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Abstract

The problem of specification of self-adjoint operators corresponding to singular bilinear
forms is very important for applications, such as quantum field theory and theory of partial
differential equations with coefficient functions being distributions. In particular, the formal
expression —4 + gd(x) corresponds to a non-trivial self-adjoint operator H in the space
LQ(R‘J) only if d < 3. For spaces of larger dimensions (this corresponds to the strongly singular
case), the construction of H is much more complicated: first one should consider the space
LZ([REd) as a subspace of a wider Pontriagin space, then one implicitly specifies H. It is shown in
this paper that Schrodinger, parabolic and hyperbolic equations containing the operator H
can be approximated by explicitly defined systems of evolution equations of a larger order.
The strong convergence of evolution operators taking the initial condition of the Cauchy
problem to the solution of the Cauchy problem is proved.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

1. The main difficulty of the quantum field theory is the problem of divergences [5]
which arise since the evolution equations of quantum field theory are ill-defined. It is
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suitable to investigate such problems, making use of the simpler quantum
mechanical models which illustrate some of the difficulties of the quantum field
theory. One of such models is the Schrodinger equation for the particle moving in the
external singular potential

(1)

DL g, (1)

where 7eR, y(t)e# = L*(R?), while the Hamiltonian operator H is formally

written as H = —A + ¢o(x), and ¢@(x) is the operator of multiplication by a
distribution. Such models were considered in [2,4,6,7,10,13,14,18,20,22-25]. As an
example, one can consider the function ¢(x) = a + gé(x), where a>0, geR. Then

Hy=—A+a+ gd(x). (1.2)

The more general example of H (compared to (1.2)) is the following formal
expression:

Hyy = TV + gx(1,¥)- (1.3)

Here 7 is a positively definite self-adjoint operator in . Making use of the
operator T, construct the scale of Hilbert spaces --- c #*>c #'c# = #'cH ™' c
H %< ... . The space #* is a completion of the subspace N, D(T") of the space
A with respect to the norm Hl//”i = (Y, ¥ >, = (Y, T4). The function y entering
Eq. (1.3) should belong to the space # ™ for some k. Expression (1.2) is a partial
case of (1.3) for T= —4 +a, y(x) = 6(x)e#* at k>d /2.

To define Eq. (1.1) mathematically, one should specify a self-adjoint operator in
A corresponding to the formal expression (1.3) (in particular, (1.2)). For
ye#H > A (d<3), this problem is solved as follows [4]. One should consider the
restriction of the operator 7' to the domain

{we ﬁ D(T(T*y, Ty) =0} (14)

n=1

(for the partial case (1.2) the domain is {y e S(R?)|(0) = 0}). One justifies that the
defect indices of this symmetric operator are (1,1). Making use of the standard
procedure (see, for example, [1]), one constructs the one-parametric set {ﬁg} of self-
adjoint extensions of the operator 7' It is in one-to-one correspondence to the one-
parametric set of formal expressions (1.3).

2. For the strongly singular case, i.e. for y¢ # > (d>3), the operator T considered
on domain (1.4) is essentially self-adjoint, so that the considered approach does not
allow us to construct a non-trivial self-adjoint operator corresponding to the formal
expression (1.3). It was noted in [3,22,23,29] that one should consider an indefinite
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inner product space instead of the space # in order to construct a non-trivial self-
adjoint operator H in the strongly singular cases.

A self-adjoint operator H in the Pontriagin space II,, [8] corresponding to
expression (1.3) was specified in [24] (see also [25]), provided that y e # %"\~ for
some k. Here m = [k/2]. One-parametric set of formal expressions (1.3) corresponds
to the k-parametric set of operators H in IT ik/2(g2; -+, gk); k — 1 parameters specifies
the inner product, while one parameter is an analog of g. Denote the operator
constructed in [24] (see Section 2) as H(ga, ..., gk, ®). Therefore, the equation

;A0

di H(QZ; --~,gk706)lp([) (15)

for (1) ey x(92, ---, gx) is defined.
According to the analog of the Stone theorem for the Pontriagin spaces [17,21],

the operator H is a generator of a one-parametric group of unitary operators eitit

in I1,,. The operator U(r) = ¢ (920900 restricted to D(H(ga, ..., gk,)) is an
operator taking the initial condition of the Cauchy problem for Eq. (1.1) to the
solution of Eq. (1.1).

3. The problem of constructing approximations of singular equations (1.5) often
arises [2]. This problem is also important for quantum field theory [16].

It was shown in [13] that for m = 0 the operator transforming the initial condition
for the Cauchy problem to the solution of the Cauchy problem for Eq. (1.5) can be
approximated in the strong sense as n— oo by the evolution operator for the equation

i (0 4 gt 0), ) A (1.6)

provided that
||7€’_1Xn_’f‘_];{||_)ﬂ—’oooa g;l—i_(}cnaf‘_l){n)_)”—’w _a_l' (17)

Note that for all ye# > there exist sequences g,eR, y,€# obeying (1.7), for
example, 7, = ¢ 7"y, gu = —(a" + (1,7 '1,) "

This paper deals with the construction of an approximation for Eq. (1.5) for the
strongly singular case (for m#0 or k>1). Approximation (1.6) cannot be applied
then. It happens that the resolving operator for the Cauchy problem for Eq. (1.5) (the
t-dependent operator transforming the initial condition of the Cauchy problem to the
solution of Eq. (1.5) at fixed #) can be viewed as a limit as n— oo of resolving operators
for the Cauchy problem of the system of differential equations of a larger order

;4 (1)

40 0 + (02,
. dc,(t Jo— dkilnl
i)+ iz D g, D ) ()
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Here ¢,(¢) e C is a complex function, and ¥, (¢) is an element of the space . The limit
should be considered in a generalized strong sense [11,28]. The following conditions
are imposed:

Zsn + (Xna TLS?IXn)_)M*OCgSv §= ka -1,

k+1
2

HTH (Xn_X)H_’n%ocO- (1-9)

Here g; = —o~ L.

For the partial case k = 1, the left-hand side of the second equation of system (1.8)
contains only one term. Therefore, system (1.8) is equivalent to Eq. (1.6). If one
increases k, the number of parameters z, is also increased, so that the terms with
derivatives of higher orders appear. The procedure of adding such terms (‘“‘counter-
terms’’) is analogous to quantum field theory procedure of infinite renormalization
of the wave function [5].

In particular, the Schrodinger equation with the é-potential which was constructed
in [24] is formally written as

o (x,1)

o = [FA+atg(0l(x.0, xeR’

i
It appears to be the limit as n— oo of the system of equations on ,(x, ¢) and ¢,(?)

lw = [—A + a]tﬁn(x, 1)+ cn(t) 1 (x),

d* e, (t
ZO,nCn(t) + e+ ikilzkfl,nlel() = /dy Xn(y)'vbn(.%t)v

provided that k =[d/2], y,—0 in the #*'norm and sequences z, +
(Uns TLS’I;{”), s =0,k — 1, are convergent as n— 0.

4. Besides Schrodinger equation for the particle moving in the singular
potential, other equations appear in the applications. Evolution of relativi-
stic particle in the external scalar field is described by the Klein—-Gordon-
type equation [5]

2
dftz(l) = H(ga, ..., gk, )Y (7). (1.10)

The Schrodinger equation in the imaginary time is also considered

R () (1)
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After specifying the operator H(gz, ...y gk,o) Egs. (1.10) and (1.11) become well
defined. It happens that Eq. (1.10) can be approximated by the system

dzlpn([) r
- dr = Twn(t) + Cn<t)Xn,
d?c,(t _ d*=2¢, (¢
ZO,ncn(t) - Zl‘nW() + -+ (_l)k lzk—l,nle_z() = (Xna lpn(t))v (112)
while the approximation for Eq. (1.11) is
- %;(l) = Tl//n(t) + C"([)Xm
de,(t _ d* e, (t
ZO,ncn([) - Zl,n#"‘ -+ (_l)k lzlcfl.,nlel() = (Xnvl//n(t))' (113)

Therefore, the evolution operators for strongly singular evolution equations (1.5),
(1.10), (1.11) which was defined in [24,25] with the help of complicated implicit
procedure can be approximated in the generalized strong sense [11,28] by evolution
operators for explicitly defined systems of equations (1.8), (1.10), (1.11).

2. Formulation of results

2.1. Strongly singular equations

Recall the procedure of constructing the space II,, and operator H entering
Eq. (1.5).

First of all, consider the space Z,, containing all linear combinations of the form
=Ty + Wreg, Where ¢;€C, Y, € ¥ The inner product in this space is
specified by the k — 1 real parameters ¢», ..., gx. Set

(T W)y = 95 for s<k,

(T Wee = (1, T2) for s=k+ 1.

reg —
The inner product in £, is

2m

<‘//7 l//> = Z C?CY(X? TH[ﬁA‘X)reg + (‘//rega lpreg)

ls=1

2m 2m
+ Zl: cs(Tml//reg7 Tmis%) + zl: C:(TM7SXa Tmlpreg)'
S= S=

This expression is well defined, since 7%y e # for k> 1, while f’”xﬁrege%’ .
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Consider the completion [8] of the space #,, which is a Pontriagin space IT,, with
m = [k/2]. It has the structure IT,, = C*" @ #,

D ={(,p,0)ly =1, -, 7m) €C" 0= (1, .-, ) €EC", @A}

Introduce an indefinite inner product in I1,, as follows:

m m

(D, 0> = 70 T Dieg = Y, Gips+7,00) + (0, 0).

su=1 s=1

The one-to-one correspondence I : 2, — II,, between Z,, and a dense subset of the
2m

space I1,, can be specified as {3, ;T 'y + Y,eu} = (v, p, @), Where
1= —Cls s Vm = —Cm,

2m

pr= T Dreg + (T 2 1),

I=m+1
-

2m

Pm = Z 61(17 TPF’?lX)reg + (TFW}Q lpreg)?
I=m+1

2m

¢ = Z CITAH/X + lpreg'

I=m+1

The following statement has been proved in [24,25].

Lemma 2.1. The continuation of the mapping I is a one-to-one correspondence between
the completion of the space ?,, and the space I1,,.

Instead of the unbounded operator H, it is more convenient to define the bounded
operator H~'. Consider the formal equation Hy = ¢, Ty + gy(y, ) = ¢ and find
(formally) :p = T-'p + aT " y(T" 'y, $). Here oo = ;- Therefore, define

1
’ T et T
the operator H~! in the space 2, as follows:
H'¢=T"9+al 'y<T 7, ¢). (2.1

One should also specify a one-to-one correspondence between o and g. For the case
m = 0, definition (2.1) is in agreement with the approach based on self-adjoint
extensions [4].

Operator (2.1) can be continued [24] to the space IT,,. Thus, the operator H~' can
be viewed as a continuous operator in the Pontriagin space IT,,. It does not have zero
eigenvalues for 0. The inverse operator H = (ﬁ")_1 is then [8] a self-adjoint
(generally, unbounded) operator in IT,,.

Therefore, space I1,, and operator H are constructed.
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2.2. Approximation of a strongly singular equation

Formulate now the main results of the paper. The resolving operator for the
Cauchy problem for system (1.8) approximates the resolving operator for the
Cauchy problem for Eq. (1.5) in the general strong sense. Recall the corresponding
definition [11,28].

Let # and %,, n=1,2,... be Banach spaces, P,: #—%,, n=1,2,... be a
sequence of operators with uniformly bounded norms: ||P,||<a< oo for some
n-independent quantity a.

Definition 2.1. We say that a sequence of operators A4, :%B,—>%,, n=1,2,... is
{ P, }-strongly convergent to operator A : #— 4, if for all ve % the property || P,Av —
Ay Pyo|| > 5o o 0 is satisfied.

Note that a generalized strong limit of a sequence of operators depends (generally)
on the choice of the sequence {P,}; this fact is used in the theory of the Maslov
canonical operator in abstract spaces [26,27].

Definition 2.2. Let u,€%,, n=1,2,..., ue . We say that a sequence {u,} is of the
class [u] (or is {P,}-strongly convergent to u), if ||u, — Puu|| = 4 o O.

Set # = I1,,. Denote by %, = C*"' ® # the space of sets @, = (*, ..., k2, y,) of

numbers ¢?, ..., k=2 C and a vector y € # . Define an indefinite inner product in the

space %, as follows:

k-2
(D, @y = (s W) + > S Zisrin (2.2)

Js=0
Here z;, = 0 as /> k by definition.

Lemma 2.2. Let zj_,,<0. Then the inner product (2.2) contains m negative squares.

Note that the condition of Lemma 2.2 is satisfied at sufficiently large n.
System (1.8) can be presented as a differential equation of the first order

.5 d 5
iZ, i P, (1) = Hy®y(1) (2.3)
on the vector function @,(t) e %,. The operators Z, and H, are defined as
ZAn(£’2» ---acﬁiszn) = (627 ~--»C§7372k lnC alpn)
H,,(CS, s Gy - l//n) - ( n "’?05727 (Xnal//n) - Zoﬂcg e T Zke- 2”C T% +c 7n)

Namely, after redefining i’ ,cn(t) = ¢l (1) system (1.8) is taken to the form (2.3).
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Lemma 2.3. Let ,(0)eD(T), %(0),...,c52(0)eC. Then there exists a unique

solution of the Cauchy problem for Eq. 2.3. It continuously depends on the initial
conditions for te|0, T).

Define the operator U, (1) : C¥~' @ D(T) - C*~! @ D(T) taking the initial condition
of the Cauchy problem for Eq. (1.9) to the solution of the Cauchy problem. Since the
solution of the Cauchy problem continuously depends on the initial condition, the
operator U,(¢) can be continued to the space %,. This continuation U,(t) : B, — %,
is unique, provided that it is continuous.

Lemma 2.4. The operator U,(t) conserves the indefinite inner product (2.2).

Introduce the operator P,:%— %, of the form P, : (,p, @) (%, ...,k )
as follows.
For arbitrary k, set

m—1
CE), =71, ""62171 = Vm> lpn = _z ’yj+1T7]71;{n + @y
Jj=0
For k =2m+ 1, set ¢, = ¢. For k = 2m, set

f’an[pm — (T‘Lanv QD)]

Pp=0+ 5 .
n (Tﬂ?zxm Tfmxn)
Specify the quantities ¢, ..., c2"~! from the relations:
(rl}fnv lpn) - Zm+1,ﬂcnm e T 22’”1"63m71 =P1

-+

(f—qule lpn) - 22,,,71’,,021 — Z22mnCy = Pm-1>
(T_me V) = ZomnCy = Py (24)
For sufficiently large n, ¢, ...,c2"! are defined uniquely, since zx_;,#0. The

mapping P, is constructed.
Lemma 2.5. Asn— o, {P,®,P,®)> > D, D).

Introduce now Hilbert inner products in % and 4,,.

Recall that a Hilbert inner product in a Pontriagin space is introduced as follows
[8]. First, an arbitrary m-dimensional subspace ., =II,, such that the indefinite
inner product is negative definite on %,,, is considered. Without loss of generality,
one can consider only the case when the subspace .Z,, belongs to the domain of H
[19]. Otherwise, introduce a basis ¢/ in the space £,,, choose some vectors e; from the
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domain of the operator H such that the distance between ¢; and ¢} is smaller than e.
Consider the span of the set of vectors e;. At sufficiently small ¢ the inner product will
be negative definite on the span.

By J we denote the operator of the form J® =@ at ¢ 1 ¥, and J® = —@ at
®e ¥,,. According to Iokhvidov [8], the bilinear form

<¢7¢>f,,,:<¢7‘]¢> (25)

specifies a positive definite Hilbert inner product. The topologies corresponding to
inner products (2.5) at different %, are equivalent.
The inner product (2.5) specified the following norm in %:

|9 = /<D, P> 4, (2.6)

To specify a norm in 4, let us use the following statement. Let 4 be a sufficiently
large positive number such that the resolvent of the operator —Z;IH,1 is defined at
sufficiently large n. Denote " = (Z;'H, + 2) "' P,(H + 1) L.

Lemma 2.6. At sufficiently large n the inner product (2.2) is negative definite on the m-

n

dimensional subspace &, = %,. At sufficiently large n, the inner product {®, P p 4

is positively definite on %, and defines a norm ||®,|| = \/{P, P> p o, .
Lemma 2.6 implies the following lemma.

Lemma 2.7. The operators P, are uniformly bounded, || P,|| < a for some n-independent
constant a.

The following lemma gives necessary and sufficient condition for the property
_ 1 i
{(02""’C5 Z’ll/n)egne[(yvp7(p)]'DenOte ¢n:wn+2;‘ﬂ:0 c{qT_j IXn'

Lemma 2.8. {(¢% ...,c&2 y,)Yely, p, @] if and only if

lim cg =7 ..., lim cZ’_l = Vs
n— o0 n— oo
lim ||$, — ¢l =0,
n— oo
: —1 m 2m—1
lim (T Xnv(pbn) T ZmtnCy T e T Z22maCy =P1s

n— o0

: p—m+1 m m+1 __
lim (r Xns d)n) — 22m—-1,nC; — Z2mnC, = Pm-1>

n— oo

hm (TAHme ¢n) - Z2m-,n031 = pm

n— o0
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In particular, Lemma 2.8 shows that the property of {P,}-strong convergence
does not depend on the choice of the subspace Z,,.

The following lemma shows that any initial condition for Eq. (1.5) can be obtained
as a {P,}-strong limit of the sequence of initial conditions for system (1.8).

Lemma 2.9. For any (y,p, )€ % there exists a sequence { (%, ..., &2 y,) € B,} from
the class [y, p, ¢].

To prove the lemma, it is sufficient to choose (c2, ..., k=2 4,) = Pu(y, p, ¢).

The main result of the paper is formulated as follows.

Theorem 1. The sequence of operators U,(t) is {P,}-strongly convergent to U(t).

Corollary. Let  {(c%(0), ...,c5=2(0),4,(0)}e[(y, p, @)].  Then {((¢), ...,c2(1),
V(1)) }elU'(y,p,0)].

For non-strongly singular case (k = 1 or m = 0) Theorem 1 gives the result of [13].
Formulate analogs of Theorem 1 for approximations of Egs. (1.10) and (1.11).
Lemma 2.10. Let e D(T), ¢°(0), ..., c52(0)eC. Then there exists a unique solution
of the Cauchy problem for system 1.13. It continuously depends on the initial condition.
For y(0)e D(H), there exists a unique solution of the Cauchy problem for Eq. (1.11).
It also continuously depends on the initial condition.

By U,(t), U(t) we denote the operators transforming the initial conditions for the
Cauchy problems for Egs. (1.13) and (1.11) to the solution of the Cauchy problems
for Egs. (1.13), (1.11) correspondingly.

Theorem 2. The sequence of operators U,(t) is {P,}-strongly convergent to U(t).

Lemma 2.11. Let ,(0)eD(T), ¢,(0), eV eC. Then there exists a unique
solution of the Cauchy problem for Eq. (1.12). It continuously depends on the initial
condition.

Note that system (1.12) can be presented as

d? s
—a @,(t)=Z,"H,®,. (2.7)

Introduce operators V,(¢) and W,(¢) on D(T) from the relation

@, (1) = Vyu(t)P,(0) + Wn(t)%(O).
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The operator taking @,(0) to the solution of the Cauchy problem for Eq. (2.7) at
d®,(0)/dt =0 is denoted as V,(¢). The operator taking d®,(0)/dt to @,(t) at
@,(0) = 0 is denoted as W, (7). Since the solution continuously depends on the initial
conditions, the operators V,(¢) and W, (t) are bounded. They are uniquely continued
to the whole space %,,.

Analogously, define the operators V' (¢) and W (¢) from the relations

bo) = Vi 0) + () Do), 28

where (t)e D(H) is a solution of Eq. (1.10), y(0)e D(H), y(0)e D(H) are initial
conditions.

Theorem 3. The sequence of operators V,(t) is { P, }-strongly convergent to V(t). The
sequence of operators W,(t) is {P,}-strongly convergent to W(t).

3. Approximation of the space and resolvent convergence

This section deals with the proof of Lemmas 2.2 and 2.5-2.8. We also justify that
the sequence of resolvents of the operators Z; 'H, converges in a general strong
sense to the resolvent of the operator H.

1. Lemma 2.2 is a corollary of the following statement. Consider the real matrices
A and B of the dimensions m x m, which consist of elements 4; and By, i,j = 1, m.

Lemma 3.1. Let the matrix B be invertible, while the matrix A be Hermitian. Then the
quadratic form

NE

[xi Aipx; + y; Byjx;j + x; B};yi] (3.1)
1

ESH
Il

contains m negative and m positive squares.

Proof. Since the matrix 4 is Hermitian, it can be taken to the diagonal form
UTAU = diag|o, ..., a,) with the help of a unitary transformation. After substitu-
tion x; = 31" Ujs&; and transformation n, = > 7' | B} U}y; the quadratic form (3.1)
is taken to the form

m

> &t + &m0l (32)

s=1

One has
o Erls + Emy +mEs = (& + o ) (& + o ) — o im0 #0,
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For both cases, the quadratic form o & & + &n + ni&; contains one negative and
one positive square. Therefore, the form (3.2) contains m positive and m negative
squares. Lemma 3.1 is proved. [

Proof of Lemma 2.2. It is sufficient to justify that the quadratic form
k=2
Z C]r'z*cjzzjﬂﬂ.n (3-3)
Js=0

contains m negative squares (we set z;, =0 for />k). Take it to the form (3.1).
Consider 2 cases.

1. Let k =2m+ 1. Denote x; =¢, ', y; =" j=1,m, Aj=zij 1, Bj=
Zmtij—1s ] = 1,m. Since matrix elements B vanish as i+ j>m+ 1, while B; =
Zomn#0 as i+j=m+ 1, det B#0, and the matrix B is invertible. Therefore, the
quadratic form (3.3) is taken to the form (3.1) and contains m negative squares.

2. Let k=2m. Denote x;=d !, y;=c"V"1 j=1m—1, c=¢""'. The
quadratic form (3.3) is taken to the form

m—1

* 7 * D * D *
Z [x; Ayx; + Vi Bijxj + x; Biyj] + zom—140" 0
ij=1

m—1

+ Z [G*Zmﬂfl,nxs + O-Zm+sfl,nx:]7 (34)

s=1

where /Lj = Zigj—1n, E,-j = Zymtitj—1m, I,J = 1,m — 1. The matrix elements Eij vanish at
i+j>m and are non-zero at i+ j = m. Therefore, the matrix B is invertible.
Formula (3.4) is taken to the form

m—1
~ Zitm—1nZm l,n * D * D
> [ <Au - é) X+ i By + X B_/ty_/}

ii=1 Zo2m—1,n
Zers 1,n Zers 1,n
+ Zom_ia| 0"+ E x| o+ E X (3.5)
=1 Z2m—1n =1 Z2m—1p

Since z3,,-1, <0, the quadratic form (3.5) contains m negative squares. Lemma 2.2 is
proved. O

2. The following statement will be used later.

Lemma 3.2. The sequence ®") = (7", p" @) e B strongly converges to zero if and
only if

191, = max [[[™[], 17{"]. 10" (3.6)

tends to zero.
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Proof. First of all, prove the statement for the special choice of the subspace %,

entering the definition of the norm (2.6). Denote by #(*) the subspace of the space
4, which consists of all vectors of the form (7, p,0). The quadratic form {&,® ),

considered on #% contains m negative squares, so that for some subspace

Zmc 29 it is negatively definite. Consider the Hilbert inner product (2.6)
corresponding to .%#,,. It has the structure

2m
Z X:lexl + (QD, 90)7 (37)
sl=1

where X1 =91, ..., X = V> Xmtl = Py -+, X2m = Py My 1 @ some matrix. Since the
inner product (3.7) is positively definite, the matrix My, is also positively definite.

Thus, o) strongly converges to zero if and only if ||| tends to zero and

x|, = \/ Zflml X5 51x§ )50. Since all norms in finite-dimensional space are

equivalent, the latter property is equivalent to max|xs | > 0. Since all norms of type
(2.5) in the Pontriagin space are equivalent, we obtain the statement of the lemma for
arbitrary choice of #,,. The lemma is proved. [

Corollary. For some A, the following property is satisfied: A7"||®||, >||®||= 4:]|®||,.

Proof. Suppose that statement of corollary is not satisfied. Then it is possible to
choose a sequence @) which obeys one of the following properties:

12", ||<P”)||
R IR
For definiteness, consider the first case. Consider the sequence ¥ = m,
1
tending to zero in the || - ||,-norm and to infinity in the || - ||-norm. This contradicts

to Lemma 3.2. The corollary is proved. [l

Consider the operator Q, : %, — 2 of the form Q,: (%, ..., ™2 4,) = (7, P> Pr)-
Here

m—1

j:

"
’y{l = L{'[ ’ -] = 17m7
P = (T s ®0) = ZmejnCy = o = Zamn . (3.8)

Introduce in 4 an additional indefinite inner product:

(Vsps —vspy) + (0, 0), (3.9)
1

m m

<¢7¢>n = Z V Vugx+u

su=1 K
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where

9" = G T ') + 2110 (3.10)

Lemma 3.3. The following property {®,,¥,> = {Qu®y, 0V, >,, is satisfied for
b,V €RB,.

To prove Lemma 3.3, it is sufficient to substitute formulas (3.8) in the inner
product (2.2).

Corollary. Let &, 'V, € B, be such sequences that ||Q,®,|| < C, ||0, V.|| < C for some
C. Then {0, Py, 0w, > — Py, V1> = 1o 0.

Proof. Define 0,9, = X, = (9,1, 0, @), OnWn = X, = (Fny Py @n)- Statement of the
corollary means that

m

Z V;,Sﬂ)jn,u(gg}jgu - gs+u) =55 00.

su=1

This property is a corollary of Lemma 3.2. The corollary is proved. [

Lemma 3.4. For some quantity C that does not depend on n, ® and ¥, the estimation
<0, W | <Cl[ ||| ] is satisfied.

Proof. Let @ = (y,p,0), ¥ = (7,0, p). It follows from (3.9) that

m

<@, ,1< D (s

su=1

Fullgloul + 1751185 + 17511 + lloll111]

m

< Y N@IL P (6 +2) + @l 121,

su=1

m
< A%|d>||||av||< > lgl | +2m + 1>.

su=1

Since the sequences g‘g'j_)u are convergent, they are bounded. We obtain statement of

the lemma. O

Corollary. Let &,,W,e€%. Then the following estimation is satisfied:
[ <P, ¥ > | < Cl| Qn @[l @0 W]

Let us check that the sequence of the operators Q,P, : #— % strongly converges
to 1. First, let us justify the following statement.
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Lemma 3.5. Let e # and ||T?0(b — T)E||< C for some b-independent quantity C.
Then e #' c .

Proof. Consider the sequence ¢, = 6(n — T )¢, Suppose it to be not fundamental in
', Then for some &> 0 there exists an increasing sequence 7,7, 13, ..., such that

||énzs - 5"2.\'—1 ||}/1 = Hl[nzrhnz.\-](fv)ﬂbfl >ée (here I[m,n](;‘) =lat/ie [m,n] and I[m,n] (l) =
0 at A¢[m,n]). Therefore,

~

(é TG n2l - T)i Z f TI[nz\ 1,125 T)f)

s=1

For /> C/e, we obtain a contradiction with the conditions of lemma. Therefore,
¢ =1lim,_ o &, e#". Lemma 3.5 is proved. [

Corollary. Let ye# %' and ||T*20(b — T)y||<C. Then ye#™* for some b-
independent quantity C.

Lemma 3.5 implies the following statement.

Lemma 3.6. (1) The sequence ||T*/?y,|| tends to infinity as n— .
(2) The sequence of elements of H# of the form

as n— oo.

T k/2y
T /2 H weakly converges to zero

Proof. (1) Suppose that the sequence ||7*/?y,|| does not tend to infinity. Choose
from it the bounded subsequence ||f‘k/2xnj|| < C. One has

IT7420(b — T, ||<IIT*7, || < C.

Consider the limit of the left-hand side as j— oo. Use the fact that the operator
7'20(b — T) is bounded. We obtain ||7%/20(h — T)y||< C. It follows form Lemma

L, k+1 .k . .
3.5 and property T~ 2 ye# that T 2ye#, so that ye # . This contradicts the
condition ye # 1 7.

(2) Denote 1, = % If £e D(T'/?), one has

. k+1
(T2 y,, T3¢

(nnaé) -
17427l

“n-wY,

L, k1 . okl .
since (T 2 3, TV2E) = (T2 4, TV2E) £ 00, ||T*?y,|| = ns o 0. Thus, the
sequence 17,, n = 1,2, ... of the elements of the unit sphere in J# weakly converges to
zero on dense subset of 5. Therefore [11], the sequence 7, weakly converges to zero.
Lemma 3.6 is proved. [

Lemma 3.6 implies that z;, <0 for sufficiently large n.
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Corollary 1. Let ®eB. The following property is satisfied: Q, P, ®—,_, ®.

Proof. It follows from the definitions of the operators Q, and P, (3.8) and (2.4) that
OuPy(y,p,0) = (7,p,,), where ¢, = ¢ for odd values of k and

TLan[pm — (TAPme ¢)]
(s T2 1)

Pn =9+t

for k = 2m. It follows from Lemma 3.5 that ¢, strongly converges to ¢ as n— 0.
Lemma 3.6 is proved. [

Corollary 2. The sequence Q, P, is uniformly bounded.
Namely, any strongly convergent sequence is uniformly bounded [9].

Proof of Lemma 2.5. Let ®e%. It follows from Lemma 3.6 that the sequence
[|0,P,®|| is bounded. Corollary of Lemma 3.4 tells us that

<Pn¢aPn(p> - <Qnan)7 QnPn¢> = 5o o0 0.

It follows from Lemma 3.6 that {Q,P,®,0,P,®>—, (P, ®>. We obtain
statement of Lemma 2.5.

3. Let us obtain the commutation rule between operator @, and resolvent of the
operator Z, ' H,.

Denote by R, (4) the operator in % that takes the et (7,1, .., Vpms Pnis - > Pons Pu)s
Vns) Pns€Cs @, €A, 10 the set (Ju1s -.v, Tums Pnls -+ P> Pn), Which is specified from
the relations

Vng = AVns + Tnse1, S = Im—1,

T = Anm + G,

@y = (T+2)ou+ T "1,

P = Prjot + 2P + Gonl,  j=2m,
Pum = (T s ) = Z2m

ggn)')jn.l + -+ gﬁs)ﬁn,m + 95,2_15:7,1 = Pn1 — lﬁn,l, (311)

where g has the form (3.10).

Lemma 3.7. The following property is satisfied: Qn(ZA,TII-i” + },)71 = R,(1)0y.
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Proof. Let &, = (<, ...,
€ %,. Define

n 7‘//n) ¢n = (ZAZIHVI + l)il¢n = (50 fkizvl;n)

Qn(pn - (77}1,17 ~--;77n,map~n,lv "'7p~n.ma (bn)v

0,y = (Vn,la <oy Vnams Pl ""pn,nw(pn)'

Check that Q,®, = R,(1)Q,®,. It follows from definitions of operators Z, and H,
that

Zkfl,nck - /le 1 nc (/na lpn) 20 nC e Zk72,n6ykl727
lﬁn :;“l;n+fl/;n+ég)(n- (3'12)

Formulas (3.8) imply 3 first equations of system (3.11). We obtain the fourth and the
fifth equation from formulas for p and g. The last equation is a corollary of
Egs. (3.12). Lemma 3.7 is proved. O

Denote
2m+1

Z g (=) = A T2 T+ 1) 1),

2m—+1
a(2) = lim a,(2) =Y g(=2)""" =TT+ ) ). (3.13)

s=1

Lemma 3.8. Under condition a,(1)#0, the quantities 7, p, p are defined uniquely from

system (3.11). Under condition a()#0 the sequence of operators R,().) being defined
for n=ny is strongly convergent as n— oo.

Proof. Let (7,p,p)€#. Set 3, =7, p, = p, @, = @5 Ru(2)(1,0,0) = (Fus P, Dn). It
follows from (3.11) that §,; has the form

a1 = (an(2)(=7)*™) "' B,(A), (3.14)
where

s—2 m—1

By(1) = Z Z i)jyn,sfj—l + z(;(—/l)ipn.jﬂ
s= J=
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m—1
+ (_)V)’71((T+i)_lrm}(na(pn) - ( Z(_lyg;(qﬂ_ﬁr]

Jj=0

—1

+ (_)“)m (ZZm.n + (Xna 7’—\—2m(j’"_~_ )‘)an))> (_;“y'yn‘mfj'
J

3

Il
o

For a,(1)#0, 7,1 is not defined. For this case, other components of the vector J,,
vectors g, and @, are defined uniquely from system (3.11).

For a(4)#0, the sequence 7, is convergent. We prove by induction that the
sequences

s—2
’);'T»Y = Z(_)“)Iyxfjfl + (_;“)S_lfmla
j=0

3
|

& =D (Y g+ (2" (3.15)
=0

are also convergent as n— oo. Therefore, the sequence for elements »# of the form
Pu=(T+2) 0= T"(T+2) 7 (3.16)
is also strongly convergent as n— co. The sequence p, ,, is taken to the form

ﬁn,m = ((T+ 2)_lmerla (P) - 621[22"411 + (Xna fznl(f+ /l)_l;(n)] (317)

and has a limit as n— oo. Therefore, sequences

s—1 s—1
ﬁn,m*b‘ = an,mfsfjfl (7;“)] + (7/1)Sp~n,m - Z g<2773—s+j+1 (7)“)]5:1 (318)
Jj=0 Jj=0

are convergent. Therefore, the sequence (7, g, »») is convergent in the || - ||;-norm.
Because of corollary of Lemma 3.2, it is convergent in the norm || - ||. The lemma is
proved. O

Denote R(%) = lim,_, ,, R,(%). It follows from proof of Lemma 3.8 that R(/) is a
bounded operator.
We will use further

Lemma 3.9. Let A,: B—>B,n=1,2,... be a strongly convergent as n— oo sequence
of operators, A, —,_ oA and A,Q,, = 0. Then A = 0.
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Proof. It follows from the condition of lemma that 4,0, P, = 0. Lemma 3.6 implies
that the sequence of operators Q, P, : % — % is strongly convergent to 1, so that

ApOQnP,— - A in a strong sense. Therefore, 4 =0. O

Lemma 3.10. Let a(2)#0, a(u)#0. Then
R(2) = R(w) = (u— HR()R(). (3.19)

Proof. Consider the following sequence of operators 4,: 4, = R, (1) — R, (1) + (A —
)R, (AR, (). Tt satisfies the property 4,0, =0 and strongly converges as n— oo
to R(A) — R(u) + (A — p)R(A)R(1). We obtain statement of the lemma. [

Lemma 3.11. Under condition a(1)#0 the following property is satisfied:

R(2) = (h+H)™". (3.20)

Proof. Justify that for 1 =0 the operator R(A) coincides with the operator H~'
defined in Section 2. Find an explicit form of H~'. It follows from (2.1) that

2m
= aaT 'y + Z aT "'y + T_ll//reg,
=1

2m
H! [Z C[T_1X+ lpreg

=1

where a = <f71Xv Z?Zl CIYLIX + l//reg>.
For the vectors I[33)" T + el = (7.0 0), 11" 0aT g+ a1y +
ﬁlwreg] = (’ﬁaﬁa @)a one has

(7) = _me‘_m_lx + T_lq)a

')71:—06617 “72:“/17 ;-~-7’)7m:ym711

Ps = _(Xa THm*S?lZ)reng + Ps+1, S = lam - la

P == T L regrm + (T 1, 0). (3.21)

Formula (3.14) can be presented in the following form as n— oo: §; = g7 (p; —
Sy gs+17s), For the case o = —g7! it coincides with §; = —aa. Formulas (3.15)-
(3.18) also coincide with (3.21). Therefore, property (3.20) is satisfied as 4 = 0. It
follows from (3.19) that R(4) is a pseudoresolvent [11]. Therefore, property (3.20) is
satisfied for all 1 obeying the condition a(4)#0.
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Lemma 3.12. Under condition a(1)#0 the following property is satisfied:
(2 Hy 4 2) " Py, (2, Hy + 2) Py >,
CH+)"'o,(H+)'wy, o ven.

Proof. Check that the conditions of the corollary of Lemma 3.3 are satisfied.
Namely, for @€ % one has

10:Z, " Hy + 2)™ Pl = ||(H + 1)~ Qu Pu|

< |I(H +2)™"|| max || 0, P, || < C.

An analogous property is correct for ¥ also. Therefore,
(Z7'H,+72) ' P, (Z;'H, + 1) ' P,
— ((H+2) QuPu®, (H+2)" QuPa¥ ) =1 0.
The properties Q,P,®— @, O,P,¥Y — ¥ imply the statement of the lemma.

Proof of Lemma 2.6. Choose such a basis ey, ..., e, in ., that obeys the condition
(e ejy = —0;. To prove negative definiteness of the inner product on £, =

(Z:'H, + 1) "' P,(H 4 1) %, it is sufficient to check the positive definiteness of the
matrix

A = (2, By + 2) 7 P + Dei, (2, Hy + )7 Py(H + ey, (3.22)

Its components tend to the components of the unit matrix according to Lemma 3.12.
At sufficiently large n [|[A") — 1||<1/2, so that

(6, 48) = 3(6,8) =568 + (&, (4 — 1)2)
1
> JlIEIR ~ [l ~ 1} >o.

Positive definiteness of the inner product { &, ® n is a corollary of general results
of [8]. Lemma 2.6 is proved. [

Lemma 3.13. Let |{P,®, P,®>|<B||®||* for some constant By, <{(Z;'H,+
)P, P> |<Cl|D||, i = T,m for some Cy, ..., Cp. Then ||P,||<a.
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Proof. It follows from formula (2.5) that
|1P,@|]* = Pu®, Py yn = {Py®, P,
+ 22 (P®,(Z, Hy+7) " Pueiy M)

X <(Zn H,,—&—A) Pnej,PncD),

where M is a matrix being inverse to (3.22). It follows from the conditions of
lemma that

1P| < (Bl +ZZ C:M, ) |9]° < (31 +2 Sup||M<")|||C|2>||‘D||2~
n

We obtain statement of Lemma 3.13. O

Proof of Lemma 2.7. Check that conditions of Lemma 3.13 are satisfied. Use the
corollary of Lemma 3.4.

[P, Pa®Y| < C(sup 10uP, Bl <C.
n
<|(Z,'H,+2)"' Pye;, P, @) |

< Csup HQn(Zijlﬁn + i)_lpneiH sup ||Q, P, P||
n n

2
1
< Cl|(H +4) ||<Sup ||QnPn||> |(H + Aeil|[|@]].
Lemma 2.7 is proved. [
Lemma 3.14. ||®,|| < A43||Q,®,|| for some constant As.

Proof. One has

[AlR f<d>n,¢n>+22<¢m Z,'H, +2)"'Pye;)
=1

x MY ¢ (Z;lHn + ) Puej, B, ).

It follows from Lemma 3.4 that

@42 < C||Qu®yl* + 2 Z|M<" |C2(| 0| [*[| Ru(2)]

ij=1
X [|Qu Pl P (H + L)eil|[|(H + 2)ey].

We obtain statement of the lemma. O
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Lemma 3.15. Let the condition a(A)#0 be satisfied. Then the sequence of oper-
ators (Z;'H, —F},)_1 :By—> By is {Pp}-strongly convergent to the operator
(H+1)":3-2.

Proof. It is sufficient to check that for any ®e %
1(Z, Hy + 2) "' Pu® — Py(H + 2) 7' ®|| = 0.

It follows from Lemma 3.14 that ||®,|| -0, provided that ||Q,®,|| — 0. It is sufficient
to prove then that

100(Z, H + 2)™' Pu® — QuPu(H + 7)™ ]| =1 0.
This property is a corollary of the relation
0u(Z, ' Hy + 2) "' Py®@ = Ry(2) 0 Pu®— s oo (H + ) 7' @,
OPy(H+ ) ' &>, (H+ 1) '
Lemma 3.15 is proved. [
Lemma 3.16. For some constant A, the estimation ||Q,®,|| < Az|| Pyl is satisfied.

Proof. Since the norm of the operator J entering Eq. (2.5) is equal to 1, the following
estimation is satisfied for the indefinite inner product:

[ <P, Wu ) | S| Pull[[¥nll,  ¥n, Pr€ B
Therefore,
< By B )| <[|®al P, [{ Py Pa® > | <al| ][] (3.23)
for all e %, &, %,. Lemma 3.3 implies that property (3.23) can be presented as
1< 0u®n, QuPr >, < 1@l
| Qn@n, QuPu® | < al|Dy|[|2]]. (3.24)

Choose @ = (7, 9,0). Then Q,P,® = ®. Denote Q,®, = (v, p,, ¢,)- It follows from
the second property (3.24) that

m

m
S a0 b+ 7wy <all(F, 5, 0[]l
su=1

s=1
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Choose ﬁy) = 0y, 75 = 0. For different / we obtain
(75| <amax (0, 5, 0) [[| @[], < Cu ||
for some constant C;. Analogously, |p, —> /", yn,‘yg@u| <G ||®,|| for some
constant C,. Therefore
[P0l < G| Pall-

It follows from the first inequality (3.24) that

m
(@ @< D 75 7mma
su=1

+ + || P> < Cal | Pl

> s+ Py sTns)
s=1

Therefore, ||<pn||<Ci/2||€D,,||. For norm (3.6) of the vector Q,®,, the following
estimation is satisfied: ||Q,®,||; < C||®,||. Making use of the corollary of Lemma 3.2,
we obtain statement of Lemma 3.16. [

Lemma 3.17. The sequence {®,} is of the class [®] if and only if Q,®,— .

Proof. The condition {&,}e[®] means that ||®, — P,P||—>0. It follows from
Lemmas 3.15 and 3.17 that it is equivalent to

||Qn¢n - QnPn€D|| _)0 (325)

Since ||Q,P,® — ®|| >0 according to Lemma 3.6, condition (3.25) is equivalent to
0,9—®. Lemma 3.17 is proved. [

Lemma 3.17 implies Lemma 2.8.

4. Some properties of solutions of evolution equations

This section deals with investigations of properties of evolution operators for
Eqgs. (1.5), (1.8), (1.10), (1.11), (1.12) and (1.13). Lemmas 2.3, 2.4 and first parts of
Theorems 2,3 are proved.

1. Investigate properties of the operators entering the right-hand side of evolution
equations. As usual, we call operators which are self-adjoint with respect to the
indefinite inner product in 4 or 4, as J-self-adjoint operators, while operators being
self-adjoint with respect to the inner product {-,-) & or {:,-> ¢ will be called

H-self-adjoint.
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Lemma 4.1. The operators Z;lﬁn and H are J-self-adjoint.

Proof. It follows from [8] that it is sufficient to check that the bounded operator
(Z:'H, + 1)"" is J-self-adjoint for some real 2. Lemmas 3.3 and 3.7 imply that this

property is equivalent to self-adjointness of the operator R,(1): (7, p, ) (7,5, ®)
with respect to the inner product <-,->,. To justify the latter property, it is sufficient
to check that for all @ = (y, p, ¢) the inner product

m
(D, R (1)®Y, = Zmugm > Gids +70%) + (9, 0) (4.1)

s=1

is real. It follows from (3.11) that

Z ngugxﬂt Z ?:ﬁugsﬂt + Z gxi)u 17:)7”

su=1

+ 8 g =7 9
u=1 u=1

m—1

m
Z'Vjps = Z)%ps + Z%Hm + Cm/):m
s=1

m

m
Z Topy = Z Z 5P
~ -

s=1 s=

Z m+\y\cm + ))1 Z gu yu’
s=1 u=1
(@, ) = (2, (T + )P) + &, (pm + 22maC).
Therefore, expression (4.1) is real.
Self-adjointness of the operator H is checked analogously [24,25]. Lemma 4.1 is

proved. [O

Lemma 4.1 and analog of the theorem for the Pontriagin spaces [17] imply
statements of Lemmas 2.3 and 2.4.

Lemma 4.2. The operator Z;lﬂn is presented as a sum

Z'H,=H'+ H? (4.2)
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of a H-self-adjoint operator I-},ll and a bounded operator I-},%; for some n-independent
quantities By and B,

H,>By,||H,||<B:. (4.3)

The operator H is a sum H, + H, of a H-self-adjoint operator H, being semi-bounded
below and a bounded operator H.

To prove this lemma, let us prove Lemmas 4.3-4.7.

Lemma 4.3. The function f(2) = A(y, T*(T+ 7)) increases and tends to infinity
as A— .

Proof. Since the operator 7 is positive and self-adjoint, the difference
fOa) = f () = (i = A2) (. TN (T 4+ )™ (T + 22) 7))

is positive as ;> A,. Thus, f increases.
Check that f(4) tends to infinity as A— oo. Suppose, that f(1)<C for some C.

Then the property of positive definiteness of the operator 7 implies that for all b
A TF0b — T (T+ 1) 'y <C.

Consider the limit A— co. We find (y, T ko(b — f) 7)< C. According to corollary of
Lemma 3.5, we obtain a contradiction with the condition y¢ #*. Lemma 4.3 is
proved. O

Lemma 4.4. For all C>0 there exist some Ay and ny such that for all 2> 2y and
n>ng fu(2) = 2 T5(T+ )" y,)>C.

Proof. Suppose that for some C for all Ay and ng there exist 1>/, and n>ny such
that f,(4) <C. Analogous to the previous subsection, we justify that the function
Ju(2) is increasing. This implies that f,(Z9) < C. Therefore, for some sequence n, - oo
fn,(Z0)< C. Consider a limit p—co. We find f(4)<C for all J9. Lemma 4.4 is

proved. [

Let @ = (y,p,¢) €. Denote &, = R,(A)D = (5,(1), pu(L), pu(2)) € B. d, is deter-
mined from system (3.11).

Lemma 4.5. For some constants Ly, ny and A4 for A= 2 and n=ny the operator ﬁn(i)
is well defined and obeys properties

ey 1< Aql| @],

n p-m 9\~
[EHIAT™(T+ 24) " yall < Aal| @] (4.4)
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Proof. It follows from system (3.11) that & = (a,(2))”'b,(%), where a,(2) has the
form (3.13), while

m  m+l—s

+ 2 ; g (=) s

For some A5, the following property is satisfied:

(A< (1T (T+2)7"

O]l

Obtain an estimation for a,(1).
1. At k =2m zy,,, = 0. Lemma 4.4 implies

an ( ) %(7n7r2m(T+;“) )+%7

for sufficiently large 4o and ngy. Therefore,

1—1
|bn(/1)/an(/l)|<2Al/L H@Hl ( T2"1(T+) )Cn)

The inequalities || 7(T+ 4)7 | <IT1 7, 1< G AT (T4 )" 5,1 -
(s T2(T+ 2) " ) = = (s T2 T(T+ 2)1,) <O imply Eq. (4.4).
2. Let k =2m + 1. Then

2m+1
(—;t)ilan(/l) _ ggn)( /L)s 1 2111+( T—2m l(rfv_~_ ) 7;1)
s=1
1 2m—1 n—1 1
25()(;15r (T+/“) /Cn)+§

We obtain the following inequality: |b,(1)/a,(2)| <A~ C,||®]|, and Eq. (4.4).
Existence of the operator ﬁn(i) for A= 4p and n>=ny is a corollary of the proved
property a,(4)#0. Lemma 4.5 is proved. O

Lemma 4.6. For some constant Bs the following property is satisfied: ||R, (1) )

AR, (2) ]|
SUPgpc ||45H L< Bs.

Proof. It follows from the second equation of system (3.11) that A|j,.|< Ci||®||;.
We obtain from the first equation by induction that 1|7, | < C||®||, for s =1,m — 1.
It follows from the positive definiteness of the operator 7' and from the third
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equation that
A@a(AI< 1T + 1) ol + &7 T AT+ 7)1
<|loll + 44l @]]; < (s + D[P

The latter equation of system (3.11) implies 4|9, 1|<C3||®||,. The fourth equation
implies A|p,.s| < Cs||®||;, s = 2,m. We obtain statement of Lemma 4.6. [

Corollary of Lemma 3.2 implies
Corollary. For some constant By the following property is satisfied: || R,(1)|| < By.
Lemma 4.7. There exist constants Bs, Ay and ny such that for 1= Ay and n=ny
A+ Z, Hy) | < B,
M2+ H) V| <Bs. (4.5)

Proof. Lemma 3.11 implies the second property of (4.5). It follows from Lemmas
3.14, 3.16 and 3.7 that

14+ 2, Hy)~ |

W@+ Z, Hy) Y| = su

v N (8]
g DlIOAZ, )
b Dy € By A>||OnPnl|

A3||AR,(2) 0, P,
o AIERD0.
b, € B, A2||Qn(pn||

$B4A3/A2.

The lemma is proved. O

Proof of Lemma 4.2. By Rﬂ, we denote the orthogonal with respect to the inner
product (2.2) projector on the subspace #7,, by Rl denote the orthogonal projector
on (#")*. Set

m
H'=R'Z 'H,R},
H’=Z'H,-H =R Z'H,+Z,'H,R + R Z'H,R..
Check that the operators H; and H; obey properties (4.3). Since the inner products
{+,-> and {-,-) gn coincide on ($Z)l, H{ is a H-self-adjoint operator. Find an
estimation on the norm of the operator H2. The operator R! is rewritten as

R, =—=>1 eE”)<ef/("),<I>n>M§j"), where M;/-m is a matrix being inverse to (3.22),
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&\" = (Z,H, + 7)"' P,(H + A)e;. For the norm of the operator Z; ' H,R!, we obtain

i
the following estimation:

12, Ry || < max [ M | max |2, Hyel” || max e (4.6)

Since ij”)—n,_méi/,
2 Hyel" = Py(H + 2)e; — 7e",
7—1 17 -1
e 1< Zy Hy+ 2 Pl + Zel],

quantity (4.6) is bounded uniformly with respect to n. An analogous estimation can

be obtained for norms of the operators Z, ' H,R!-R! Z-1 H,R!. Therefore, ||H?||<B.

To check that the operator ﬁ,ﬂ is semibounded below, present it as a sum of an

absolutely convergent in the norm-topology series: (4+ I-?,L)fl =>4+

ZVH,) "(H2(2 + Z;"H,)"")* provided that i>BBs and 1>J,. Namely, for this
k

"
case the norm of the kth term of the series is not larger than B}kifl. Therefore, for

sufficiently large /2 and n>ny the resolvent of the H-self-adjoint operator H,ll is
bounded. Therefore, the spectrum of the operator 1-7}1 is semibounded below by an
n-independent quantity. Analogously, we prove statement of Lemma 4.2 for the
operator H. Lemma 4.2 is proved. [

Without loss of generality, suppose that the quantity C entering Lemma 4.2 obeys
the property C>0. Otherwise, one can redefine the operators H}l and I-iﬁ

Representation (4.2) and results of [11] imply the following properties of evolution
operators for Egs. (1.8)—(1.13) on [0, £].

Lemma 4.8. The following properties are satisfied.
He—itifﬂ,,n SEBI, ||e—irH|| <€Bl.

He—rj;‘ﬂnn SE(B_C)t, ||e_IHH<€(B_C>I.

Proof. It was shown in [11] that if 7" is a generator for a one-parametric semigroup
e~ 1" such that

e~ < Me”, (4.7)

while 4 is a bounded operator, then 7+ A4 is also a generator of a semigroup.
Moreover, ||e~(T+4)|| < MelF+MI4I): The operator iH! for the case of a H-self-

adjoint I-?,I, is a generator of a one-parametric semigroup of H-unitary operators.
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This means that property (4.7) is satisfied for M =1, f=0. Therefore,
||le=Z: ' Ha|| < Il < eBf . The second inequality is checked analogously.

Since the operator H; satisfies the property H;>C, it is a generator of a one-
parametric semigroup, while ||e"9»lv’|\ <e ¢, We proved Lemma 4.8. [

Note also that since I-}}q + ﬁﬁ is a generator of a one-parametric semigroup, there
exists a unique solution of the Cauchy problems for Egs.(1.13) and (1.11) for
®,(0)e D(H! + H?). This solution continuously depends on the initial conditions.
Lemma 2.10 is proved. [

To prove Lemma 2.11, let us justify some auxiliary statements analogously to
Ref. [15].

Consider the following differential equation in the Banach space 4:

_”5 T =do,  e(neD(d)cs, 1eo,T] (4.8)

with closed operator A.

Definition 4.1. We say that the Cauchy problem for Eq.(4.8) is formulated
uniformly correct if for all ®(0) and @(0) from D( {) there exists a unique two-

times continuously differentiable function @(z)e D(A4 ) satisfying Eq. (4.8) and initial
conditions. The dependence of ®(¢) on initial conditions is uniformly continuous.

Define on D(A4) the operators V(z) and W(¢) from property (2.8), &(r) =
V(t)®@(0) + W(t)®(0). Denote by V() and W(t) the operators from D(A) to %
which are defined from the relation @(¢) = V(¢)®(0) + W(t)9(0).

Let # be a Hilbert space.

Lemma 4.9. Let A be a H-self-adjoint semibounded below operator in . A= Cy>0.
Then the Cauchy problem for Eq. (4.8) is uniformly correct and

Vll<l, [[W()]l<l/vC (4.9)
Proof. The function of the form

(1) = cos(V A1) ®(0) + M ®(0) (4.10)
VA
is a solution of the Cauchy problem for Eq. (4.8) [15]. Prove the property of
uniqueness. Let ®(0) =0, ¢(0) = 0. Consider the function f(¢) = (d(1), d(r)) +
%((D(t),/i(b(t)). It satisfies the conditions f(0) =0, df /dt = 0. Therefore, f(t) =
Since the operator A4 is semibounded below, one has (&, ®) =0, (&, AP)=0.
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Therefore, @ = 0. The property of uniqueness is proved. It follows from the explicit
form of solution of Eq. (4.10) the property of uniform correctness of the Cauchy
problem and relations (4.9). Lemma 4.10 is proved. [

Suppose that there exists such { that the operator (4 + C)fl is well defined.

Lemma 4.10. Let the Cauchy problem for Eq. (4.8) be uniformly correct. Consider the
equation
d*&(1)

—7:/1@(1) +&(1),  d()eD(A)cB, te0,T), (4.11)

where E(1)e D(A%). (A + 0)*&(t) is a continuous function on [0, T]. Then the Cauchy
problem for Eq. (4.11) has a unique solution of the form

B(1) = V(1)B(0) + W(1)B(0) — /O "t Wit — ). (4.12)

Proof. The uniqueness is obvious. Let @; and @, be two solutions of the Cauchy

problem. Then their difference satisfies Eq. (4.8) and zero initial condition. It follows

from uniform correctness of the Cauchy problem for Eq. (4.8) that ¢, — @, = 0.
To prove the lemma, it is sufficient to justify that the function

o(t) = —/0 dt W(t—1)é(7)

obeys Eq. (4.11) and zero initial condition. Check that

d t .
‘Z” _ 7/0 dt W(t — 1)E(x). (4.13)
Consider the difference
D(t+0t) —d(1) .
- ()
=+t 10 t _) 1 )
_ /, % W (1 + 61 — 1)&() +/0 dr<W(’+5’ ;t Wit=q) _ W(lfr)>£(r)

1 ‘ 1
/ ds W(6t(1 — 5))E(t + ots) —|—/ dr/ ds(W(t + dts — t) — W(t —1))é(x)
0 0 0
1

1
/ ds W(ot(l —5))&(¢) +/ ds W(ot(1 — 5))(&E(t + sot) — £(2))

0 0
t 1 s
+ 51/ df/ ds/ A AW (1 + §51 — 1) ().
0 0 0
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The norm of this expression is not larger than
1
/0 ds[[ W (e(1 = s)II([SOI] + [1¢(2 + s01) = E(0)]]

t 1 s
+ 51‘/ dr/ ds/ ds'||AW (t + 50t — 1) &(z)]|.
0 0 0

According to the Lesbegue theorem (see, for example, [12]) this expression tends to
zero as 0t — 0. Therefore, property (4.13) is checked. Initial conditions are obviously
satisfied. Check Eq. (4.11). One has

(1 + 6t) — d(1)
- AD(t) — &(1)
/ ds(W(3t(1 — 5))&(t + 561) — (1))

/df/ ds(—W (1t — 1+ 50t) + W (t — 1)) AE(x).

According to the Lesbegue theorem, this expression tends to zero. The lemma is
proved. O

Corollary. Let the function £(t) € B is continuous on [0, T, while the function &(t) is a
solution of Eq. 4.11. Then formula 4.12 is satisfied.

Proof. It is sufficient to consider the case if initial conditions vanish; the general case
can be reduced to it by the substitution of @(f) by ®(7) — V()®(0) — W (t)®(0).
Consider the function v(r) = (4 4 ) 2®(1) satisfying the following equation:

LA i)+ A+ 0%,

and zero initial condition. Therefore,

t
o(t) = —(4+ {)_2/ dt W(t—n1)é(q).
0
We obtain statement of the corollary.

It happens that the condition that (/i +¢ )_25 is continuous can be substituted by
the condition that ¢ is two times continuously differentiable.

Lemma 4.11. Let all the conditions of Lemma 4.10 be satisfied, except for continuity of
(A + C)fzf Let also the function £(t) be two times continuously differentiable and
£(0)eD(A). Then statement of Lemma 4.10 is satisfied.
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Proof. The property of uniqueness of the solution of the Cauchy problem is checked
analogously to Lemma 4.10. Corollary of Lemma 4.10 tells us that the solution of
the Cauchy problem is given by formula (4.12), provided it exists. It is sufficient then
to check that expression (4.12) satisfies Eq. (4.11) and initial condition. It is sufficient

to consider the case ®(0) =0, &(0)=0. Deﬁne W (t fo dT W(z), Wh(z) =
Jo Wi(z). Substituting &(r) = &(0) + fo dz¢(t), we find

/tdr Wt — 1)E(x) = Wi (2)E(0) +/tds Wit — 5)E(s).
0 0

Applying this formula again, we obtain
t
/ Wt — )é(t)de = Wi (1)E0) + Wa(h) / ds Wt — 5)é(s).  (4.14)
0

It follows from the definition of the operator W that it satisfies the following
equation:

W()® = —AW(1)®, PeD(A) (4.15)
and commutes on D(A4) with the operator 4. Integrating twice Eq. (4.15), we find
—AW,(1) = W (1) — W(0) — W(0)t = W (1) —t (4.16)

on D(A). Operator (4.16) is bounded and can therefore be continued on 4. It follows
from Egs. (4.16) and (4.14) that

—A/ W(t—r)¢ dr—/ds (1—y) (t—s)]é()

)E(0) + (W (1) = 1)€(0). (4.17)

Furthermore,

d,z[/ W)t —1) dl} = W(0)E(0) + W(t)é(0)+/0t W(E(r—1)dr. (4.18)

Comparing Eqgs. (4.17) and (4.18), we obtain statement of the lemma. [

Lemma 4.12. Let the operator A be a sum of a H-self-adjoint semibounded below

operator T,>C, >0 and a bounded operator 1>, ||f2\|< C,. Then the Cauchy problem
for Eq. (4.8) is uniformly correct and

[V(@Oll<e™Ma, W (@)]l<e® VG

Proof. According to corollary of Lemma 4.10, the function ®(z) is a solution of the
Cauchy problem for Eq. (4.8) if and only if

B(1) = V1(£)B(0) + Wi ()b / de Wi (1 — 1) T>d(x), (4.19)
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where V(1) = cos(v/Tht), Wi(t) = Si“(\/\/Tj’). The abstract Volterra equation (4.19)
1

has a unique solution (see, for example, proof of [12]), which can be presented as a

sum of an absolutely convergent in the norm-topology series:

o0

(1) = (—1)"/ dty...dt, Wi(t — )T ... Wi(tye1 — 1) Ta
n=0 tt;>,,>1,>0

X (Vi(ta)@(0) + Wi(1,)9(0)).

Therefore,

N

i<y LA e,

n=0

L (GCot/VC))" _ eczz/\/a/\/a.

LOEIE-ve

N

Lemma 4.12 is proved. O
Lemmas 4.12 and 4.2 imply

Corollary. The statement of Lemma 2.11 is satisfied. For t€[0,T] there exists an
n-independent quantity M such that ||V,(0)||<M, |[|[V()||<M, ||[W.()||<M,
W (@D)l[<M.

5. Convergence in generalized strong sense

Let us justify the property of generalized strong convergence of the operators U,
V, and W, entering Theorems 1-3. Let us first investigate some properties of
generalized strong convergence. Formulate an analog of the Banach—Steinhaus
theorem.

Lemma 5.1. Let A,: B—>RB,, n=1,2, ..., be a sequence of operators satisfying the
property ||An|| < M < oo for some n-independent constant M; 9 < B—is a dense subset
of B, ||Anv|| = ns 0 for veD. Then ||A,v|| = 4o 0 for ve B.

Proof. Let ve %, e>0. Choose such v’ € & that ||v — v'|| <5%;. Choose ng such that for
n=ng||A,v'||<e/2. Then [|A,v|| <||4aV']| + [|A4]|||Jv — V|| <e&. We obtain statement of
lemma. O

Remark. The proof of Ref. [9] of the Banach-Steinhaus theorem cannot be
generalized to the case of {P,}-strong convergence. Proof of [28] uses also the
condition ||P,v|| =, o ||Y]]-
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Lemma 5.2. Let A,:#— B, n=1,2, ..., be a sequence of operators satisfying the
following property: for each ve B the sequence ||A,v|| is bounded. Then ||A,||<M for
some n-independent quantity M.

Proof. Analogous to [9].

Lemma 5.3. Let B,: B,— %, n=1,2, ..., be a sequence of operators which {P,}-
strongly converges to the operator B: B — %. Then the sequence ||B,P,|| is bounded.

Proof. Denote A4, = B,P,. For all ve# ||A,v— P,Bv||—,-50, so that the
sequence ||A4,v — P,Bv|| is bounded, |[|A4,v— P,Bv||<M. Therefore, ||4,0|l<
[|Anv — PyBu|| + || Py]|||Bv|| < M + a||Av||. Lemma 5.2 implies statement of the
lemma. O

Lemma 5.4. Let u,€ B,,n = 1,2, ..., is a sequence of vectors from the class [u], ue %,
Ay B> By, n=1,2, ..., is a uniformly bounded (||A,|| < M) sequence of operators

which {P,}-strongly converges to the operator A:B— AB. Then the sequence {A,u,}
is of the class [Aul.

Proof. One has
[|Antty — PoAul| <||Aul|||ttn — Poul| + ||An Pt — PpAul|| > 4o 0.
Proofs of Theorems 1 and 2 are identical to Ref. [11].

Proof of Theorem 3. Let ve %, { satisfy the condition a(1) #0. Consider the function
wy () of the form

0(0) = Va()(Z, Hy + O Pu(H + 0 0 = (Z Hy + O PV ((H + 0o
It obeys the following condition:

d?v, (1)
dr?

= ZVH,wa(t) + &,(1), (5.1)
where
E(0) = (Pu(H+ )™ = (Z,"Hy + 07 PV (1),

The initial condition for Eq. (5.1) has the form v,(0) =0, ©,(0) = 0. Corollary of
Lemma 4.10 implies that

oalt) = /Ot de Wit — 16, (x).
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Therefore,

wa(t)l| <M /O del|E, ()| (5.2)

or each 1||£,(¢)|| tends to zero because of Lemma 3.15. Furthermore,
1< IZ, " Hy+ )7 Pall + 1Pl [1(H + O~ ) M] o],

so that the sequence ||£,(7)|| is uniformly bounded according to Lemma 5.3. The
Lesbegue theorem (see, for example, [12]) implies that the integral in the right-hand
side of formula (5.2) tends to zero. Therefore, ||v,(¢)|| = ,- 0, so that

W) (Z; Hy + ) Py — (Z, Hy + ) PV (1) ®]| = s 0. (5.3)

for @ = (H + ()~ 'v. Property (5.3) is satisfied for all ® e D(H), on the dense subset of
2. Therefore, property (5.3) is satisfied for all ® €. Furthermore,

1Vult)(H +0) ' Py = Pu(H + ) )| > 4 0,
1(Z, " Hy + ) Py = Py(H + ) )V ()] > 0. (54)
Egs. (5.3) and (5.4) imply that
|(Va(t) Py = PV (1)@= 1 0 (5.5)

under condition & = (H 4 {)~' @. Relation (5.5) is satisfied on the dense subset D(H)
of #4. Therefore, it is satisfied on 4. First statement of Theorem 3 is proved. Second
statement is proved analogously. [
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