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a b s t r a c t

This paper presents a new class of functions analytic in the open unit disc, and closely
related to the class of starlike functions. Besides being an introduction to this field, it
provides an interesting connections defined class with well known classes. The paper
deals with several ideas and techniques used in geometric function theory. The order of
starlikeness in the class of convex functions of negative order is also considered here.
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1. Introduction

Let H denote the class of analytic functions in the unit disc ∆ = {z : |z| < 1} on the complex plane C. Let A denote
the subclass of H consisting of functions normalized by f (0) = 0, f ′(0) = 1. The set of all functions f ∈ A that are starlike
univalent in ∆ will be denoted by S∗. The set of all functions f ∈ A that are convex univalent in ∆ by K . Recall that a set
E ⊂ C is said to be starlike with respect to a point w0 ∈ E if and only if the linear segment joining w0 to every other point
w ∈ E lies entirely in E, while a set E is said to be convex if and only if it is starlike with respect to each of its points, that is,
if and only if the linear segment joining any two points of E lies entirely in E. Let the function f be analytic univalent in the
unit disc ∆ on the complex plane C with the normalization f (0) = 0. Then f maps ∆ onto a starlike domain with respect to
w0 = 0 if and only if [1]

Re


zf ′(z)
f (z)


> 0 (z ∈ ∆), (1.1)

while f maps ∆ onto a convex domain E if and only if [2]

Re


1 +

zf ′′(z)
f ′(z)


> 0 (z ∈ ∆). (1.2)

Such function f is said to be starlike in ∆ with respect to w0 = 0 (or briefly starlike) or, respectively, is said to be convex in
∆ (or briefly convex). It is well known that if an analytic function f satisfies (1.1) and f (0) = 0, f ′(0) ≠ 0, then f is univalent
and starlike in ∆. Robertson introduced in [3], the classes S∗(α), K(α) of starlike and convex functions of order α ≤ 1,
which are defined by

S∗(α) :=


f ∈ A : Re


zf ′(z)
f (z)


> α, z ∈ ∆


, (1.3)
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K(α) :=


f ∈ A : Re


1 +

zf ′′(z)
f ′(z)


> α, z ∈ ∆


. (1.4)

If α ∈ [0; 1), then a function in either of these sets is univalent, if α < 0 it may fail to be univalent. In particular we denote
S∗(0) = S∗,K(0) = K . Let S denote the subset ofAwhich is composed of univalent functions.We say that f is subordinate
to F in∆, written as f ≺ F , if and only, if f (z) = F(ω(z)) for some holomorphic functionω(z), ω(0) = 0, |ω(z)| < 1, z ∈ ∆.
The class of starlike functionsS∗ canbedefined in severalways, for examplewe say that f is starlike if it satisfies the condition

zf ′(z)
f (z)

≺ p(z) (z ∈ ∆) (1.5)

where p(z) = (1 + z)/(1 − z). Many subclasses of S∗ have been defined by the condition (1.5) with a convex univalent
function p, given arbitrary. If we restrict considerations to the absorbing geometric shape of p(∆), then it is proper to recall
the papers [4,5], where p(∆) is a disc. In [6,7] the set p(∆) is an angle while in [8–10] p(∆) is a parabolic domain. In [11–13]
the set p(∆) is an interior of hyperbola or of an elliptic domain. For the case when p(∆) is an interior of the right loop of the
Lemniscate of Bernoulli see [14,15] or when p(∆) is a leaf-like domain see [16]. An interesting case when the function p is
convex but is not univalent was considered in [17]. A function p that is not univalent and is not convex and maps unit circle
onto the trisectrix of Maclaurin was considered in [18]. In the current paper we shall study a class defined by Eq. (1.5) with
univalent function pwhich maps ∆ onto a concave set. One of the results obtained applies to the order of starlikeness of the
class of convex functions of negative order.

2. Preliminary results

At the beginning of this chapter we shall investigate the properties of a one-parameter family of functions used in the
sequel.

Lemma 1. Let

pb(z) =
1

1 − (1 + b)z + bz2
(z ∈ ∆). (2.1)

If −1 < b < 1, then

Re{pb(z)} >
1 − 3b

2(1 − b)2
(z ∈ ∆). (2.2)

Proof. Note that 1 − (1 + b)z + bz2 = b(z − 1)(z − 1/b) so the function pb does not have any poles in ∆ \ {1}
and is analytic in ∆, thus looking for the min{Re{pb(z)} : |z| < 1} it is sufficient to consider it on the boundary
∂pb(∆) = {pb(eiϕ) : ϕ ∈ (0, 2π)}. We have

1
1 + az + bz2

=
1 + a cosϕ + b cos 2ϕ − i(a sinϕ + b sin 2ϕ)

1 + a2 + b2 + 2a(1 + b) cosϕ + 2b cos 2ϕ
, (2.3)

thus we can write

Re{pb(eiϕ)} =
1 − (1 + b) cosϕ + b cos 2ϕ

1 + (1 + b)2 + b2 − 2(1 + b)2 cosϕ + 2b cos 2ϕ

=
1 − b − (1 + b) cosϕ + 2b cos2 ϕ

2(1 + b2) − 2(1 + b)2 cosϕ + 4b cos2 ϕ

=
(1 − cosϕ)(1 − b − 2b cosϕ)

(1 − cosϕ)(2(1 + b2) − 4b cosϕ)

=
1 − b − 2b cosϕ

2(1 + b2) − 4b cosϕ
. (2.4)

So we can see that Re{pb(eiϕ)} is well defined also for ϕ = 0. The function

f (x) =
1 − b − 2bx

2(1 + b2) − 4bx

decreases for b > −1 so (2.4) attains its minimal value when cosϕ = 1. Substituting it in (2.4) we get (2.2). �
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Fig. 1. pb(eiϕ), b ∈ (−1, −1/3).

Note that the function

g(b) =
1 − 3b

2(1 − b)2
b ∈ (−1, 1) (2.5)

increases in (−1, −1/3] from g(−1) = 1/2 to g(−1/3) = 9/16 and decreases in (−1/3, 1) to −∞.

Lemma 2. If b ∈ [−1/3, 1], then the function pb defined in (2.1) is univalent in ∆.

Proof. We have

pb(z1) = pb(z2) ⇔ (z1 − z2)(1 + b − b(z1 + z2)) = 0. (2.6)

It is easy to see that for b = 0 we have pb(z1) = pb(z2) ⇔ (z1 = z2). When b ≠ 0 we have

1 + b − b(z1 + z2) = 0 ⇔ z1 + z2 =
1 + b
b

.

If b ∈ [−1/3, 1] \ {0}, then |(1 + b)/b| ≥ 2 so there are no z1, z2 ∈ ∆ such that 1 + b − b(z1 + z2) = 0. Therefore by (2.6)
the function pb is univalent in ∆ when b ∈ [−1/3, 1]. �

Let the function pb be given by (2.1) and let us denote Re{pb(eiϕ)} = x and Im{pb(eiϕ)} = y, ϕ ∈ (0, 2π). Then by (2.3)
and (2.4) after simple calculation, we get

x =
1 − b − 2b cosϕ

2(1 + b2) − 4b cosϕ
, y =

(1 + b − 2b cosϕ) sinϕ

(1 − cosϕ)(2(1 + b2) − 4b cosϕ)
. (2.7)

Therefore we can find that the image of the unit circle |z| = 1 under the function pb is a curve described by

γ1 : (x − a)(x2 + y2) − k(x − 1/2)2 = 0, where a =
1 − 3b

2(1 − b)2
, k =

2
(1 − b)2(1 + b)

. (2.8)

Thus the curve γ1 is symmetric with respect to real axis. Investigating the ordinate y in (2.7) it easy to see that for b such
that the equation 1+b−2b cosϕ = 0 has solutions ϕ1, ϕ2 ∈ (0, 2π) the curve γ1 has a loop intersecting the real axis at the
points 1/(1 − b) and 1/(2 + 2b). A simple calculations shows that it is when b ∈ (−1, −1/3), see Fig. 1. For b ∈ [−1/3, 1)
the curve γ1 has no loops and it is like a conchoid (see Fig. 2) such that

1 − 3b
2(1 − b)2

< Re{pb(eiϕ)} ≤
1

2(1 + b)
= pb(−1) ϕ ∈ (0, 2π). (2.9)

Lemma 3. If −1/3 ≤ b1 < b2 < 1, then

pb1 ≺ pb2 (z ∈ ∆). (2.10)
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Fig. 2. pb(eiϕ), b ∈ [−1/3, 1).

Proof. If −1/3 ≤ b1 < b2 < 1, then by Lemma 2 the functions pb1 and pb2 are univalent in ∆ so for the proof of (2.10) it
suffices to show that pb1(∆) ⊂ pb2(∆). That is ∂pb1(∆) ∩ ∂pb2(∆) = ∅. Thus we need to show that the system of equations
of boundary curves

(x − a1)(x2 + y2) − k1(x − 1/2)2 = 0
(x − a2)(x2 + y2) − k2(x − 1/2)2 = 0

(2.11)

where ai =
1−3bi

2(1−bi)2
, ki =

2
(1−bi)2(1+bi)

, i = 1, 2, has no solutions (x, y). If the system (2.11) has a solution (x, y), then by

(2.9) should to be 1−3b2
2(1−b2)2

< x ≤
1

2(1+b2)
. We will now show that it is impossible. Comparing x2 + y2 in the Eqs. (2.11) we

obtain

x =
k1a2 − k2a1
k1 − k2

=
2 + 3(b1 + b2)

2[1 + b1 + b2 − (b21 + b1b2 + b22)]
. (2.12)

The function a(b) =
1−3b

2(1−b)2
increases, while the function k(b) =

2
(1−b)2(1+b)

decreases for −1 < b < 1 so a1 < a2 and
k2 < k1. Thus x in (2.12) is a positive number. Moreover, because 2 + 3(b1 + b2) > 0 for −1/3 ≤ b1 < b2 < 1, then the
denominator of (2.12) is positive too. Further calculation of (2.12) shows that

x =
1

2(b2 + 1)
+

(2b2 + b1 + 1)2

2(1 + b1)[1 + b1 + b2 − (b21 + b1b2 + b22)]

so x > 1
2(b2+1) for −1/3 ≤ b1 < b2 < 1, so the system (2.11) has no solution. �

Lemma 4. Let q be analytic in ∆ with q(0) = 1. A function g is in the class

B(q) =


f ∈ A :

zf ′(z)
f (z)

≺ q(z) (z ∈ ∆)


if and only if there exists an analytic function p, p ≺ q, such that

g(z) = z exp
∫ z

0

p(t) − 1
t

dt (z ∈ ∆). (2.13)

Proof. Let g ∈ B(q) and let p(z) := zg ′(z)/g(z). Then p ≺ q and integrating this equation we obtain (2.13). If g is given by
(2.13) with an analytic p, p(0) = 0, p ≺ q, then differentiating logarithmically (2.13) we obtain zg ′(z)/g(z) = p(z) therefore
zg ′(z)/g(z) ≺ q(z) and g ∈ B(q). �

3. The class SK(α) and its properties

Definition 1. The function f ∈ A belongs to the class SK(α), α ∈ (−3, 1], if it satisfies the condition

zf ′(z)
f (z)

≺qα(z) :=
3

3 + (α − 3)z − αz2
(z ∈ ∆). (3.1)
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It is easily observed that the function (2.1) with b = −α/3 becomes the functionqα . Moreover, by Lemma 2 the functionqα is univalent in ∆ when α ∈ (−3, 1]. We have made this normalization because of the reductions of formulas in the
next considerations. The name of this class is from the fact that the curveqα(eiϕ), ϕ ∈ (0, 2π) is geometrically similar to a
conchoid in Fig. 2. From Lemma 1 we obtain

Re


zf ′(z)
f (z)


>

9(1 + α)

2(3 + α)2
(z ∈ ∆),

when f ∈ SK(α). Therefore we obtain the following corollary.

Corollary 1. SK(α) ⊂ S∗(γ ) = {f ∈ A : Re{
zf ′(z)
f (z) } > γ , z ∈ ∆}, where γ =

9(1+α)

2(3+α)2
, this means that if f ∈ SK(α), then it

is starlike of order γ . If −1 ≤ α < 1, then f belonging to the class SK(α) is a starlike function and so it is univalent in the unit
disc ∆.

Corollary 1 and (3.1) give that SK(0) = S∗(1/2) and SK(1) ⊂ S∗(9/16), SK(−1) ⊂ S∗. Moreover, by Lemma 2 the
functionqα ,α ∈ (−3, 1], is univalent in∆ so by the subordination principle the subordination (2.8)with b = −α/3 and (3.1) give
the next corollary.

Corollary 2. A function f ∈ A belongs to the class SK(α), α ∈ (−3; 1], if and only if for z ∈ ∆ the quantity zf ′(z)/f (z) takes
all its values on the right-hand side of the curve

γ2 : (x − a)(x2 + y2) − k(x − 1/2)2 = 0, where a =
9(1 + α)

2(3 + α)2
k =

54
(3 + α)2(3 − α)

. (3.2)

Using Lemma 3 we directly can obtain the next corollary.

Corollary 3. If −3 ≤ α1 < α2 ≤ 1, then

S∗(1/2) = SK(0) ⊃ SK(α1) ⊃ SK(α2) ⊃ SK(1) ⊂ S∗(9/16).

Note that

qα(z) =
3

3 + (α − 3)z − αz2
=

3
3 + α

[
1

1 − z
+

α

αz + 3

]
=

3
3 + α

∞−
n=0

[
1 + (−1)n

α

3

n+1
]
zn = 1 +

(3 − α)2

3(3 + α)
z + · · · . (3.3)

Let S∗(α) denote the class of starlike functions of order α defined in (1.3), and let S∗
[B] be the subclass of S∗ defined by

S∗
[B] =


f ∈ A :

zf ′(z)
f (z)

≺
1

1 + Bz


, (3.4)

where −1 ≤ B ≤ 1, B ≠ 0. Observe that for B = 1 the function p(z) =
1

1+Bz maps the unit disc ∆ onto the half-plane
Rew > 1/2, while onto the disc D(C(B), R(B)) with the center C(B) = 1/(1 − B2) and the radius R(B) = |B|/(1 − B2), when
B ≠ 0. We now formulate the following theorem for these classes of functions.

Theorem 1. If a function f belongs to the class SK(α),α ∈ (−3, 1]\{0}, then there exists a function g ∈ S∗(1/2) and a function
h ∈ S∗

[α/3] such that

f (z) = [g(z)]
3

3+α [h(z)]
α

3+α (z ∈ ∆). (3.5)

If α = 0, then SK(0) = S∗(1/2).

Proof. Let f ∈ SK(α). Then by Lemma 4, there exists an analytic function ω(z) with ω(0) = 0 and |ω(z)| < 1 for z ∈ ∆

such that

f (z) = z exp
∫ z

0

qα(ω(t)) − 1
t

dt. (3.6)

Notice that from (3.3) we have

qα(ω(t)) =
3

3 + α

1
1 − ω(t)

+
3α

3 + α

1
3 + αω(t)

(3.7)
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and hence, we can rewrite (3.6) in the form

f (z) = z exp

∫ z

0

3
3+α


1

1−ω(t) − 1


t
dt +

∫ z

0

α
3+α


1

1+ α
3 ω(t) − 1


t

dt



=

z exp
∫ z

0


1

1−ω(t) − 1


t
dt


3

3+α

×

z exp
∫ z

0


1

1+ α
3 ω(t) − 1


t

dt


α

3+α

= [g(z)]
3

3+α [h(z)]
α

3+α . (3.8)

Using the structural formulas for the classes S∗(α) (see [19, p. 172]) and S∗
[B] (see Lemma 4), we find that the functions

g, h defined in (3.8) satisfy g ∈ S∗(1/2), and h ∈ S∗
[α/3] which proves Theorem 1. �

Theorem 2. If there exist a function g ∈ S∗(1/2) and a function h ∈ S∗
[α/3] such that

zg ′(z)
g(z)

=
1

1 − ω(z)
,

zh′(z)
h(z)

=
1

1 + αω(z)/3
(z ∈ ∆), (3.9)

for certain analytic function ω with ω(0) = 0, |ω(z)| < 1, z ∈ ∆, then the function

f (z) = [g(z)]
3

3+α [h(z)]
α

3+α

belongs to the class f ∈ SK(α).

Proof. The conditions (3.9) say that the functions g ∈ S∗(1/2) and h ∈ S∗
[α/3] are generated by (2.13) with the same

function ω. Therefore, by the considerations in the previous proof and by (3.7) and (3.8) we can get

[g(z)]
3

3+α [h(z)]
α

3+α = z exp
∫ z

0

qα(ω(t)) − 1
t

dt.

This shows that [g(z)]
3

3+α [h(z)]
α

3+α ∈ SK(α) which proves Theorem 2. �

Theorem 3. If f ∈ SK(α), α ∈ (−3, 1] and |z| = r, 0 ≤ r < 1, then
r

1 + r

 3
3+α


r

1 + αr/3

 α
3+α

≤ |f (z)| ≤


r

1 − r

 3
3+α


r

1 − αr/3

 α
3+α

. (3.10)

Proof. Suppose that α ∈ (−3, 0). To find (3.10) let us recall, see [5, pp. 315–317], that if h ∈ S∗
[α/3], α ∈ (−3, 0], then for

|z| = r , 0 ≤ r < 1 we have

r
1 − αr/3

≤ |h(z)| ≤
r

1 + αr/3
. (3.11)

Recall also that, if g ∈ S∗(1/2), then for |z| = r , 0 ≤ r < 1 we have

r
1 + r

≤ |g(z)| ≤
r

1 − r
. (3.12)

Moreover, from (3.11) we get
r

1 + αr/3

 α
3+α

≤ |h(z)|
α

3+α ≤


r

1 − αr/3

 α
3+α

(3.13)

because α
3+α

< 0when α ∈ (−3, 0). By Theorem 1we have |f (z)| = |g(z)|
3

3+α |h(z)|
α

3+α with g ∈ S∗(1/2) and g ∈ S∗(1/2).
Raising (3.12) to the power 3

3+α
and then multiplying by sides with (3.13) we get the condition (3.10). If α ∈ (0, 1), then

analogously as (3.11) we can obtain

r
1 + αr/3

≤ |h(z)| ≤
r

1 − αr/3
. (3.14)

when h ∈ S∗
[α/3] and |z| = r . Using again the fact that |f (z)| = |g(z)|

3
3+α |h(z)|

α
3+α , where both exponents are positive, and

accordingly multiplying by sides (3.11) and (3.14) we obtain (3.10). If α = 0, then SK(0) = S∗(1/2) and (3.10) becomes
(3.12). �
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Theorem 4. The function gn(z) = z + czn belongs to the class SK(α), whenever

|c| ≤
2(3 − α) − 3
2(3 − α)n − 3

. (3.15)

Proof. Let us denote

G(z) :=
zg ′

n(z)
gn(z)

=
1 + nczn−1

1 + czn−1
(z ∈ ∆).

To prove that gn ∈ SK(α), it suffices to show that G ≺ qα or equivalently that G(∆) ⊂ qα(∆) because the functionqα is
univalent. The setqα(∆) is on the right of the curve in Fig. 1 with max{Reqα(eiϕ)} =

3
2(3−α)

on the real axis. The set G(∆) is

a disc with the diameter from x1 =
1−n|c|
1−|c| to x2 =

1+n|c|
1+|c| . We have that xi, i = 1, 2, satisfy xi > 3

2(3−α)
, thus G(∆) ⊂ qα(∆).

This proves the theorem. �

Making use of the formula (2.13) with the function p(t) = qα(t) we obtain the other example of function of the class
SK(α):

fα(z) =


z

1 + αz/3

 α
3+α


z

1 − z

 3
3+α

=
z

(1 + αz/3)
α

3+α (1 − z)
3

3+α

∈ SK(α). (3.16)

4. The order of starlikeness in the class of convex functions of negative order

A function convex of order zero is starlike of order one-half [20,21]. Several different results have been made on the way
to obtain the order of starlikeness of the class of convex functions of orderα. MacGregor [22] proved that if f ∈ A,α ∈ [0, 1),
then

Re


1 +

zf ′′(z)
f ′(z)


> α ⇒

zf ′(z)
f (z)

≺q(z), (4.1)

where

q(z) =


(1 − 2α)z

(1 − z)[1 − (1 − z)1−2α]
if α ≠

1
2

z
(z − 1) log(1 − z)

if α =
1
2
.

The exact value of min{Req(z) : |z| = 1}, as conjectured in [22], one can find in [23, p. 115]. This value is the order of
starlikeness of convex functions of positive order α ∈ [0, 1) and is given by

δ(α) =


2α − 1

2 − 22(1−α)
if α ≠

1
2

1/ log 4 if α =
1
2
.

(4.2)

In the current paper we consider an improvement of the result (4.1) for functions of certain negative order of convexity.
Let us denote by Q the class of functions f that are analytic and injective on ∆ \ E(f ), where

E(f ) := {ζ : ζ ∈ ∂∆ and lim
z→ζ

f (z) = ∞}

and are such that

f ′(ζ ) ≠ 0 (ζ ∈ ∂∆ \ E(f )).

Lemma 5 ([23]). Let p ∈ Q with p(0) = a and let

q(z) = a + anzn + · · ·

be analytic in ∆ with

q(z) ≢ a and n ∈ N.

If q is not subordinate to p, then there exist points

z0 = r0eiθ ∈ ∆ and ζ ∈ ∂∆ \ E(f ),

and there exists a number m ≥ n for which

q(|z| < r0) ⊂ p(∆), q(z0) = p(ζ ) and z0q′(z0) = mζp′(ζ ).
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Theorem 5. Let −3 ≤ α ≤ 1. If a function f belongs to the class A and

Re


1 +

zf ′′(z)
f ′(z)


>

3α
2(3 − α)

(4.3)

for z ∈ ∆, then f ∈ SK(α).

Proof. Ifα = 0, then Theorem5 becomeswell known result that a function convex of order zero is starlike of order one-half.
Suppose that α ≠ 0 and that f ∉ SK(α) or equivalently

zf ′(z)
f (z)

⊀qα(z),

then by Lemma 4 there exist z0 ∈ ∆ and ζ , |ζ | = 1, ζ ≠ 1, andm > 1 such that

z0f ′(z0)
f (z0)

=qα(ζ ) and
[
z

zf ′(z)
f (z)

′]
z=z0

= mζ (qα(ζ ))′. (4.4)

Then, after some calculation we get

1 +
z0f ′′(z0)
f ′(z0)

= qα(ζ ) +
mζ (qα(ζ ))′qα(ζ )

=
−3

(ζ − 1)(αζ + 3)
− m

(3 − α)ζ + 2αζ 2

(ζ − 1)(αζ + 3)

=
−3

(ζ − 1)(αζ + 3)
− m

(αζ + 3)(2ζ − (α + 3)/α) + 3(α + 3)/α
(ζ − 1)(αζ + 3)

=
−3

(ζ − 1)(αζ + 3)

[
1 +

m(α + 3)
α

]
−

m(2ζ − (α + 3)/α)

ζ − 1
. (4.5)

If |ζ | = 1, ζ ≠ 1, then the last expression in (4.5) takes its values on the vertical lineRew = m[1+(3+α)/(2α)]. Moreover,
by (2.9) we have

9(1 + α)

2(3 + α)2
≤ Re{qα(ζ )} = Re


−3

(ζ − 1)(αζ + 3)


≤

3
2(3 − α)

.

Then after some calculations and then using Lemma 4 we obtain

Re


1 +

z0f ′′(z0)
f ′(z0)


= Re


−3(1 + m(α + 3)/α)

(ζ − 1)(αζ + 3)


− Re


m(2ζ − (α + 3)/α)

ζ − 1


= Re


−3(1 + m(α + 3)/α)

(ζ − 1)(αζ + 3)


− m


1 +

α + 3
2α


<

3
2(3 − α)

[
1 +

m(α + 3)
α

]
− m

3(α + 1)
2α

=
3

2(3 − α)
+ m

[
3(3 + α)

2(3 − α)α
−

3(α + 1)
2α

]
=

3
2(3 − α)

− m
3(1 − α)

2(3 − α)

<
3

2(3 − α)
−

3(1 − α)

2(3 + α)
=

3α
2(3 − α)

,

which contradicts our assumptions, hence

zf ′(z)
f (z)

≺qα(z),

and f ∈ SK(α). �
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Corollary 4. Let −3 ≤ α < 1. If a function f belongs to the class A and

Re


1 +

zf ′′(z)
f ′(z)


>

3α
2(3 − α)

for z ∈ ∆, then f ∈ S∗(γ ), where γ =
9(1+α)

2(3+α)2
.

Proof. From Corollary 1 we have that SK(α) ⊂ S∗(γ ), where γ =
9(1+α)

2(3+α)2
, this means that if f ∈ SK(α), then it is starlike

of order γ . �

Thus Corollary 4 adds a relationship between the order of convexity 3α
2(3−α)

and the order of starlikeness 9(1+α)

2(3+α)2
. Below

there are some examples of this relationship.

α −3 −
5
2 −2 −

3
2 −1 −

1
2 −

1
3 −

1
4 0 1

4 −
1
3

1
2 1

3α
2(3−α)

−
3
4 −

15
22 −

3
5 −

1
2 −

3
8 −

3
14 −

3
20 −

3
26 0 3

22
3
16

3
10

3
4

9(1+α)

2(3+α)2
−∞ −27 −

9
2 −1 0 9

25
27
64

54
121

1
2

90
169

54
100

27
49

9
16

We can see that if f is convex of order -3/8, then f is starlike. When f is convex of order 0, then f is starlike of order 1/2
which was proved earlier, see (4.2).
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