∪{ φ}) | ≤ | MC(∑) |, since any belief base A in MC(∑∪{ φ}) is

of the form B∪{ φ} where B∈MC(∑).

Now it is obvious that any C∪{φ}∈MC(∑∪{φ}) is logically equivalent to C since

C entails φ. Hence the set of MC-consequences of ∑ is the same as the set of MC-

consequences of ∑∪{φ}.

The previous proposition also shows that the MC-consequence satisfies the so-called

cumulativity1 property proposed in Makinson(1989) and well-known in non-monotonic

reasoning; see for instance (Gabbay, 1985), (Kraus et al., 1990). See also Benferhat et

al. (1993) for a study of the MC-consequence from the point of view of nonmonotonic

reasoning. However the MC- consequence is not a CFI relation.

Counter-example:

1A nonmonotonic inference relation  satisfies the cumulativity property iff  in the presence of α δ  α
β is equivalent to α∧β δ; i.e., in the above notations : if ∑ MCφ, then ∑ MCψ if and only if

∑∪{φ} MCψ.
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 Let ∑ = {ψ∧φ, ¬ψ}. Let ∑' a new belief base constructed from ∑ by replacing

each formula of ∑ by its clausal form, namely: ∑'={ψ, φ, ¬ψ}.

∑ has two maximal consistent sub-bases: {A={ψ∧φ}, Β={¬ψ}}.
∑' has also two maximal consistent sub-bases: {A'={ψ,φ}, Β={¬ψ,φ}}.
It is clear that ∑' MCφ while ∑ MCφ.

Proposition 8: The MC-consequence is a DI relation, namely:

∀φ∈∑ ∀ψ∈ ∑ MCψ iff ∑∪{φ} MCψ.
Proof

 Let us first show that for each element A of MC(∑∪{φ}):
- either A does not contain φ and A is an element of MC(∑),

- or A=B∪{φ} and B is an element of MC(∑).

Indeed, consider the first case where A does not contain φ. Since A∈MC(∑∪{φ})
then A is consistent and adding any formula from ∑∪{φ}−Α (therefore, from ∑−
Α) leads to an inconsistent sub-base, therefore A is also a maximal consistent sub-

base of ∑.

Now, let us consider the second case: A contains φ. Since B∪{φ}=A is a maximal

consistent sub-base of ∑∪{ φ}, B is consistent. Note that B already contains at least

one formula of ∑ which is φ (by hypothesis φ∈∑ and B∪{φ} is consistent).

Assume now that B is not maximal, then there exists C⊆∑ such that B⊂C which

means that B∪{φ}⊂C∪{φ} and this contradicts the fact that B∪{φ} is a maximal

consistent sub-base of ∑∪{φ}.

Thus, each element A of MC(∑∪{φ}) is either an element of MC(∑) or is of the

form B∪{φ} and B belongs to MC(∑). Noticing that B∪{φ} is semantically

equivalent to B (since φ∈∑): ∑∪{φ} MCψ ⇒ ∑ MCψ.

The converse is obvious since each maximal consistent sub-base of ∑ is

semantically equivalent to a maximal consistent sub-base of ∑∪{φ}, and using

Proposition 6, we conclude that ∑ MCψ ⇒ ∑∪{φ} MCψ.

The above properties show that the MC-consequence, although syntax-sensitive, is

insensitive to the repetition of formulas, and to the adding of any formula that is already a

MC-consequence of ∑. Let us now discuss the syntax sensitivity of the L-consequence:

Proposition 9: Let A∈ L(∑), and φ  such that Α is consistent with φ  then

A∪{φ}∈L(∑∪{φ})
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Proof:

Since A is consistent with φ (and A is consistent) then A∪{φ} is also consistent.

Suppose that A∪{φ} ∉L(∑∪{φ}) then there exists a consistent sub-base B of

∑∪{φ} such that | B | > | A∪{φ} |. There are two cases:

i) B contains φ, then B is of the form C∪{φ} where |C| >|A| and C is a consistent

sub-base of ∑ of maximal cardinality, this contradicts the fact that A∈L(∑).

ii) B does not contain φ, this means that B is a sub-base of ∑, and since |B| >

|A∪{φ}| then |B| > |A| and this again contradicts the fact that A∈L(∑).

Proposition 10: Let A,B∈L(∑), and φ such that Α is consistent with φ and B is

inconsistent with φ. Then B∉L(∑∪{φ}) while A∪{ φ} ∈L(∑∪{ φ}).

Proof:

The proof is obvious, noticing that if A,B∈L(∑) then |A|=|B|. Using the previous

proposition, A∪{ φ} ∈L(∑∪{φ}), and therefore |A∪{ φ}|>|B| which means that

B∉L(∑∪{φ}). The following example illustrates this case:

Let ∑={ φ,¬φ}, we have: L(∑) ={A,B} where A = {φ}, B = { ¬φ} .It is obvious

that A is consistent with φ. Let ∑'=∑∪{φ}; then L(∑') ={A'} where A'={φ,φ}.

Proposition 6 has shown that for each sub-base A∈MC(∑), and for any formula φ, either

A∈MC(∑∪{φ}) or A∪{φ}∈MC(∑∪{φ}). This is not true with L-consequences which

are more syntactic and it may happen that |L(∑∪{φ})|<|L(∑)|, contrary to the MC-

consequence (see corollary 3), as seen in the example in the proof of Proposition 10

where adding a formula can cause the deletion of some sub-base which belongs to L(∑).

Hence The L-consequence is neither a LCI relation nor a DI relation. It is not a CFI

relation either (the same counter-example as for the MC-consequence works). However

the following result holds:

Proposition 11: An L-consequence is a UCI relation.

Proof:

Notice that if φ is a MC-consequence of ∑ then φ is also a L-consequence of ∑. Let

us show that each sub-base A which belongs to L(∑∪{φ}) can be put under the

form B∪{φ} where B∈L(∑). Indeed, if A does not contain φ (which means that A

is a consistent sub-base of ∑) then A is inconsistent with φ, therefore there exists a

maximal consistent sub-base C containing A and which is inconsistent with φ, and

this contradicts the fact that φ is a MC-consequence of ∑. Let us now show that

B∈L(∑). Indeed if B does not belong to L(∑), then there exists a sub-base C which
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belongs to L(∑) such that |C|>|Β|, therefore C∪{φ} ∈L(∑∪{φ}) (since C entails φ,

see Proposition 17) and |C∪{φ}|>|Β∪{φ} |=|Α|, and this contradicts the fact that A

belongs to L(∑∪{φ}).

Finally, ψ is a L-consequence of ∑ iff ∀B∈L(∑) B ψ iff B ∪{φ} ψ (since B

entails φ by hypothesis) iff ∀A∈L(∑∪{φ}) A ψ iff ψ is a L-consequence of

∑∪{φ}. 

We now discuss the syntax sensitivity of the argument-based consequence relation:

Proposition 12: An argument-based consequence relation is an DI relation, namely:

∀φ∈∑, then  ∑  ψ iff ∑∪{φ}  ψ
Proof:

• The fact that ψ is an argued consequence of ∑ means that there exists an argument

in favour of ψ in ∑∪{φ}. Assume that we have ∑∪{φ}  ψ, this means that there

exists an argument A in favour of ¬ψ in ∑∪{φ}, and there are two cases:

- either A does not contain φ, which means that A⊆∑ and this contradicts the fact

that ψ is an argued consequence of ∑,

- or A contains φ, and there exists also an argument in favour of ¬ψ in ∑ (obtained

by replacing in A the added formula φ by the one existing in ∑) and this again

contradicts the fact that ψ is an argued consequence of ∑.

• To see that the converse is also true, it is enough to show that there exists an

argument in favour of ψ in ∑ (it is clear that there does not exist an argument in

favour of ¬ψ in ∑ since it does not exist in ∑∪{φ}). Indeed, let A be an argument

in favour of ψ in ∑∪{φ}, then we have two cases:

- either A does not contain φ, which means that A⊆∑ hence A is also an argument in

favour of ψ in ∑,

- or A contains φ, and there exists also an argument in favour of ψ in ∑ (obtained by

replacing in A the added formula φ by the existing one in ∑).

Proposition 13 Argued consequences are UCI-relations.

Proof:

• Let us show now that an argument-based consequence relation is a UCI relation.

Notice that if φ is a MC-consequence of ∑ then it is also an argued consequence of

∑. Assume that ψ is an argued consequence of ∑ but not of ∑∪{φ}, then there

exists an argument A for ¬ψ in ∑∪{φ} (and of course also an argument for ψ in ∑
and therefore in ∑∪{φ}). There are two cases: if A does not contain φ, it means that

A is also an argument for ¬ψ in ∑ and this contradicts the fact that ψ is an argued
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consequence of ∑. Now if A contains φ, namely A=B∪{φ}, such that B∪{φ} ¬ψ,

it means that there exists a maximal consistent sub-base C of ∑ containing B such

that C∪{φ} ¬ψ, and since φ is a MC-consequence of ∑ then C φ and therefore

C ¬ψ which means that A is also an argument for ¬ψ in ∑ and this contradicts the

fact that ψ is an argued consequence of ∑.

Now assume that ψ is an argued consequence of ∑∪{φ}. It is clear that there is no

argument in ∑ which supports ¬ψ (since such argument does not exist in ∑∪{ φ}).

Let A be an argument in ∑∪{φ} which supports ψ. Assume A does not contain φ.
Then A is also an argument for ψ in ∑ which means that ψ is also an argued

consequence of ∑. Assume now that A contains φ, namely A=B∪{φ}, such that

B∪{φ} ψ. The latter means that there exists a maximal consistent sub-base C of ∑
containing B such that C∪{φ} ψ. Since φ is a MC-consequence of ∑, C φ and

therefore C ψ which means that A is also an argument for ψ in ∑ and therefore ψ is
an argued consequence of ∑.

However, argued consequences are neither LCI relations, nor CFI relations. To see it, let

us consider the following counter-example: ∑ = {φ∧ψ, ¬φ∧ξ}. It is clear that

MC(∑)={{ φ∧ψ}, {¬ φ∧ξ}} and ∑  ψ∧ξ while:

- ∑∪{ ψ}  ψ∧ξ, and

- ∑'={φ, ψ, ¬φ, ξ}  ψ∧ξ (∑' is a clausal form of ∑)

Finally, the syntax-sensitivity of the existential-consequence relation is described by the

two following propositions:

Proposition 14: An existential consequence relation is a DI relation, namely:

∀φ∈∑, then  ∑ ∃ ψ iff ∑∪{φ} ∃ ψ
Proof:

• The first part is obvious since an existential consequence relation is monotonic.

• The converse is also true, since if there is an argument A in favour of ψ in ∑∪{φ},
then:

- either A does not contain φ, which means that A⊆∑, hence φ is also an existential

consequence of ∑,

- or A contains φ, and there exists also an argument in favour of ψ in ∑ (obtained by

replacing in A the added formula φ by the existing one in ∑).

Proposition 15: An existential consequence is an UCI relation.
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Proof:

Let φ be such that ∑ MC φ. If ψ is an existential consequence of ∑ then it is

obviously an existential consequence of ∑∪{φ} ( ∃ is a monotonic relation).
Now, let ψ be an existential consequence of ∑∪{φ}, then we have an argument A in

∑∪{φ} for ψ. If A does not contain φ, then A is also an argument for ψ in ∑ which

means that ψ is also an existential consequence of ∑. Now if A contains φ namely

we have A=B∪{φ}, such that B∪{φ} ψ which means that there exists a maximal

consistent sub-base C of ∑ containing B such that C∪{φ} ψ, and since φ is a MC-

consequence of ∑, C φ and therefore C ψ which means that A is again an

argument for ψ in ∑ and therefore ψ is also an existential consequence of ∑.

However, an existential consequence is neither a LCI relation nor a CFI relation. The

same counterexample as for the argued consequence works.

The following array summarizes the syntax-sensitivity of the considered consequence

relations:

Duplication
insensitivity

Local
consequence
insensitivity

Universal
consequence
insensitivity

Clausal form
insensitivity

 MC-consequence Yes No Yes No

 L-consequence No No Yes No

 Argumentative-consequence Yes No Yes No

 Existential- consequence Yes No Yes No

All the consequence relations, except the L-consequence one, are insensitive to the

duplication of formulas in the belief base, and they are all insensitive to the addition of a

formula which is a logical consequence of all maximally consistent sub-bases of ∑. In

contrast, none of these consequence relations are LCI relations nor CFI relations. The

failure of these two properties shows how much these consequence relations are syntax-

sensitive.

5. Structuring the Set of Argued Consequences

In this section, some properties of argument-based consequence relation are investigated

in greater details. The following proposition shows that even if φ and ψ are argued

consequence of a belief base ∑, their conjunction is not necessarily so: it may be that

∑  φ, ∑  ψ, and not ∑  φ∧ψ.
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Example

∑ = {¬α∨β, α∨δ, α, ¬α}. It is clear that β and δ are both argued consequences of

∑, while there is no argument which supports β∧δ.

The lack of closure under conjunction must not be seen as a major drawback of . This

property is not desirable since in the present case it may lead to perform the conjunctions

of propositions that are supported by antagonist views (as in the previous example). This

situation also happens in numerical settings such as evidence theory (Shafer, 1976) since

we may have Belief(φ)>0, Belief(ψ)>0 and Belief(φ∧ψ)=0 with Shafer belief functions.

The  consequence relation captures the cases when we believe, in two mutually

consistent propositions which cannot be advocated together because their justifications are

conflicting.

The following proposition shows that if a formula φ is an argued consequence of ∑ then

all logical consequences of φ are also argued consequences of ∑.

Proposition 16: satisfies the property of Right Weakening, i.e.,

If φ  ψ then ∑ φ implies ∑ ψ
Proof

Indeed, ∑ φ means that there exists an argument A1 for φ in ∑. Since φ  ψ, we

conclude that A1 is also an argument for ψ in ∑. Assume now that there exists also an

argument A2 for ¬ψ in ∑, then since φ  ψ we conclude that A2 is also an argument

for ¬φ in ∑ (since ¬φ∨ψ) and this contradicts the fact that ∑ φ.

An important issue when reasoning with an inconsistent belief base ∑ is to characterize

the set of argued consequences of ∑, in terms of the classical consequence relation. The

two previous propositions are very important to characterise the set of argued
consequences of a possibly inconsistent base ∑, denoted by Cn(∑), i.e.

Cn (∑) = {φ, ∑ φ}.

The fact that the argued consequence is not closed under conjunction means that Cn(∑)

is generally not equal to its closure under classical inference Cn:

Cn (∑) ≠ Cn(Cn (∑))

Besides Cn (∑) is not closed under  either. For instance considering

∑={¬ α∨β,α∨δ,α,¬α}, ∑  β holds, ∑  β∧δ does not hold, but ∑∪{ β}  β∧δ
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holds since {α∨δ ,¬α ,β} β∧δ  while nothing supports ¬β∨¬δ . It shows that

propositions derived using  are not considered as strongly believed as propositions

present in the belief base.

For the rest of this section, we assume that only the language is based on the finite set of

propositional symbols appearing in the base ∑.

Definition 11: A formula R is said to be a prime implicate of ∑ with respect to the

argument-based consequence relation if and only if:

(i) ∑ R

(ii) R', such that R' R and ∑ R '

A prime implicate can be inferred from a maximal consistent subset of ∑. However, if

∑i∈MC(∑), then the conjunction of formulas in ∑i (also denoted by ∑i) is not a prime

implicate since it is defeated by other maximal consistent subsets of ∑. Indeed, ∀i≠j,

∑i ¬∑j.

The construction of prime implicates can be more easily achieved from the semantical

point view. Indeed, let [∑i] be the set of models of the maximal consistent sub-base ∑i.

Any model of [∑i] can be viewed as the formula ϕ∑i made of the conjunction of literals it

satisfies. Then it is clear that the following expression is a prime implicate:

φ = ϕ∑1∨…∨ϕ∑i-1∨ ∑i ∨ϕ∑i+1∨…∨ϕ∑n

The set of models of φ is the union of the set of models of ∑i and a selection of models of

other maximal consistent sub-bases one per base. Indeed, φ cannot be defeated by a

maximal consistent sub-base. Moreover, if each maximal consistent sub-base is complete

(i.e., ∀a∈ , either a∈∑i or ¬a∈∑i) there exists exactly one prime implicate, and in this

case the argued consequence and MC-consequence are equivalent. Indeed, the prime
implicate in this case is: ∑1 ∨∑2 ∨… ∨ ∑n. Therefore:

Cn (∑) = Cn(∑1 ∨∑2 ∨… ∨ ∑n) = ∩i Cn(∑i)

But in general, the prime implicates can be numerous.

Let R

 

1

 

,…,R

 

n

 

 be the set of prime implicates of ∑, then C

 

n

 

(

 

∑) can be seen as the union of

the deductive closure of each Ri under Cn, namely (Benferhat, et al.1993):
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C

 

n

 

(∑)=Cn(R

 

1

 

)∪…∪Cn(R

 

n

 

)

And it is easy to check that ∀ i, j = 1,n ∑ Ri, ∑ Rj and∑ Ri ∧ Rj

Examples

(1) let ∑ = {¬α ∨ β, α ∨ δ, α, ¬α}. There are two maximal consistent sub-bases,

∑1={¬ α∨β, α∨δ, α}, ∑2={¬ α∨β, α∨δ, ¬α}. Then:

[∑1]={ α∧β∧δ, α∧β∧¬δ} [ ∑2]={¬ α∧β∧δ, ¬α∧¬β∧δ},

Therefore there are four prime implicates:

R1=β∧(δ∨α), R2=(α∧β)∨(¬β∧δ∧¬α)

R3=δ∧(¬α∨β), R4=(¬α∧δ)∨(¬δ∧α∧β)

(2) Consider now ∑ = {¬α  ∨ β, α  ∨ β, α , ¬α , δ}. We have two maximal

consistent sub-bases, ∑1={¬ α∨β, α∨β, α,δ}, ∑2={¬ α∨β, α∨β, ¬α, δ} Then:

[∑1]={ α∧β∧δ}, [ ∑2]={¬ α∧β∧δ}

The maximal consistent sub-bases are complete, therefore we have only one prime
implicate: R=(α∧β∧δ)∨(¬α∧β∧δ)=β∧δ. Then: Cn (∑) = Cn({β ∧ δ}).

More generally, if there are n maximal consistent belief bases in ∑, and if the number of

models of ∑i is mi, then the number of prime implicates of ∑ with respect to  is

∑i=1,n ∏j≠i mj.

The previous definition of prime implicates makes sense only if the language is built only

on the propositional symbols appearing in the belief base. For instance in the following

example ∑={ α,¬α}, there is only one prime implicate, the tautology T, if there is only

one propositional letter in the language. It is not possible to deduce α∨β from Cn(T), but

α∨β is an argued consequence of the belief base.

Proposition 17: ∀ R1, R2, two prime implicates of ∑, {R1,R2} is consistent

Proof:

If {R 1,R2} is inconsistent then R1 ∧ R2 ⊥, or equivalently R1 ¬R2. Since

R1 is an argued consequence of ∑, and  satisfies Right Weakening, we conclude

that ¬R2 is also an argued consequence of ∑, which contradicts the fact that R2 is

an argued consequence of ∑.

At the semantic level, there is a close connection between the set Cn(∑) of argued

consequences of ∑ and the notion of "system of important subsets" introduced recently

by Schlechta (1995) and that he uses as a semantics of his default logic based on
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generalized quantifiers. Indeed, the sentences in Cn(∑) can be mapped to subsets of the

set of interpretations Ω which form such a system à la Schlechta; say (∑), such that i)

Ω∈ (Ω), ii) S⊆S'⊆Ω, S∈ (Ω) implies S'⊆Ω (this is the Right Weakening property)

and iii) S,S'⊆Ω imply S∩S'≠Ø (due to the consistency of any pair of prime implicates).

The arguments supporting the prime implicates can be viewed as a set of scenarios

extracted from ∑, that express different points of views on what is the actual information

contained in ∑. These points of view are pairwise compatible but the subsets Ai and Aj
supporting two prime implicates Ri and Rj should not be mixed up (even if not

inconsistent). Indeed, Cn(∑) still reflects conflicts lying in ∑ since, although the

argument-based inference forbids two prime implicates Ri and Rj to be inconsistent,  the

set {R1, …, Rn} can be globally inconsistent for n>2. Namely one argued consequence

of ∑ can be defeated by other consequences grouped together.

Example

Consider the set ∑={¬α, ¬β, α, β, ¬δ∨¬σ, ¬α∨β}

The maximal consistent subsets of ∑ are:

∑1 = {¬α, ¬β, ¬δ ∨ ¬σ, ¬α ∨ β}

∑2 = {¬α, β, ¬δ ∨ ¬σ, ¬α ∨ β}

∑3 = {α, β, ¬δ ∨ ¬σ, ¬α ∨ β}

∑4 = {¬β, α, ¬δ ∨ ¬σ}

Consider the three formulas:

φ1=(¬α∧¬β ∧ (¬δ∨¬σ)) ∨ (¬δ∧σ∧(α∨β))

φ2=(¬α∧β∧(¬δ∨¬σ))∨(δ∧¬σ ∧ (α ∨ ¬β))

φ3=(α∧β∧(¬δ∨¬σ))∨(¬δ∧¬σ∧(¬α ∨ ¬β))

It is easy to see that ∑1 φ1, ∑2 φ2 and ∑3 φ3, but we never have ∑i ¬φj for i≠j.
So, ∑ φ1, ∑ φ2, ∑ φ3. However, φ1∧φ2∧φ3 ⊥.

This result can be viewed as a weakness of the argument-based inference which avoids

obvious direct contradictions, but does not escape hidden ones. But the inconsistency of

{ φ1, φ2, φ3} in the example occurs only if two already conflicting sources supporting φ1
and φ2 unite to defeat φ3. And, since the two sources are in conflict with each other it is

not clear why one should accept to join them against φ3. Namely, when φ1∧φ2∧φ3=⊥,

φ1∧φ2 cannot defeat φ3 because φ1∧φ2 is not an argued consequence of ∑. It confirms the

fact that Cn (∑) is an heterogeneous set of properties that pertain to distinct views of the

world. This means that a question-answering system whereby a question "is it true that φ"

is answered by yes or no after computing ∑  φ is not really informative enough. The

system must also supply the argument for φ. This way of coping with inconsistency looks
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natural, and the arguments for φ and ψ should enable the user to decide whether these two

plausible conclusions can be accepted together or not. One interesting problem is the

combination of arguments, namely: can we construct from the argument A of α and the

argument B of β, an argument for α∧β? Several authors suggest A∪B as the needed

argument (Fox et al, 1992), (Darwiche, 1993). The previous results somewhat question

this suggestion: this suggestion makes no sense if A and B are supplied by conflicting

sources.

6. Conclusion

The proposed notion of argument-based inference is appealing for several reasons. First it

is an extension of classical inference that copes with inconsistency in a very mild way.

Namely it is rather faithful to the actual contents of the belief base, and does not do away

with information contained in it, as opposed to revision approaches that restore

consistency. Moreover it is more productive than the approach based on inferring from all

maximal consistent subsets, and looks less arbitrary than the selection of consistent

subsets of maximal cardinality. Second, it avoids outright contradictory responses (such

as φ and ¬φ), although several deduced sentences can be globally inconsistent. But as

pointed out earlier, the arguments supporting a set of more than two globally

contradictory sentences are distinct, so that the reality of this contradiction is debatable,

and only reflects the presence of different points of view. Anyway it seems that it is the

price to pay in order to remain faithful to an inconsistent belief base. It would be

interesting to apply the above result to defeasible reasoning and study in such a

framework the argument-based inference as well as the one proposed by Simari and Loui

(1992).

Another result of this paper is the study of syntax sensitivity of the consequence relations

(namely to what extent the consequence relation depends on the syntax of the belief base)

by proposing several syntax-insensitivity properties. We have shown that all the

consequence relations, except L-consequence, are insensitive to the duplication of

formulas in the belief base, and all of them are insensitive to the addition of a formula

which is a logical consequence of all maximally consistent sub-bases of ∑. In contrast, all

the consequence relations are sensitive to the addition of a formula which is a logical

consequence of some (but not all) consistent sub-bases, and are sensitive to the

transformation of the belief base under clausal form.
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In a companion paper (Benferhat et al., 1994; see also Benferhat et al., 1993), the

approaches developed in this paper are extented to layered belief bases where layers

express levels of certainty as in possibilistic logic (Dubois et al., 1994).
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