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Abstract

The problem of specification of self-adjoint operators corresponding to singular bilinear

forms is very important for applications, such as quantum field theory and theory of partial

differential equations with coefficient functions being distributions. In particular, the formal

expression �Dþ gdðxÞ corresponds to a non-trivial self-adjoint operator Ĥ in the space

L2ðRdÞ only if dp3: For spaces of larger dimensions (this corresponds to the strongly singular
case), the construction of Ĥ is much more complicated: first one should consider the space

L2ðRdÞ as a subspace of a wider Pontriagin space, then one implicitly specifies Ĥ: It is shown in

this paper that Schrodinger, parabolic and hyperbolic equations containing the operator Ĥ

can be approximated by explicitly defined systems of evolution equations of a larger order.

The strong convergence of evolution operators taking the initial condition of the Cauchy

problem to the solution of the Cauchy problem is proved.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

1. The main difficulty of the quantum field theory is the problem of divergences [5]
which arise since the evolution equations of quantum field theory are ill-defined. It is
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suitable to investigate such problems, making use of the simpler quantum
mechanical models which illustrate some of the difficulties of the quantum field
theory. One of such models is the Schrodinger equation for the particle moving in the
external singular potential

i
dcðtÞ

dt
¼ ĤcðtÞ; ð1:1Þ

where tAR; cðtÞAH ¼ L2ðRdÞ; while the Hamiltonian operator Ĥ is formally

written as Ĥ ¼ �Dþ jðxÞ; and jðxÞ is the operator of multiplication by a
distribution. Such models were considered in [2,4,6,7,10,13,14,18,20,22–25]. As an
example, one can consider the function jðxÞ ¼ a þ gdðxÞ; where a40; gAR: Then

Ĥg ¼ �Dþ a þ gdðxÞ: ð1:2Þ

The more general example of Ĥ (compared to (1.2)) is the following formal
expression:

Ĥgc ¼ T̂cþ gwðw;cÞ: ð1:3Þ

Here T̂ is a positively definite self-adjoint operator in H: Making use of the

operator T̂; construct the scale of Hilbert spaces?CH2CH1CH ¼ H0CH�1C
H�2C? . The space Hk is a completion of the subspace

T
N

n¼1 DðT̂nÞ of the space
H with respect to the norm jjcjj2k ¼ /c;cSk ¼ ðc; T̂kcÞ: The function w entering
Eq. (1.3) should belong to the space H�k for some k: Expression (1.2) is a partial

case of (1.3) for T̂ ¼ �Dþ a; wðxÞ ¼ dðxÞAH�k at k4d=2:
To define Eq. (1.1) mathematically, one should specify a self-adjoint operator in

H corresponding to the formal expression (1.3) (in particular, (1.2)). For

wAH�2 H ðdp3Þ; this problem is solved as follows [4]. One should consider the

restriction of the operator T̂ to the domain

cA
\N
n¼1

DðT̂nÞjðT̂�kw; T̂kcÞ ¼ 0
( )

ð1:4Þ

(for the partial case (1.2) the domain is fcASðRdÞjcð0Þ ¼ 0gÞ: One justifies that the
defect indices of this symmetric operator are (1,1). Making use of the standard

procedure (see, for example, [1]), one constructs the one-parametric set fĤgg of self-
adjoint extensions of the operator T̂: It is in one-to-one correspondence to the one-
parametric set of formal expressions (1.3).

2. For the strongly singular case, i.e. for weH�2 ðd43Þ; the operator T̂ considered
on domain (1.4) is essentially self-adjoint, so that the considered approach does not
allow us to construct a non-trivial self-adjoint operator corresponding to the formal
expression (1.3). It was noted in [3,22,23,29] that one should consider an indefinite
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inner product space instead of the space H in order to construct a non-trivial self-

adjoint operator Ĥ in the strongly singular cases.

A self-adjoint operator Ĥ in the Pontriagin space Pm [8] corresponding to

expression (1.3) was specified in [24] (see also [25]), provided that wAH�k�1
\H�k for

some k: Here m ¼ ½k=2
: One-parametric set of formal expressions (1.3) corresponds
to the k-parametric set of operators Ĥ in P½k=2
ðg2;y; gkÞ; k � 1 parameters specifies
the inner product, while one parameter is an analog of g: Denote the operator

constructed in [24] (see Section 2) as Ĥðg2;y; gk; aÞ: Therefore, the equation

i
dcðtÞ

dt
¼ Ĥðg2;y; gk; aÞcðtÞ ð1:5Þ

for cðtÞAP½k=2
ðg2;y; gkÞ is defined.
According to the analog of the Stone theorem for the Pontriagin spaces [17,21],

the operator Ĥ is a generator of a one-parametric group of unitary operators e�iĤt

in Pm: The operator ÛðtÞ ¼ e�iĤðg2;y;gk ;aÞt restricted to DðĤðg2;y; gk; aÞÞ is an
operator taking the initial condition of the Cauchy problem for Eq. (1.1) to the
solution of Eq. (1.1).

3. The problem of constructing approximations of singular equations (1.5) often
arises [2]. This problem is also important for quantum field theory [16].
It was shown in [13] that for m ¼ 0 the operator transforming the initial condition

for the Cauchy problem to the solution of the Cauchy problem for Eq. (1.5) can be
approximated in the strong sense as n-N by the evolution operator for the equation

i
dcnðtÞ

dt
¼ T̂cnðtÞ þ gnwnðwn;cnðtÞÞ; cnðtÞAH ð1:6Þ

provided that

jjT̂�1wn � T̂�1wjj-n-N0; g�1
n þ ðwn; T̂�1wnÞ-n-N � a�1: ð1:7Þ

Note that for all wAH�2 there exist sequences gnAR; wnAH obeying (1.7), for

example, wn ¼ e�T̂=nw; gn ¼ �ða�1 þ ðwn:T̂
�1wnÞÞ�1:

This paper deals with the construction of an approximation for Eq. (1.5) for the
strongly singular case (for ma0 or k41). Approximation (1.6) cannot be applied
then. It happens that the resolving operator for the Cauchy problem for Eq. (1.5) (the
t-dependent operator transforming the initial condition of the Cauchy problem to the
solution of Eq. (1.5) at fixed t) can be viewed as a limit as n-N of resolving operators
for the Cauchy problem of the system of differential equations of a larger order

i
dcnðtÞ

dt
¼ T̂cnðtÞ þ cnðtÞwn;

z0;ncnðtÞ þ iz1;n
dcnðtÞ

dt
þ?þ ik�1zk�1;n

dk�1cnðtÞ
dtk�1 ¼ ðwn;cnðtÞÞ: ð1:8Þ
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Here cnðtÞAC is a complex function, and cnðtÞ is an element of the spaceH: The limit
should be considered in a generalized strong sense [11,28]. The following conditions
are imposed:

zs;n þ ðwn; T̂�s�1wnÞ-n-Ngs; s ¼ 0; k � 1;

jjT̂�kþ1
2 ðwn � wÞjj-n-N0: ð1:9Þ

Here g1 ¼ �a�1:
For the partial case k ¼ 1; the left-hand side of the second equation of system (1.8)

contains only one term. Therefore, system (1.8) is equivalent to Eq. (1.6). If one
increases k; the number of parameters zs;n is also increased, so that the terms with

derivatives of higher orders appear. The procedure of adding such terms (‘‘counter-
terms’’) is analogous to quantum field theory procedure of infinite renormalization
of the wave function [5].
In particular, the Schrodinger equation with the d-potential which was constructed

in [24] is formally written as

i
@cðx; tÞ

@t
¼ ½�Dþ a þ gdðxÞ
cðx; tÞ; xARd :

It appears to be the limit as n-N of the system of equations on cnðx; tÞ and cnðtÞ

i
@cnðx; tÞ

@t
¼ ½�Dþ a
cnðx; tÞ þ cnðtÞwnðxÞ;

z0;ncnðtÞ þ?þ ik�1zk�1;n
dk�1cnðtÞ

dtk�1 ¼
Z

dy wnðyÞcnðy; tÞ;

provided that k ¼ ½d=2
; wn-d in the H�k�1-norm and sequences zs;n þ
ðwn; T̂�s�1wnÞ; s ¼ 0; k � 1; are convergent as n-N:

4. Besides Schrodinger equation for the particle moving in the singular
potential, other equations appear in the applications. Evolution of relativi-
stic particle in the external scalar field is described by the Klein–Gordon-
type equation [5]

�d2cðtÞ
dt2

¼ Ĥðg2;y; gk; aÞcðtÞ: ð1:10Þ

The Schrodinger equation in the imaginary time is also considered

�dcðtÞ
dt

¼ Ĥðg2;y; gk; aÞcðtÞ: ð1:11Þ
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After specifying the operator Ĥðg2;y; gk; aÞ Eqs. (1.10) and (1.11) become well
defined. It happens that Eq. (1.10) can be approximated by the system

� d2cnðtÞ
dt2

¼ T̂cnðtÞ þ cnðtÞwn;

z0;ncnðtÞ � z1;n
d2cnðtÞ

dt2
þ?þ ð�1Þk�1

zk�1;n
d2k�2cnðtÞ

dt2k�2
¼ ðwn;cnðtÞÞ; ð1:12Þ

while the approximation for Eq. (1.11) is

� dcnðtÞ
dt

¼ T̂cnðtÞ þ cnðtÞwn;

z0;ncnðtÞ � z1;n
dcnðtÞ

dt
þ?þ ð�1Þk�1

zk�1;n
dk�1cnðtÞ

dtk�1 ¼ ðwn;cnðtÞÞ: ð1:13Þ

Therefore, the evolution operators for strongly singular evolution equations (1.5),
(1.10), (1.11) which was defined in [24,25] with the help of complicated implicit
procedure can be approximated in the generalized strong sense [11,28] by evolution
operators for explicitly defined systems of equations (1.8), (1.10), (1.11).

2. Formulation of results

2.1. Strongly singular equations

Recall the procedure of constructing the space Pm and operator Ĥ entering
Eq. (1.5).
First of all, consider the space Pm containing all linear combinations of the form

c ¼
P2m

l¼1 clT
�lwþ creg; where clAC; cregAH2m: The inner product in this space is

specified by the k � 1 real parameters g2;y; gk: Set

ðw; T̂�swÞreg ¼ gs for spk;

ðw; T̂�swÞreg ¼ ðw; T̂�swÞ for sXk þ 1:

The inner product in Pm is

/c;cS ¼
X2m
l;s¼1

c�l csðw; T̂�l�swÞreg þ ðcreg;cregÞ

þ
X2m
s¼1

csðT̂mcreg; T̂�m�swÞ þ
X2m
s¼1

c�s ðT̂�m�sw; T̂mcregÞ:

This expression is well defined, since T̂�m�kwAH for kX1; while T̂mcregAH:
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Consider the completion [8] of the space Pm which is a Pontriagin space Pm with

m ¼ ½k=2
: It has the structure Pm ¼ C2m"H;

Pm ¼ fðg; r;jÞjg ¼ ðg1;y; gmÞACm; r ¼ ðr1;y; rmÞACm;jAHg:

Introduce an indefinite inner product in Pm as follows:

/F;FS ¼
Xm

su¼1
g�sguðw; T̂�s�uwÞreg �

Xm

s¼1
ðg�srs þ gsr

�
s Þ þ ðj;jÞ:

The one-to-one correspondence I :Pm-Pm between Pm and a dense subset of the

space Pm can be specified as If
P2m

l¼1 clT̂
�lwþ cregg ¼ ðg; r;jÞ; where

g1 ¼ �c1;y; gm ¼ �cm;

r1 ¼
X2m

l¼mþ1
clðw; T̂�l�1wÞreg þ ðT̂�1w;cregÞ;

?;

rm ¼
X2m

l¼mþ1
clðw; T̂�l�mwÞreg þ ðT̂�mw;cregÞ;

j ¼
X2m

l¼mþ1
clT̂

�lwþ creg:

The following statement has been proved in [24,25].

Lemma 2.1. The continuation of the mapping I is a one-to-one correspondence between

the completion of the space Pm and the space Pm:

Instead of the unbounded operator Ĥ; it is more convenient to define the bounded

operator Ĥ�1: Consider the formal equation Ĥc ¼ f; T̂cþ gwðw;cÞ ¼ f and find
(formally) c : c ¼ T̂�1fþ aT�1wðT̂�1w;fÞ: Here a ¼ � 1

1=gþðw;T�1wÞ: Therefore, define

the operator Ĥ�1 in the space Pm as follows:

Ĥ�1f ¼ T̂�1fþ aT̂�1w/T̂�1w;fS: ð2:1Þ

One should also specify a one-to-one correspondence between a and g: For the case
m ¼ 0; definition (2.1) is in agreement with the approach based on self-adjoint
extensions [4].

Operator (2.1) can be continued [24] to the space Pm: Thus, the operator Ĥ�1 can
be viewed as a continuous operator in the Pontriagin space Pm: It does not have zero

eigenvalues for aa0: The inverse operator Ĥ � ðĤ�1Þ�1 is then [8] a self-adjoint
(generally, unbounded) operator in Pm:

Therefore, space Pm and operator Ĥ are constructed.
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2.2. Approximation of a strongly singular equation

Formulate now the main results of the paper. The resolving operator for the
Cauchy problem for system (1.8) approximates the resolving operator for the
Cauchy problem for Eq. (1.5) in the general strong sense. Recall the corresponding
definition [11,28].
Let B and Bn; n ¼ 1; 2;y be Banach spaces, Pn :B-Bn; n ¼ 1; 2;y be a

sequence of operators with uniformly bounded norms: jjPnjjpaoN for some
n-independent quantity a:

Definition 2.1. We say that a sequence of operators An :Bn-Bn; n ¼ 1; 2;y is
fPng-strongly convergent to operator A :B-B; if for all vAB the property jjPnAv �
AnPnvjj-n-N 0 is satisfied.

Note that a generalized strong limit of a sequence of operators depends (generally)
on the choice of the sequence fPng; this fact is used in the theory of the Maslov
canonical operator in abstract spaces [26,27].

Definition 2.2. Let unABn; n ¼ 1; 2; :::; uAB: We say that a sequence fung is of the
class ½u
 (or is fPng-strongly convergent to u), if jjun � Pnujj-n-N 0:

Set B ¼ Pm: Denote by Bn ¼ Ck�1"H the space of sets Fn ¼ ðc0n;y; ck�2
n ;cnÞ of

numbers c0n;y; ck�2
n AC and a vector cAH: Define an indefinite inner product in the

space Bn as follows:

/Fn;FnS ¼ ðcn;cnÞ þ
Xk�2
js¼0

cj�
n cs

nzjþsþ1;n: ð2:2Þ

Here zl;n ¼ 0 as lXk by definition.

Lemma 2.2. Let zk�1;np0: Then the inner product (2.2) contains m negative squares.

Note that the condition of Lemma 2.2 is satisfied at sufficiently large n:
System (1.8) can be presented as a differential equation of the first order

i Ẑn

d

dt
FnðtÞ ¼ ĤnFnðtÞ ð2:3Þ

on the vector function FnðtÞABn: The operators Ẑn and Ĥn are defined as

Ẑnðc0n;y; ck�2
n ;cnÞ ¼ ðc0n;y; ck�3

n ; zk�1;nck�2
n ;cnÞ;

Ĥnðc0n;y; ck�2
n ;cnÞ ¼ ðc1n;y; ck�2

n ; ðwn;cnÞ � z0;nc0n �y� zk�2;nck�2
n ; T̂cn þ c0nwnÞ:

Namely, after redefining il dl

dtlcnðtÞ ¼ cl
nðtÞ system (1.8) is taken to the form (2.3).
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Lemma 2.3. Let cnð0ÞADðT̂Þ; c0nð0Þ;y; ck�2
n ð0ÞAC: Then there exists a unique

solution of the Cauchy problem for Eq. 2.3. It continuously depends on the initial

conditions for tA½0;T 
:

Define the operator UnðtÞ :Ck�1"DðT̂Þ-Ck�1"DðT̂Þ taking the initial condition
of the Cauchy problem for Eq. (1.9) to the solution of the Cauchy problem. Since the
solution of the Cauchy problem continuously depends on the initial condition, the
operator UnðtÞ can be continued to the space Bn: This continuation UnðtÞ :Bn-Bn

is unique, provided that it is continuous.

Lemma 2.4. The operator UnðtÞ conserves the indefinite inner product (2.2).

Introduce the operator Pn :B-Bn of the form Pn : ðg; r;jÞ/ðc0n;y; ck�2
n ;cnÞ

as follows.
For arbitrary k; set

c0n ¼ g1;y; cm�1
n ¼ gm; cn ¼ �

Xm�1

j¼0
gjþ1T

�j�1wn þ jn:

For k ¼ 2m þ 1; set jn ¼ j: For k ¼ 2m; set

jn ¼ jþ T̂�mwn½rm � ðT̂�mwn;jÞ

ðT̂�mwn; T̂�mwnÞ

:

Specify the quantities cm
n ;y; c2m�1

n from the relations:

ðT̂�1wn;cnÞ � zmþ1;ncm
n �y� z2m;nc2m�1

n ¼ r1;

?

ðT̂�mþ1wn;cnÞ � z2m�1;ncm
n � z2m;ncmþ1

n ¼ rm�1;

ðT̂�mwn;cnÞ � z2m;ncm
n ¼ rm: ð2:4Þ

For sufficiently large n; cm
n ;y; c2m�1

n are defined uniquely, since zk�1;na0: The
mapping Pn is constructed.

Lemma 2.5. As n-N; /PnF;PnFS-/F;FS:

Introduce now Hilbert inner products in B and Bn:
Recall that a Hilbert inner product in a Pontriagin space is introduced as follows

[8]. First, an arbitrary m-dimensional subspace LmCPm such that the indefinite
inner product is negative definite on Lm; is considered. Without loss of generality,
one can consider only the case when the subspace Lm belongs to the domain of H

[19]. Otherwise, introduce a basis e0i in the spaceLm; choose some vectors ei from the
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domain of the operator H such that the distance between ei and e0i is smaller than e:
Consider the span of the set of vectors ei: At sufficiently small e the inner product will
be negative definite on the span.
By J we denote the operator of the form JF ¼ F at F>Lm and JF ¼ �F at

FALm: According to Iokhvidov [8], the bilinear form

/F;FSLm
¼ /F; JFS ð2:5Þ

specifies a positive definite Hilbert inner product. The topologies corresponding to
inner products (2.5) at different Lm are equivalent.
The inner product (2.5) specified the following norm in B:

jjFjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/F;FSLm

q
: ð2:6Þ

To specify a norm in Bn; let us use the following statement. Let l be a sufficiently
large positive number such that the resolvent of the operator �Ẑ�1

n Hn is defined at

sufficiently large n: Denote Ln
m ¼ ðẐ�1

n Ĥn þ lÞ�1PnðH þ lÞLm:

Lemma 2.6. At sufficiently large n the inner product (2.2) is negative definite on the m-
dimensional subspace Ln

mCBn: At sufficiently large n; the inner product /F;FSPnLm

is positively definite on Bn and defines a norm jjFnjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/F;FSPnLm

p
:

Lemma 2.6 implies the following lemma.

Lemma 2.7. The operators Pn are uniformly bounded, jjPnjjpa for some n-independent

constant a:

The following lemma gives necessary and sufficient condition for the property

fðc0n;y; ck�2
n ;cnÞABnA½ðg; r;jÞ
: Denote fn ¼ cn þ

Pm�1
j¼0 cj

nT̂�j�1wn:

Lemma 2.8. fðc0n;y; ck�2
n ;cnÞgA½g; r;j
 if and only if

lim
n-N

c0n ¼ g1;y; lim
n-N

cm�1
n ¼ gm;

lim
n-N

jjfn � jjj ¼ 0;

lim
n-N

ðT̂�1wn;fnÞ � zmþ1;ncm
n �y� z2m;nc2m�1

n ¼ r1;

?

lim
n-N

ðT̂�mþ1wn;fnÞ � z2m�1;ncm
n � z2m;ncmþ1

n ¼ rm�1;

lim
n-N

ðT̂�mwn;fnÞ � z2m;ncm
n ¼ rm:
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In particular, Lemma 2.8 shows that the property of fPng-strong convergence
does not depend on the choice of the subspace Lm:
The following lemma shows that any initial condition for Eq. (1.5) can be obtained

as a fPng-strong limit of the sequence of initial conditions for system (1.8).

Lemma 2.9. For any ðg; r;jÞAB there exists a sequence fðc0n;y; ck�2
n ;cnÞABng from

the class ½g; r;j
:

To prove the lemma, it is sufficient to choose ðc0n;y; ck�2
n ;cnÞ ¼ Pnðg; r;jÞ:

The main result of the paper is formulated as follows.

Theorem 1. The sequence of operators UnðtÞ is fPng-strongly convergent to UðtÞ:

Corollary. Let fðc0nð0Þ;y; ck�2
n ð0Þ;cnð0ÞÞgA½ðg; r;jÞ
: Then fðc0nðtÞ;y; ck�2

n ðtÞ;
cnðtÞÞgA½Utðg; r;jÞ
:

For non-strongly singular case (k ¼ 1 or m ¼ 0) Theorem 1 gives the result of [13].
Formulate analogs of Theorem 1 for approximations of Eqs. (1.10) and (1.11).

Lemma 2.10. Let cnADðT̂Þ; c0nð0Þ;y; ck�2
n ð0ÞAC: Then there exists a unique solution

of the Cauchy problem for system 1.13. It continuously depends on the initial condition.

For cð0ÞADðHÞ; there exists a unique solution of the Cauchy problem for Eq. (1.11).
It also continuously depends on the initial condition.

By ŨnðtÞ; ŨðtÞ we denote the operators transforming the initial conditions for the
Cauchy problems for Eqs. (1.13) and (1.11) to the solution of the Cauchy problems
for Eqs. (1.13), (1.11) correspondingly.

Theorem 2. The sequence of operators ŨnðtÞ is fPng-strongly convergent to ŨðtÞ:

Lemma 2.11. Let cnð0ÞADðT̂Þ; cnð0Þ;y; c
ð2k�3Þ
n AC: Then there exists a unique

solution of the Cauchy problem for Eq. (1.12). It continuously depends on the initial

condition.

Note that system (1.12) can be presented as

�d2

dt2
FnðtÞ ¼ Ẑ�1

n ĤnFn: ð2:7Þ

Introduce operators VnðtÞ and WnðtÞ on DðT̂Þ from the relation

FnðtÞ ¼ VnðtÞFnð0Þ þ WnðtÞ
dFn

dt
ð0Þ:
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The operator taking Fnð0Þ to the solution of the Cauchy problem for Eq. (2.7) at
dFnð0Þ=dt ¼ 0 is denoted as VnðtÞ: The operator taking dFnð0Þ=dt to FnðtÞ at
Fnð0Þ ¼ 0 is denoted as WnðtÞ: Since the solution continuously depends on the initial
conditions, the operators VnðtÞ andWnðtÞ are bounded. They are uniquely continued
to the whole space Bn:
Analogously, define the operators VðtÞ and WðtÞ from the relations

cðtÞ ¼ VðtÞcð0Þ þ WðtÞ dc
dt

ð0Þ; ð2:8Þ

where cðtÞADðHÞ is a solution of Eq. (1.10), cð0ÞADðHÞ; ’cð0ÞADðHÞ are initial
conditions.

Theorem 3. The sequence of operators VnðtÞ is fPng-strongly convergent to VðtÞ: The

sequence of operators WnðtÞ is fPng-strongly convergent to WðtÞ:

3. Approximation of the space and resolvent convergence

This section deals with the proof of Lemmas 2.2 and 2.5–2.8. We also justify that

the sequence of resolvents of the operators Ẑ�1
n Ĥn converges in a general strong

sense to the resolvent of the operator Ĥ:

1. Lemma 2.2 is a corollary of the following statement. Consider the real matrices

A and B of the dimensions m � m; which consist of elements Aij and Bij; i; j ¼ 1;m:

Lemma 3.1. Let the matrix B be invertible, while the matrix A be Hermitian. Then the

quadratic form

Xm

ij¼1
½x�

i Aijxj þ y�
i Bijxj þ x�

i B�
jiyi
 ð3:1Þ

contains m negative and m positive squares.

Proof. Since the matrix A is Hermitian, it can be taken to the diagonal form

UT AU ¼ diag½a1;y; am
 with the help of a unitary transformation. After substitu-
tion xi ¼

Pm
s¼1 Uisxs and transformation Zs ¼

Pm
ij¼1 B�

jiU
�
isyj the quadratic form (3.1)

is taken to the form Xm

s¼1
½asx

�
sxs þ x�sZs þ Z�sxs
: ð3:2Þ

One has

asx
�
sxs þ x�sZs þ Z�sxs ¼ asðx�s þ a�1s Z�s Þðxs þ a�1s ZsÞ � a�1s Z�sZs; asa0;

x�sZs þ Z�sxs ¼ 1
2
½ðx�s þ Z�s Þðxs þ ZsÞ � ðx�s � Z�s Þðxs � ZsÞ
; as ¼ 0:
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For both cases, the quadratic form asx
�
sxs þ x�sZs þ Z�sxs contains one negative and

one positive square. Therefore, the form (3.2) contains m positive and m negative
squares. Lemma 3.1 is proved. &

Proof of Lemma 2.2. It is sufficient to justify that the quadratic formXk�2
js¼0

cj�
n cs

nzjþsþ1;n ð3:3Þ

contains m negative squares (we set zl;n ¼ 0 for lXk). Take it to the form (3.1).

Consider 2 cases.

1. Let k ¼ 2m þ 1: Denote xj ¼ cj�1
n ; yj ¼ cmþj�1

n ; j ¼ 1;m; Aij ¼ ziþj�1;n; Bij ¼
zmþiþj�1;n; i; j ¼ 1;m: Since matrix elements Bij vanish as i þ j4m þ 1; while Bij ¼
z2m;na0 as i þ j ¼ m þ 1; det Ba0; and the matrix B is invertible. Therefore, the

quadratic form (3.3) is taken to the form (3.1) and contains m negative squares.

2. Let k ¼ 2m: Denote xj ¼ cj�1
n ; yj ¼ cmþj�1

n ; j ¼ 1;m � 1; s ¼ cm�1
n : The

quadratic form (3.3) is taken to the form

Xm�1

ij¼1
½x�

i Ãijxj þ y�
j B̃ijxj þ x�

i B̃jiyj
 þ z2m�1;ns�s

þ
Xm�1

s¼1
½s�zmþs�1;nxs þ szmþs�1;nx�

s 
; ð3:4Þ

where Ãij ¼ ziþj�1;n; B̃ij ¼ zmþiþj�1;n; i; j ¼ 1;m � 1: The matrix elements B̃ij vanish at

i þ j4m and are non-zero at i þ j ¼ m: Therefore, the matrix B̃ is invertible.
Formula (3.4) is taken to the form

Xm�1

ij¼1
x�

i Ãij �
ziþm�1;nzmþj�1;n

z2m�1;n

� �
xj þ y�

j B̃ijxj þ x�
i B̃jiyj


 �

þ z2m�1;n s� þ
Xm�1

s¼1

zmþs�1;n
z2m�1;n

x�
s

 !
sþ

Xm�1

s¼1

zmþs�1;n
z2m�1;n

xs

 !
ð3:5Þ

Since z2m�1;no0; the quadratic form (3.5) contains m negative squares. Lemma 2.2 is

proved. &

2. The following statement will be used later.

Lemma 3.2. The sequence FðnÞ ¼ ðgðnÞ; rðnÞ;jðnÞÞAB strongly converges to zero if and

only if

jjFðnÞjj1 ¼ max
s

½jjjðnÞjj; jgðnÞs j; jrðnÞs j
 ð3:6Þ

tends to zero.
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Proof. First of all, prove the statement for the special choice of the subspace Lm

entering the definition of the norm (2.6). Denote by Lð0Þ the subspace of the space
B; which consists of all vectors of the form ðg; r; 0Þ: The quadratic form /F;FS;

considered on Lð0Þ; contains m negative squares, so that for some subspace

LmCLð0Þ it is negatively definite. Consider the Hilbert inner product (2.6)
corresponding to Lm: It has the structureX2m

sl¼1
x�

s Mslxl þ ðj;jÞ; ð3:7Þ

where x1 ¼ g1;y; xm ¼ gm; xmþ1 ¼ r1;y; x2m ¼ rm; Msl is a some matrix. Since the
inner product (3.7) is positively definite, the matrix Msl is also positively definite.

Thus, FðnÞ strongly converges to zero if and only if jjjðnÞjj tends to zero and

jjxðnÞjjM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2m

sl¼1 x
ðnÞ�
s Mslx

ðnÞ
l

q
-0: Since all norms in finite-dimensional space are

equivalent, the latter property is equivalent to maxjxðnÞ
s j-0: Since all norms of type

(2.5) in the Pontriagin space are equivalent, we obtain the statement of the lemma for
arbitrary choice of Lm: The lemma is proved. &

Corollary. For some A1 the following property is satisfied: A�1
1 jjFjj1XjjFjjXA1jjFjj1:

Proof. Suppose that statement of corollary is not satisfied. Then it is possible to

choose a sequence FðnÞ which obeys one of the following properties:

jjFðnÞjj1
jjFðnÞjj

-n-N0;
jjFðnÞjj
jjFðnÞjj1

-n-N0:

For definiteness, consider the first case. Consider the sequence CðnÞ ¼ FðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjFðnÞjjjjFðnÞjj1

p ;

tending to zero in the jj � jj1-norm and to infinity in the jj � jj-norm. This contradicts
to Lemma 3.2. The corollary is proved. &

Consider the operator Qn :Bn-B of the form Qn : ðc0n;y; ck�2
n ;cnÞ/ðgn; rn;jnÞ:

Here

jn ¼ cn þ
Xm�1

j¼0
cj

nT̂�j�1wn;

gj
n ¼ cj�1

n ; j ¼ 1;m;

rj
n ¼ ðT̂�jwn;jnÞ � zmþj:ncm

n �y� z2m;nc2m�j
n : ð3:8Þ

Introduce in B an additional indefinite inner product:

/F;FSn ¼
Xm

su¼1
g�s gug

ðnÞ
sþu �

Xm

s¼1
ðg�srs � gsr

�
s Þ þ ðj;jÞ; ð3:9Þ
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where

g
ðnÞ
l ¼ ðwn; T̂�lwnÞ þ zl�1;n: ð3:10Þ

Lemma 3.3. The following property /Fn;CnS ¼ /QnFn;QnCnSn; is satisfied for

Fn;CnABn:

To prove Lemma 3.3, it is sufficient to substitute formulas (3.8) in the inner
product (2.2).

Corollary. Let Fn;CnABn be such sequences that jjQnFnjjpC; jjQnCnjjpC for some

C: Then /QnFn;QnCnS�/Fn;CnS-n-N0:

Proof. Define QnFn ¼ Xn ¼ ðgn; rn;jnÞ; QnCn ¼ X̃n ¼ ð*gn; *rn; *jnÞ: Statement of the
corollary means that

Xm

su¼1
g�n;s *gn;uðgðnÞ

sþu � gsþuÞ-n-N0:

This property is a corollary of Lemma 3.2. The corollary is proved. &

Lemma 3.4. For some quantity C that does not depend on n; F and C; the estimation

j/F;CSnjpCjjFjjjjCjj is satisfied.

Proof. Let F ¼ ðg; r;jÞ; C ¼ ð*g; *r; *jÞ: It follows from (3.9) that

j/F;CSnjp
Xm

su¼1
ðjgsjj*gujjgðnÞ

sþuj þ jgsjj *rsj þ j*gsjjrsjÞ þ jjjjjjj *jjj

p
Xm

su¼1
jjFjj1jjCjj1ðg

ðnÞ
sþu þ 2Þ þ jjFjj1jjCjj1

pA21jjFjjjjCjj
Xm

su¼1
jgðnÞ

sþuj þ 2m2 þ 1
 !

:

Since the sequences g
ðnÞ
sþu are convergent, they are bounded. We obtain statement of

the lemma. &

Corollary. Let Fn;CnAB: Then the following estimation is satisfied:
j/Fn;CnSjpCjjQnFnjjjjQnCnjj:

Let us check that the sequence of the operators QnPn :B-B strongly converges
to 1. First, let us justify the following statement.

ARTICLE IN PRESS
O.Yu. Shvedov / Journal of Functional Analysis 210 (2004) 259–294272



Lemma 3.5. Let xAH and jjT̂1=2yðb � T̂ÞxjjpC for some b-independent quantity C:

Then xAH1CH:

Proof. Consider the sequence xn ¼ yðn � T̂Þx: Suppose it to be not fundamental in
H1: Then for some e40 there exists an increasing sequence n1; n2; n3;y; such that

jjxn2s � xn2s�1 jjH1 ¼ jjI½n2s�1;n2s
ðT̂ÞxjjH14e (here I½m;n
ðlÞ ¼ 1 at lA½m; n
 and I½m;n
ðlÞ ¼
0 at le½m; n
). Therefore,

ðx; T̂yðn2l � T̂ÞxÞX
Xl

s¼1
ðx; T̂I½n2s�1;n2s
ðT̂ÞxÞXel:

For l4C=e; we obtain a contradiction with the conditions of lemma. Therefore,
x ¼ limn-N xnAH1: Lemma 3.5 is proved. &

Corollary. Let wAH�k�1 and jjT̂�k=2yðb � T̂ÞwjjpC: Then wAH�k for some b-
independent quantity C:

Lemma 3.5 implies the following statement.

Lemma 3.6. (1) The sequence jjT̂�k=2wnjj tends to infinity as n-N:

(2) The sequence of elements of H of the form
T̂�k=2wn

jjT̂�k=2wnjj
weakly converges to zero

as n-N:

Proof. (1) Suppose that the sequence jjT̂�k=2wnjj does not tend to infinity. Choose
from it the bounded subsequence jjT̂�k=2wnj

jjpC: One has

jjT̂�k=2yðb � T̂Þwnj
jjpjjT̂�k=2wnj

jjpC:

Consider the limit of the left-hand side as j-N: Use the fact that the operator

T̂1=2yðb � T̂Þ is bounded. We obtain jjT̂�k=2yðb � T̂ÞwjjpC: It follows form Lemma

3.5 and property T̂�kþ1
2 wAH that T̂�k

2wAH; so that wAH�k: This contradicts the

condition wAH�k�1 H�k:

(2) Denote Zn ¼ T̂�k=2wn

jjT̂�k=2wnjj
: If xADðT̂1=2Þ; one has

ðZn; xÞ ¼
ðT̂�kþ1

2 wn; T̂1=2xÞ
jjT̂�k=2wnjj

-n-N0;

since ðT̂�kþ1
2 wn; T̂1=2xÞ-n-NðT̂�kþ1

2 w; T̂1=2xÞaN; jjT̂�k=2wnjj-n-NN: Thus, the
sequence Zn; n ¼ 1; 2;y of the elements of the unit sphere inH weakly converges to
zero on dense subset ofH: Therefore [11], the sequence Zn weakly converges to zero.
Lemma 3.6 is proved. &

Lemma 3.6 implies that zs;no0 for sufficiently large n:
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Corollary 1. Let FAB: The following property is satisfied: QnPnF-n-NF:

Proof. It follows from the definitions of the operators Qn and Pn (3.8) and (2.4) that
QnPnðg; r;jÞ ¼ ðg; r;jnÞ; where jn ¼ j for odd values of k and

jn ¼ jþ T̂�mwn½rm � ðT̂�mwn;jÞ

ðwn; T̂�2mwnÞ

for k ¼ 2m: It follows from Lemma 3.5 that jn strongly converges to j as n-N:
Lemma 3.6 is proved. &

Corollary 2. The sequence QnPn is uniformly bounded.

Namely, any strongly convergent sequence is uniformly bounded [9].

Proof of Lemma 2.5. Let FAB: It follows from Lemma 3.6 that the sequence
jjQnPnFjj is bounded. Corollary of Lemma 3.4 tells us that

/PnF;PnFS�/QnPnF;QnPnFS-n-N0:

It follows from Lemma 3.6 that /QnPnF;QnPnFS-n-N/F;FS: We obtain
statement of Lemma 2.5.

3. Let us obtain the commutation rule between operator Qn and resolvent of the

operator Ẑ�1
n Ĥn:

Denote by R̃nðlÞ the operator inB that takes the set ðgn;1;y; gn;m; rn;1;y; rn;m;jnÞ;
gn;s; rn;sAC; jnAH; to the set ð*gn;1;y; *gn;m; *rn;1;y; *rn;m; *jnÞ; which is specified from
the relations

gn;s ¼ l*gn;s þ *gn;sþ1; s ¼ 1;m � 1;

gn;m ¼ l*gn;m þ c̃m
n ;

jn ¼ ðT̂ þ lÞ *jn þ c̃m
n T̂�mwn;

rn;j ¼ *rn;j�1 þ l *rn;j þ g
ðnÞ
jþmc̃m

n ; j ¼ 2;m;

*rn;m ¼ ðT̂�mwn; *jnÞ � z2m;nc̃m
n ;

g
ðnÞ
1 *gn;1 þ?þ gðnÞ

m *gn;m þ g
ðnÞ
mþ1c̃

m
n ¼ rn;1 � l *rn;1; ð3:11Þ

where g
ðsÞ
n has the form (3.10).

Lemma 3.7. The following property is satisfied: QnðẐ�1
n Ĥn þ lÞ�1 ¼ R̃nðlÞQn:
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Proof. Let Fn ¼ ðc0n;y; ck�2
n ;cnÞABn; *Fn ¼ ðẐ�1

n Ĥn þ lÞ�1Fn ¼ ðc̃0n;y; c̃k�2
n ; *cnÞ

ABn: Define

Qn
*Fn ¼ ð*gn;1;y; *gn;m; *rn;1;y; *rn;m; *jnÞ;

QnFn ¼ ðgn;1;y; gn;m; rn;1;y; rn;m;jnÞ:

Check that Qn
*Fn ¼ R̃nðlÞQnFn: It follows from definitions of operators Ẑn and Ĥn

that

c0n ¼ lc̃0n þ c̃1n;

?;

ck�3
n ¼ lc̃k�3

n þ c̃k�2
n ;

zk�1;nck�2
n ¼ lzk�1;nc̃k�2

n þ ðwn;
*cnÞ � z0;nc̃0n �y� zk�2;nc̃k�2

n ;

cn ¼ l *cn þ T̂ *cn þ c̃0nwn: ð3:12Þ

Formulas (3.8) imply 3 first equations of system (3.11). We obtain the fourth and the
fifth equation from formulas for r and *r: The last equation is a corollary of
Eqs. (3.12). Lemma 3.7 is proved. &

Denote

anðlÞ ¼
X2mþ1

s¼1
gðnÞ

s ð�lÞs�1�2m � lðwn; T̂�2m�1ðT̂ þ lÞ�1wnÞ;

aðlÞ ¼ lim
n-N

anðlÞ ¼
X2mþ1

s¼1
gsð�lÞs�1�2m � lðw; T̂�2m�1ðT̂ þ lÞ�1wÞ: ð3:13Þ

Lemma 3.8. Under condition anðlÞa0; the quantities *g; *r; *j are defined uniquely from

system (3.11). Under condition aðlÞa0 the sequence of operators R̃nðlÞ being defined

for nXn0 is strongly convergent as n-N:

Proof. Let ðg; r;jÞAB: Set gn ¼ g; rn ¼ r; jn ¼ j; R̃nðlÞðg; r;jÞ ¼ ð*gn; *rn; *jnÞ: It
follows from (3.11) that *gn;1 has the form

*gn;1 ¼ ðanðlÞð�lÞ2mÞ�1BnðlÞ; ð3:14Þ

where

BnðlÞ ¼ �
Xm

s¼1
gðnÞ

s

Xs�2
j¼0

ð�lÞjgn;s�j�1 þ
Xm�1

j¼0
ð�lÞjrn;jþ1
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þ ð�lÞmððT̂ þ lÞ�1T̂�mwn;jnÞ �
Xm�1

j¼0
ð�lÞj

g
ðnÞ
mþjþ1

 

þ ð�lÞmðz2m;n þ ðwn; T̂�2mðT̂ þ lÞ�1wnÞÞ
!Xm�1

j¼0
ð�lÞjgn;m�j:

For anðlÞa0; *gn;1 is not defined. For this case, other components of the vector *gn;
vectors *rn and *jn are defined uniquely from system (3.11).
For aðlÞa0; the sequence *gn;1 is convergent. We prove by induction that the

sequences

*gn;s ¼
Xs�2
j¼0

ð�lÞjgs�j�1 þ ð�lÞs�1
*gn;1;

c̃m
n ¼

Xm�1

j¼0
ð�lÞjgn;m�j þ ð�lÞm

*gn;1 ð3:15Þ

are also convergent as n-N: Therefore, the sequence for elements H of the form

*jn ¼ ðT̂ þ lÞ�1j� c̃m
n T̂�mðT̂ þ lÞ�1wn ð3:16Þ

is also strongly convergent as n-N: The sequence *rn;m is taken to the form

*rn;m ¼ ððT̂ þ lÞ�1T̂�mwn;jÞ � c̃m
n ½z2m;n þ ðwn; T̂�2mðT̂ þ lÞ�1wnÞ
 ð3:17Þ

and has a limit as n-N: Therefore, sequences

*rn;m�s ¼
Xs�1
j¼0

rn;m�s�j�1ð�lÞj þ ð�lÞs
*rn;m �

Xs�1
j¼0

g
ðnÞ
2m�sþjþ1ð�lÞj

c̃m
n ð3:18Þ

are convergent. Therefore, the sequence ð*gn; *rn; *jnÞ is convergent in the jj � jj1-norm.
Because of corollary of Lemma 3.2, it is convergent in the norm jj � jj: The lemma is
proved. &

Denote RðlÞ ¼ limn-N R̃nðlÞ: It follows from proof of Lemma 3.8 that RðlÞ is a
bounded operator.
We will use further

Lemma 3.9. Let An :B-B; n ¼ 1; 2;y be a strongly convergent as n-N sequence

of operators, An-n-NA and AnQn ¼ 0: Then A ¼ 0:
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Proof. It follows from the condition of lemma that AnQnPn ¼ 0: Lemma 3.6 implies
that the sequence of operators QnPn :B-B is strongly convergent to 1, so that
AnQnPn-n-NA in a strong sense. Therefore, A ¼ 0: &

Lemma 3.10. Let aðlÞa0; aðmÞa0: Then

RðlÞ � RðmÞ ¼ ðm� lÞRðlÞRðmÞ: ð3:19Þ

Proof. Consider the following sequence of operators An: An ¼ R̃nðlÞ � R̃nðmÞ þ ðl�
mÞR̃nðlÞR̃nðmÞ: It satisfies the property AnQn ¼ 0 and strongly converges as n-N

to RðlÞ � RðmÞ þ ðl� mÞRðlÞRðmÞ: We obtain statement of the lemma. &

Lemma 3.11. Under condition aðlÞa0 the following property is satisfied:

RðlÞ ¼ ðlþ ĤÞ�1: ð3:20Þ

Proof. Justify that for l ¼ 0 the operator RðlÞ coincides with the operator Ĥ�1

defined in Section 2. Find an explicit form of Ĥ�1: It follows from (2.1) that

Ĥ�1
X2m
l¼1

clT̂
�lwþ creg

" #
¼ aaT̂�1wþ

X2m
l¼1

clT̂
�l�1wþ T̂�1creg;

where a ¼ /T̂�1w;
P2m

l¼1 clT̂
�lwþ cregS:

For the vectors I ½
P2m

l¼1 clT̂
�lwþ creg
 ¼ ðg; r;jÞ; I ½

P2m
l¼1 aaT̂�1wþ clT̂

�l�1wþ
T̂�1creg
 ¼ ð*g; *r; *jÞ; one has

*j ¼ �gmT̂�m�1wþ T̂�1j;

*g1 ¼ �aa; *g2 ¼ g1; ;y; *gm ¼ gm�1;

*rs ¼ �ðw; T̂�m�s�1wÞreggm þ rsþ1; s ¼ 1;m � 1;

*rm ¼ �ðw; T̂�2m�1wÞreggm þ ðT̂�m�1w;jÞ: ð3:21Þ

Formula (3.14) can be presented in the following form as n-N: *g1 ¼ g�1
1 ðr1 �Pm

s¼0 gsþ1gsÞ; For the case a ¼ �g�1
1 it coincides with *g1 ¼ �aa: Formulas (3.15)–

(3.18) also coincide with (3.21). Therefore, property (3.20) is satisfied as l ¼ 0: It
follows from (3.19) that RðlÞ is a pseudoresolvent [11]. Therefore, property (3.20) is
satisfied for all l obeying the condition aðlÞa0:

ARTICLE IN PRESS
O.Yu. Shvedov / Journal of Functional Analysis 210 (2004) 259–294 277



Lemma 3.12. Under condition aðlÞa0 the following property is satisfied:

/ðẐ�1
n Ĥn þ lÞ�1PnF; ðẐ�1

n Ĥn þ lÞ�1PnCS-n-N;

/ðĤ þ lÞ�1F; ðĤ þ lÞ�1CS; F;CAB:

Proof. Check that the conditions of the corollary of Lemma 3.3 are satisfied.
Namely, for FAB one has

jjQnẐ�1
n Ĥn þ lÞ�1PnFjj ¼ jjðĤ þ lÞ�1QnPnFjj

p jjðĤ þ lÞ�1jjmax
n

jjQnPnFjjpC:

An analogous property is correct for C also. Therefore,

/ðẐ�1
n Ĥn þ lÞ�1PnF; ðẐ�1

n Ĥn þ lÞ�1PnCS

� /ðĤ þ lÞ�1QnPnF; ðĤ þ lÞ�1QnPnCS-n-N0:

The properties QnPnF-F; QnPnC-C imply the statement of the lemma.

Proof of Lemma 2.6. Choose such a basis e1;y; em in Lm that obeys the condition

/ei; ejS ¼ �dij: To prove negative definiteness of the inner product on Ln
m ¼

ðẐ�1
n Ĥn þ lÞ�1PnðĤ þ lÞLm; it is sufficient to check the positive definiteness of the

matrix

A
ðnÞ
ij ¼ �/ðẐ�1

n Ĥn þ lÞ�1PnðĤ þ lÞei; ðẐ�1
n Ĥn þ lÞ�1PnðĤ þ lÞejS: ð3:22Þ

Its components tend to the components of the unit matrix according to Lemma 3.12.

At sufficiently large n jjAðnÞ � 1jjo1=2; so that

ðx;AðnÞxÞ � 1
2
ðx; xÞ ¼ 1

2
ðx; xÞ þ ðx; ðAðnÞ � 1ÞxÞ

X
1

2
jjxjj2 � jjAðnÞ � 1jjjjxjj2X0:

Positive definiteness of the inner product /F;FSLn
m
is a corollary of general results

of [8]. Lemma 2.6 is proved. &

Lemma 3.13. Let j/PnF;PnFSjpB1jjFjj2 for some constant B1; /ðẐ�1
n Ĥn þ

lÞ�1Pnei;PnFSjpCijjFjj; i ¼ 1;m for some C1;y;Cm: Then jjPnjjpa:
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Proof. It follows from formula (2.5) that

jjPnFjj2 ¼/PnF;PnFSLn
m
¼ /PnF;PnFS

þ 2
Xm

ij¼1
/PnF; ðẐ�1

n Ĥn þ lÞ�1PneiSM
ðnÞ
ij

�/ðẐ�1
n Ĥn þ lÞ�1Pnej;PnFS;

where MðnÞ is a matrix being inverse to (3.22). It follows from the conditions of
lemma that

jjPnFjj2p B1 þ 2
Xm

ij¼1
CiM

ðnÞ
ij Cj

 !
jjFjj2p B1 þ 2 sup

n
jjMðnÞjjjjCjj2

� �
jjFjj2:

We obtain statement of Lemma 3.13. &

Proof of Lemma 2.7. Check that conditions of Lemma 3.13 are satisfied. Use the
corollary of Lemma 3.4.

j/PnF;PnFSjpC sup
n

jjQnPnFjj2pC1;

�

p jðẐ�1
n Ĥn þ lÞ�1Pnei;PnFSj

pC sup
n

jjQnðẐ�1
n Ĥn þ lÞ�1Pneijj sup

n
jjQnPnFjj

pCjjðH þ lÞ�1jj sup
n

jjQnPnjj
� �2

jjðH þ lÞeijjjjFjj:

Lemma 2.7 is proved. &

Lemma 3.14. jjFnjjpA3jjQnFnjj for some constant A3:

Proof. One has

jjFnjj2 ¼/Fn;FnSþ 2
Xm

ij¼1
/Fn; ðẐ�1

n Ĥn þ lÞ�1PneiS

� M
ðnÞ
ij /ðẐ�1

n Ĥn þ lÞ�1Pnej;FnS:

It follows from Lemma 3.4 that

jjFnjj2pCjjQnFnjj2 þ 2
Xm

ij¼1
jMðnÞ

ij jC2jjQnFnjj2jjR̃nðlÞjj2

� jjQnPnjj2jjðĤ þ lÞeijjjjðĤ þ lÞejjj:

We obtain statement of the lemma. &
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Lemma 3.15. Let the condition aðlÞa0 be satisfied. Then the sequence of oper-

ators ðẐ�1
n Ĥn þ lÞ�1 :Bn-Bn is fPng-strongly convergent to the operator

ðĤ þ lÞ�1 :B-B:

Proof. It is sufficient to check that for any FAB

jjðẐ�1
n Ĥn þ lÞ�1PnF� PnðĤ þ lÞ�1Fjj-n-N0:

It follows from Lemma 3.14 that jjFnjj-0; provided that jjQnFnjj-0: It is sufficient
to prove then that

jjQnðẐ�1
n Ĥ þ lÞ�1PnF� QnPnðĤ þ lÞ�1Fjj-n-N0:

This property is a corollary of the relation

QnðẐ�1
n Ĥn þ lÞ�1PnF ¼ R̃nðlÞQnPnF-n-NðH þ lÞ�1F;

QnPnðĤ þ lÞ�1F-n-NðĤ þ lÞ�1F:

Lemma 3.15 is proved. &

Lemma 3.16. For some constant A2 the estimation jjQnFnjjpA2jjFnjj is satisfied.

Proof. Since the norm of the operator J entering Eq. (2.5) is equal to 1, the following
estimation is satisfied for the indefinite inner product:

j/Fn;CnSjpjjFnjjjjCnjj; Cn;FnABn:

Therefore,

j/Fn;FnSjpjjFnjj2; j/Fn;PnFSjpajjFnjjjjFjj ð3:23Þ

for all FAB; FnABn: Lemma 3.3 implies that property (3.23) can be presented as

j/QnFn;QnFnSnjpjjFnjj2;

j/QnFn;QnPnFSnjpajjFnjjjjFjj: ð3:24Þ

Choose F ¼ ð*g; *r; 0Þ: Then QnPnF ¼ F: Denote QnFn ¼ ðgn; rn;jnÞ: It follows from
the second property (3.24) that

Xm

su¼1
g�n;s *gug

ðnÞ
sþu �

Xm

s¼1
ðg�n;s *rs þ *gsr�n;sÞ

�����
�����pajjð*g; *r; 0ÞjjjjFnjj:
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Choose *rðlÞs ¼ dsl ; *gs ¼ 0: For different l we obtain

jgn;sjpamax
l

jjð0; *rðlÞ; 0ÞjjjjFjjnpC1jjFnjj

for some constant C1: Analogously, jrn;s �
Pm

u¼1 gn;sg
ðnÞ
sþujpC2jjFnjj for some

constant C2: Therefore

jrn;sjpC3jjFnjj:

It follows from the first inequality (3.24) that

jðjn;jnÞjp
Xm

su¼1
g�n;sgn;mg

ðnÞ
sþu

�����
�����

þ
Xm

s¼1
ðg�n;srn;s þ r�n;sgn;sÞ

�����
�����þ jjFnjj2pC4jjFnjj2:

Therefore, jjjnjjpC
1=2
4 jjFnjj: For norm (3.6) of the vector QnFn; the following

estimation is satisfied: jjQnFnjj1pCjjFnjj:Making use of the corollary of Lemma 3.2,
we obtain statement of Lemma 3.16. &

Lemma 3.17. The sequence fFng is of the class ½F
 if and only if QnFn-F:

Proof. The condition fFngA½F
 means that jjFn � PnFjj-0: It follows from
Lemmas 3.15 and 3.17 that it is equivalent to

jjQnFn � QnPnFjj-0: ð3:25Þ

Since jjQnPnF� Fjj-0 according to Lemma 3.6, condition (3.25) is equivalent to
QnF-F: Lemma 3.17 is proved. &

Lemma 3.17 implies Lemma 2.8.

4. Some properties of solutions of evolution equations

This section deals with investigations of properties of evolution operators for
Eqs. (1.5), (1.8), (1.10), (1.11), (1.12) and (1.13). Lemmas 2.3, 2.4 and first parts of
Theorems 2,3 are proved.

1. Investigate properties of the operators entering the right-hand side of evolution
equations. As usual, we call operators which are self-adjoint with respect to the
indefinite inner product in B or Bn as J-self-adjoint operators, while operators being
self-adjoint with respect to the inner product /�; �SLm

or /�; �SLn
m
will be called

H-self-adjoint.
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Lemma 4.1. The operators Ẑ�1
n Ĥn and H are J-self-adjoint.

Proof. It follows from [8] that it is sufficient to check that the bounded operator

ðẐ�1
n Ĥn þ lÞ�1 is J-self-adjoint for some real l: Lemmas 3.3 and 3.7 imply that this

property is equivalent to self-adjointness of the operator R̃nðlÞ : ðg; r;jÞ/ð*g; *r; *jÞ
with respect to the inner product /�; �Sn: To justify the latter property, it is sufficient
to check that for all F ¼ ðg; r;jÞ the inner product

/F; R̃nðlÞFSn ¼
Xm

su¼1
g�s *gug

ðnÞ
sþu �

Xm

s¼1
ðg�s *rs þ *gsr�s Þ þ ðj; *jÞ ð4:1Þ

is real. It follows from (3.11) that

Xm

su¼1
g�s *gug

ðnÞ
sþu ¼ l

Xm

su¼1
*g�s *gug

ðnÞ
sþu þ

Xm

su¼1
g
ðnÞ
sþu�1*g

�
s *gu

þ c̃�m
Xm

u¼1
g
ðnÞ
mþu *gu � *g�1

Xm

u¼1
gðnÞ

u *gu;

Xm

s¼1
g�s *rs ¼

Xm

s¼1
l*g�s *rs þ

Xm�1

s¼1
*g�sþ1 *rs þ c̃�m *rm;

Xm

s¼1
*gsr�s ¼

Xm

s¼2
*gs *r�s�1 þ l

Xm

s¼1
*gs *r�s

þ
Xm

s¼1
g
ðnÞ
mþs *gsc̃

�
m þ *g1

Xm

u¼1
gðnÞ

u *g�u;

ðj; *jÞ ¼ ð *j; ðT̂ þ lÞ *jÞ þ c̃�mð *rm þ z2m;nc̃�mÞ:

Therefore, expression (4.1) is real.
Self-adjointness of the operator H is checked analogously [24,25]. Lemma 4.1 is

proved. &

Lemma 4.1 and analog of the theorem for the Pontriagin spaces [17] imply
statements of Lemmas 2.3 and 2.4.

Lemma 4.2. The operator Ẑ�1
n Ĥn is presented as a sum

Ẑ�1
n Ĥn ¼ H1

n þ H2
n ð4:2Þ
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of a H-self-adjoint operator Ĥ1
n and a bounded operator Ĥ2

n; for some n-independent

quantities B1 and B2

Ĥ1
nXB1; jjĤ2

njjpB2: ð4:3Þ

The operator Ĥ is a sum Ĥ1 þ Ĥ2 of a H-self-adjoint operator Ĥ1 being semi-bounded

below and a bounded operator Ĥ2:

To prove this lemma, let us prove Lemmas 4.3–4.7.

Lemma 4.3. The function f ðlÞ ¼ lðw; T̂�kðT̂ þ lÞ�1wÞ increases and tends to infinity

as l-N:

Proof. Since the operator T̂ is positive and self-adjoint, the difference

f ðl1Þ � f ðl2Þ ¼ ðl1 � l2Þðw; T̂�kþ1ðT̂ þ l1Þ�1ðT̂ þ l2Þ�1ÞwÞ

is positive as l14l2: Thus, f increases.
Check that f ðlÞ tends to infinity as l-N: Suppose, that f ðlÞoC for some C:

Then the property of positive definiteness of the operator T̂ implies that for all b

lðw; T̂�kyðb � T̂ÞðT̂ þ lÞ�1wÞpC:

Consider the limit l-N: We find ðw; T̂�kyðb � T̂ÞwÞpC: According to corollary of

Lemma 3.5, we obtain a contradiction with the condition weH�k: Lemma 4.3 is
proved. &

Lemma 4.4. For all C40 there exist some l0 and n0 such that for all l4l0 and
n4n0 fnðlÞ ¼ lðwn; T̂�kðT̂ þ lÞ�1wnÞ4C:

Proof. Suppose that for some C for all l0 and n0 there exist l4l0 and n4n0 such
that fnðlÞrC: Analogous to the previous subsection, we justify that the function
fnðlÞ is increasing. This implies that fnðl0ÞpC: Therefore, for some sequence np-N

fnp
ðl0ÞpC: Consider a limit p-N: We find f ðl0ÞpC for all l0: Lemma 4.4 is

proved. &

Let F ¼ ðg; r;jÞAB: Denote *Fn ¼ R̃nðlÞF ¼ ð*gnðlÞ; *rnðlÞ; *jnðlÞÞAB: *Fn is deter-
mined from system (3.11).

Lemma 4.5. For some constants l0; n0 and A4 for lXl0 and nXn0 the operator R̃nðlÞ
is well defined and obeys properties

jc̃m
n jpA4jjFjj1;

jc̃m
n jjjlT̂�mðT̂ þ lÞ�1wnjjpA4jjFjj1: ð4:4Þ
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Proof. It follows from system (3.11) that c̃m
n ¼ ðanðlÞÞ�1bnðlÞ; where anðlÞ has the

form (3.13), while

bnðlÞ ¼ ðT̂�mðT̂ þ lÞ�1wn;jÞ þ
Xm

s¼1
ð�lÞ�srm�sþ1

þ
Xm

s¼1

Xmþ1�s

l¼1
gðnÞ

s ð�lÞ�l�mgsþl�1:

For some A5; the following property is satisfied:

jbnðlÞjpðjjT̂�mðT̂ þ lÞ�1wnjj þ A5l
�1ÞjjFjj1:

Obtain an estimation for anðlÞ:
1. At k ¼ 2m z2m;n ¼ 0: Lemma 4.4 implies

anðlÞX1
2
ðwn; T̂�2mðT̂ þ lÞ�1wnÞ þ 1

2
;

for sufficiently large l0 and n0: Therefore,

jbnðlÞ=anðlÞjp2A1l�1jjFjj1 �
2jjT̂�mðT̂ þ lÞ�1wnjj
ðwn; T̂�2mðT̂ þ lÞ�1wnÞ

jjFjj1:

The inequalities jjT̂�mðT̂ þ lÞ�1wnjjpjjT̂�m�1wnjjpC1; ljjT̂�mðT̂ þ lÞ�1wnjj2 �
ðwn; T̂�2mðT̂ þ lÞ�1wnÞ ¼ �ðwn; T̂�2mT̂ðT̂ þ lÞ�2wnÞp0 imply Eq. (4.4).
2. Let k ¼ 2m þ 1: Then

ð�lÞ�1anðlÞ ¼
X2mþ1

s¼1
gðnÞ

s ð�lÞs�1�2m þ ðwn; T̂�2m�1ðT̂ þ lÞ�1wnÞ

X
1

2
ðwn; T̂�2m�1ðT̂ þ lÞ�1wnÞ þ

1

2
:

We obtain the following inequality: jbnðlÞ=anðlÞjpl�1C2jjFjj1 and Eq. (4.4).
Existence of the operator R̃nðlÞ for lXl0 and nXn0 is a corollary of the proved

property anðlÞa0: Lemma 4.5 is proved. &

Lemma 4.6. For some constant B3 the following property is satisfied: ljjR̃nðlÞjj1 ¼

supFAB
ljjR̃nðlÞFjj1

jjFjj1
pB3:

Proof. It follows from the second equation of system (3.11) that lj*gn;mjpC1jjFjj1:
We obtain from the first equation by induction that lj*gn;sjpC1jjFjj1 for s ¼ 1;m � 1:
It follows from the positive definiteness of the operator T̂ and from the third
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equation that

jl *jnðlÞjjp jjlðT̂ þ lÞ�1jjj þ jc̃m
n ðlÞjjjT̂�mlðT̂ þ lÞ�1wnjj

p jjjjj þ A4jjFjj1pðA4 þ 1ÞjjFjj1:

The latter equation of system (3.11) implies lj *rn;1jpC3jjFjj1: The fourth equation
implies lj *rn;sjpC4jjFjj1; s ¼ 2;m: We obtain statement of Lemma 4.6. &

Corollary of Lemma 3.2 implies

Corollary. For some constant B4 the following property is satisfied: ljjR̃nðlÞjjpB4:

Lemma 4.7. There exist constants B5; l0 and n0 such that for lXl0 and nXn0

ljjðlþ Ẑ�1
n ĤnÞ�1jjpB5;

ljjðlþ ĤÞ�1jjpB5: ð4:5Þ

Proof. Lemma 3.11 implies the second property of (4.5). It follows from Lemmas
3.14, 3.16 and 3.7 that

ljjðlþ Ẑ�1
n ĤnÞ�1jj ¼ sup

FnABn

jjlðlþ Ẑ�1
n ĤnÞ�1Fnjj
jjFnjj

p sup
FnABn

A3jjQnlðlþ Ẑ�1
n ĤnÞ�1Fnjj

A2jjQnFnjj

¼ sup
FnABn

A3jjlR̃nðlÞQnFnjj
A2jjQnFnjj

pB4A3=A2:

The lemma is proved. &

Proof of Lemma 4.2. By RJ
n we denote the orthogonal with respect to the inner

product (2.2) projector on the subspaceLn
m; by R>

n denote the orthogonal projector

on ðLn
mÞ

>: Set

H1
n ¼ R>

n Ẑ�1
n ĤnR>

n ;

H2
n ¼ Ẑ�1

n Ĥn � H1
n ¼ RJ

nẐ�1
n Ĥn þ Ẑ�1

n ĤnRJ
n þ RJ

nẐ�1
n ĤnRJ

n:

Check that the operators H1 and H2 obey properties (4.3). Since the inner products

/�; �S and /�; �SLn
m
coincide on ðLn

mÞ
>; Hn

1 is a H-self-adjoint operator. Find an

estimation on the norm of the operator H2
n : The operator RJ

n is rewritten as

RJ
n ¼ �

Pm
ij¼1 e

ðnÞ
i /e

ðnÞ
j ;FnSM

ðnÞ
ij ; where M

ðnÞ
ij is a matrix being inverse to (3.22),
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e
ðnÞ
i ¼ ðẐnĤn þ lÞ�1PnðĤ þ lÞei: For the norm of the operator Ẑ�1

n ĤnRJ
n; we obtain

the following estimation:

jjẐ�1
n ĤnRJ

njjpm2 max
ij

jMðnÞ
ij jmax

i
jjẐ�1

n Ĥne
ðnÞ
i jjmax

i
jjeðnÞi jj: ð4:6Þ

Since M
ðnÞ
ij -n-Ndij;

Ẑ�1
n Ĥne

ðnÞ
i ¼ PnðH þ lÞei � le

ðnÞ
i ;

jjeðnÞi jjpjjðẐ�1
n Ĥn þ lÞ�1jjjjPnjjjjðH þ lÞejj;

quantity (4.6) is bounded uniformly with respect to n: An analogous estimation can

be obtained for norms of the operators Ẑ�1
n ĤnRJ

n–R
J
nẐ�1

n ĤnRJ
n: Therefore, jjH2

n jjpB:

To check that the operator Ĥ1
n is semibounded below, present it as a sum of an

absolutely convergent in the norm-topology series: ðlþ Ĥ1
nÞ

�1 ¼
P

N

k¼0ðlþ
Ẑ�1

n ĤnÞ�1ðH2
n ðlþ Ẑ�1

n ĤnÞ�1Þk provided that lXBB5 and lXl0: Namely, for this

case the norm of the kth term of the series is not larger than
BkBkþ1

5

lkþ1 : Therefore, for

sufficiently large l and nXn0 the resolvent of the H-self-adjoint operator Ĥ1
n is

bounded. Therefore, the spectrum of the operator Ĥ1
n is semibounded below by an

n-independent quantity. Analogously, we prove statement of Lemma 4.2 for the

operator Ĥ: Lemma 4.2 is proved. &

Without loss of generality, suppose that the quantity C entering Lemma 4.2 obeys

the property C40: Otherwise, one can redefine the operators Ĥ1
n and Ĥ2

n:
Representation (4.2) and results of [11] imply the following properties of evolution

operators for Eqs. (1.8)–(1.13) on ½0; t
:

Lemma 4.8. The following properties are satisfied:

jje�itẐ�1
n Ĥn jjpeBt; jje�itH jjpeBt:

jje�tẐ�1
n Hn jjpeðB�CÞt; jje�tH jjpeðB�CÞt:

Proof. It was shown in [11] that if T is a generator for a one-parametric semigroup

e�Tt such that

jje�TtjjpMebt; ð4:7Þ

while A is a bounded operator, then T þ A is also a generator of a semigroup.

Moreover, jje�ðTþAÞtjjpMeðbþMjjAjjÞt: The operator iĤ1
n for the case of a H-self-

adjoint Ĥ1
n is a generator of a one-parametric semigroup of H-unitary operators.
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This means that property (4.7) is satisfied for M ¼ 1; b ¼ 0: Therefore,

jje�itẐ�1
n Hn jjpejjH

2
n jjtpeBt: The second inequality is checked analogously.

Since the operator Ĥ1 satisfies the property Ĥ1XC; it is a generator of a one-

parametric semigroup, while jje�Ĥ1
ntjjpe�Ct: We proved Lemma 4.8. &

Note also that since Ĥ1
n þ Ĥ2

n is a generator of a one-parametric semigroup, there

exists a unique solution of the Cauchy problems for Eqs. (1.13) and (1.11) for

Fnð0ÞADðĤ1
n þ Ĥ2

nÞ: This solution continuously depends on the initial conditions.
Lemma 2.10 is proved. &

To prove Lemma 2.11, let us justify some auxiliary statements analogously to
Ref. [15].
Consider the following differential equation in the Banach space B:

�d2F
dt2

¼ ÂF; FðtÞADðÂÞCB; tA½0;T 
 ð4:8Þ

with closed operator Â:

Definition 4.1. We say that the Cauchy problem for Eq. (4.8) is formulated

uniformly correct if for all Fð0Þ and ’Fð0Þ from DðÂÞ there exists a unique two-
times continuously differentiable function FðtÞADðÂÞ satisfying Eq. (4.8) and initial
conditions. The dependence of FðtÞ on initial conditions is uniformly continuous.

Define on DðAÞ the operators VðtÞ and WðtÞ from property (2.8), FðtÞ ¼
VðtÞFð0Þ þ WðtÞ ’Fð0Þ: Denote by ’VðtÞ and ’WðtÞ the operators from DðAÞ to B

which are defined from the relation ’FðtÞ ¼ ’VðtÞFð0Þ þ ’WðtÞ ’Fð0Þ:
Let B be a Hilbert space.

Lemma 4.9. Let A be a H-self-adjoint semibounded below operator in B: AXC140:
Then the Cauchy problem for Eq. (4.8) is uniformly correct and

jjVðtÞjjp1; jjWðtÞjjp1=
ffiffiffiffiffiffi
C1

p
: ð4:9Þ

Proof. The function of the form

FðtÞ ¼ cosð
ffiffiffiffî
A

p
tÞFð0Þ þ sinð

ffiffiffiffî
A

p
tÞffiffiffiffî

A
p ’Fð0Þ ð4:10Þ

is a solution of the Cauchy problem for Eq. (4.8) [15]. Prove the property of

uniqueness. Let Fð0Þ ¼ 0; ’Fð0Þ ¼ 0: Consider the function f ðtÞ ¼ 1
2
ð ’FðtÞ; ’FðtÞÞ þ

1
2
ðFðtÞ; ÂFðtÞÞ: It satisfies the conditions f ð0Þ ¼ 0; df =dt ¼ 0: Therefore, f ðtÞ ¼ 0:
Since the operator A is semibounded below, one has ð ’F; ’FÞ ¼ 0; ðF; ÂFÞ ¼ 0:
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Therefore, F ¼ 0: The property of uniqueness is proved. It follows from the explicit
form of solution of Eq. (4.10) the property of uniform correctness of the Cauchy
problem and relations (4.9). Lemma 4.10 is proved. &

Suppose that there exists such z that the operator ðA þ zÞ�1 is well defined.

Lemma 4.10. Let the Cauchy problem for Eq. (4.8) be uniformly correct. Consider the

equation

�d2FðtÞ
dt2

¼ ÂFðtÞ þ xðtÞ; FðtÞADðÂÞCB; tA½0;T 
; ð4:11Þ

where xðtÞADðÂ2Þ: ðÂ þ zÞ2xðtÞ is a continuous function on ½0;T 
: Then the Cauchy

problem for Eq. (4.11) has a unique solution of the form

FðtÞ ¼ VðtÞFð0Þ þ WðtÞ ’Fð0Þ �
Z t

0

dt Wðt � tÞxðtÞ: ð4:12Þ

Proof. The uniqueness is obvious. Let F1 and F2 be two solutions of the Cauchy
problem. Then their difference satisfies Eq. (4.8) and zero initial condition. It follows
from uniform correctness of the Cauchy problem for Eq. (4.8) that F1 � F2 ¼ 0:
To prove the lemma, it is sufficient to justify that the function

FðtÞ ¼ �
Z t

0

dt Wðt � tÞxðtÞ

obeys Eq. (4.11) and zero initial condition. Check that

dFðtÞ
dt

¼ �
Z t

0

dt ’Wðt � tÞxðtÞ: ð4:13Þ

Consider the difference

� Fðt þ dtÞ � FðtÞ
dt

þ ’FðtÞ

¼
Z tþdt

t

dt
dt

W ðt þ dt � tÞxðtÞ þ
Z t

0

dt
Wðt þ dt � tÞ � Wðt � tÞ

dt
� ’Wðt � tÞ

� �
xðtÞ

¼
Z 1

0

ds Wðdtð1� sÞÞxðt þ dtsÞ þ
Z t

0

dt
Z 1

0

dsð ’Wðt þ dts � tÞ � ’Wðt � tÞÞxðtÞ

¼
Z 1

0

ds Wðdtð1� sÞÞxðtÞ þ
Z 1

0

ds Wðdtð1� sÞÞðxðt þ sdtÞ � xðtÞÞ

þ dt

Z t

0

dt
Z 1

0

ds

Z s

0

ds0AWðt þ s0dt � tÞxðtÞ:
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The norm of this expression is not larger than

Z 1

0

dsjjWðdtð1� sÞÞjjðjjxðtÞjj þ jjxðt þ sdtÞ � xðtÞjj

þ dt

Z t

0

dt
Z 1

0

ds

Z s

0

ds0jjÂWðt þ s0dt � tÞxðtÞjj:

According to the Lesbegue theorem (see, for example, [12]) this expression tends to
zero as dt-0: Therefore, property (4.13) is checked. Initial conditions are obviously
satisfied. Check Eq. (4.11). One has

�
’Fðt þ dtÞ � ’FðtÞ

dt
� AFðtÞ � xðtÞ

¼
Z 1

0

dsð ’Wðdtð1� sÞÞxðt þ sdtÞ � xðtÞÞ

þ
Z 1

0

dt
Z 1

0

dsð�Wðt � tþ sdtÞ þ Wðt � tÞÞÂxðtÞ:

According to the Lesbegue theorem, this expression tends to zero. The lemma is
proved. &

Corollary. Let the function xðtÞAB is continuous on ½0;T 
; while the function FðtÞ is a

solution of Eq. 4.11. Then formula 4.12 is satisfied.

Proof. It is sufficient to consider the case if initial conditions vanish; the general case

can be reduced to it by the substitution of FðtÞ by FðtÞ � VðtÞFð0Þ � WðtÞ ’Fð0Þ:
Consider the function vðtÞ ¼ ðÂ þ zÞ�2FðtÞ satisfying the following equation:

�d2vðtÞ
dt2

¼ ÂvðtÞ þ ðÂ þ zÞ�2xðtÞ;

and zero initial condition. Therefore,

vðtÞ ¼ �ðÂ þ zÞ�2
Z t

0

dt Wðt � tÞxðtÞ:

We obtain statement of the corollary.

It happens that the condition that ðÂ þ zÞ�2x is continuous can be substituted by
the condition that x is two times continuously differentiable.

Lemma 4.11. Let all the conditions of Lemma 4.10 be satisfied, except for continuity of

ðÂ þ zÞ�2x: Let also the function xðtÞ be two times continuously differentiable and

xð0ÞADðÂÞ: Then statement of Lemma 4.10 is satisfied.
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Proof. The property of uniqueness of the solution of the Cauchy problem is checked
analogously to Lemma 4.10. Corollary of Lemma 4.10 tells us that the solution of
the Cauchy problem is given by formula (4.12), provided it exists. It is sufficient then
to check that expression (4.12) satisfies Eq. (4.11) and initial condition. It is sufficient

to consider the case Fð0Þ ¼ 0; ’Fð0Þ ¼ 0: Define W1ðtÞ ¼
R t

0 dt WðtÞ; W2ðtÞ ¼R t
0

W1ðtÞ: Substituting xðtÞ ¼ xð0Þ þ
R t

0
dtxðtÞ; we findZ t

0

dt Wðt � tÞxðtÞ ¼ W1ðtÞxð0Þ þ
Z t

0

ds W1ðt � sÞ’xðsÞ:

Applying this formula again, we obtainZ t

0

Wðt � tÞxðtÞdt ¼ W1ðtÞxð0Þ þ W2ðtÞ’xð0Þ þ
Z t

0

ds W2ðt � sÞ.xðsÞ: ð4:14Þ

It follows from the definition of the operator W that it satisfies the following
equation:

ẄðtÞF ¼ �ÂW ðtÞF; FADðAÞ ð4:15Þ

and commutes on DðAÞ with the operator A: Integrating twice Eq. (4.15), we find

�ÂW2ðtÞ ¼ WðtÞ � Wð0Þ � ’Wð0Þt ¼ WðtÞ � t ð4:16Þ

on DðAÞ: Operator (4.16) is bounded and can therefore be continued onB: It follows
from Eqs. (4.16) and (4.14) that

�Â

Z t

0

Wðt � tÞxðtÞdt ¼
Z t

0

ds½Wðt � sÞ � ðt � sÞ
.xðsÞ

þ ’WðtÞxð0Þ þ ðWðtÞ � tÞ’xð0Þ: ð4:17Þ

Furthermore,

d2

dt2

Z t

0

WðtÞxðt � tÞ dt

 �

¼ WðtÞ’xð0Þ þ ’WðtÞxð0Þ þ
Z t

0

WðtÞ.xðt � tÞ dt: ð4:18Þ

Comparing Eqs. (4.17) and (4.18), we obtain statement of the lemma. &

Lemma 4.12. Let the operator Â be a sum of a H-self-adjoint semibounded below

operator T̂1XC140 and a bounded operator T̂2; jjT̂2jjpC2: Then the Cauchy problem

for Eq. (4.8) is uniformly correct and

jjVðtÞjjpeC2t=
ffiffiffiffi
C1

p
; jjWðtÞjjpeC2t=

ffiffiffiffi
C1

p
=
ffiffiffiffiffiffi
C1

p
:

Proof. According to corollary of Lemma 4.10, the function FðtÞ is a solution of the
Cauchy problem for Eq. (4.8) if and only if

FðtÞ ¼ V1ðtÞFð0Þ þ W1ðtÞ ’Fð0Þ �
Z t

0

dt W1ðt � tÞT̂2FðtÞ; ð4:19Þ
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where V1ðtÞ ¼ cosð
ffiffiffiffiffiffi
T̂1

p
tÞ; W1ðtÞ ¼ sinð

ffiffiffiffi
T̂1

p
tÞffiffiffiffi

T̂1

p : The abstract Volterra equation (4.19)

has a unique solution (see, for example, proof of [12]), which can be presented as a
sum of an absolutely convergent in the norm-topology series:

FðtÞ ¼
XN
n¼0

ð�1Þn

Z
t:t14;;;4tn40

dt1ydtn W1ðt � t1ÞT̂2yW1ðtn�1 � tnÞT̂2

� ðV1ðtnÞFð0Þ þ W1ðtnÞ ’Fð0ÞÞ:

Therefore,

jjVðtÞjjp
XN
n¼0

ðC2t=
ffiffiffiffiffiffi
C1

p
Þn

n!
¼ eC2t=

ffiffiffiffi
C1

p
;

jjVðtÞjjp
XN
n¼0

ðC2t=
ffiffiffiffiffiffi
C1

p
Þn

n!
ffiffiffiffiffiffi
C1

p ¼ eC2t=
ffiffiffiffi
C1

p
=
ffiffiffiffiffiffi
C1

p
:

Lemma 4.12 is proved. &

Lemmas 4.12 and 4.2 imply

Corollary. The statement of Lemma 2.11 is satisfied. For tA½0;T 
 there exists an

n-independent quantity M such that jjVnðtÞjjpM; jjVðtÞjjpM; jjWnðtÞjjpM;
jjWðtÞjjpM:

5. Convergence in generalized strong sense

Let us justify the property of generalized strong convergence of the operators Un;
Vn and Wn entering Theorems 1–3. Let us first investigate some properties of
generalized strong convergence. Formulate an analog of the Banach–Steinhaus
theorem.

Lemma 5.1. Let An :B-Bn; n ¼ 1; 2;y; be a sequence of operators satisfying the

property jjAnjjpMoN for some n-independent constant M; DCB—is a dense subset

of B; jjAnvjj-n-N0 for vAD: Then jjAnvjj-n-N0 for vAB:

Proof. Let vAB; e40: Choose such v0AD that jjv � v0jjp e
2M

: Choose n0 such that for

nXn0jjAnv0jjpe=2: Then jjAnvjjpjjAnv0jj þ jjAnjjjjv � v0jjpe:We obtain statement of
lemma. &

Remark. The proof of Ref. [9] of the Banach–Steinhaus theorem cannot be
generalized to the case of fPng-strong convergence. Proof of [28] uses also the
condition jjPnvjj-n-Njjvjj:
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Lemma 5.2. Let An :B-Bn; n ¼ 1; 2;y; be a sequence of operators satisfying the

following property: for each vAB the sequence jjAnvjj is bounded. Then jjAnjjpM for

some n-independent quantity M:

Proof. Analogous to [9].

Lemma 5.3. Let Bn :Bn-Bn; n ¼ 1; 2;y; be a sequence of operators which fPng-
strongly converges to the operator B :B-B: Then the sequence jjBnPnjj is bounded.

Proof. Denote An ¼ BnPn: For all vAB jjAnv � PnBvjj-n-N0; so that the
sequence jjAnv � PnBvjj is bounded, jjAnv � PnBvjjpM: Therefore, jjAnvjjp
jjAnv � PnBvjj þ jjPnjjjjBvjjpM þ ajjAvjj: Lemma 5.2 implies statement of the
lemma. &

Lemma 5.4. Let unABn; n ¼ 1; 2;y; is a sequence of vectors from the class ½u
; uAB;
An :Bn-Bn; n ¼ 1; 2;y; is a uniformly bounded ðjjAnjjpMÞ sequence of operators

which fPng-strongly converges to the operator A :B-B: Then the sequence fAnung
is of the class ½Au
:

Proof. One has

jjAnun � PnAujjpjjAnjjjjun � Pnujj þ jjAnPnu � PnAujj-n-N0:

Proofs of Theorems 1 and 2 are identical to Ref. [11].

Proof of Theorem 3. Let vAB; z satisfy the condition aðlÞa0: Consider the function
wnðtÞ of the form

vnðtÞ ¼ VnðtÞðẐ�1
n Ĥn þ zÞ�1PnðĤ þ zÞ�1v � ðẐ�1

n Ĥn þ zÞ�1PnVðtÞðĤ þ zÞ�1v:

It obeys the following condition:

�d2vnðtÞ
dt2

¼ Ẑ�1
n ĤnwnðtÞ þ xnðtÞ; ð5:1Þ

where

xnðtÞ ¼ ðPnðĤ þ zÞ�1 � ðẐ�1
n Ĥn þ zÞ�1PnÞVðtÞv:

The initial condition for Eq. (5.1) has the form vnð0Þ ¼ 0; ’vnð0Þ ¼ 0: Corollary of
Lemma 4.10 implies that

vnðtÞ ¼
Z t

0

dt Wnðt � tÞxnðtÞ:
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Therefore,

jjwnðtÞjjpM

Z t

0

dtjjxnðtÞjj: ð5:2Þ

or each tjjxnðtÞjj tends to zero because of Lemma 3.15. Furthermore,

jjxnðtÞjjpðjjðẐ�1
n Ĥn þ zÞ�1Pnjj þ jjPnjjjjðĤ þ zÞ�1jjÞMjjvjj;

so that the sequence jjxnðtÞjj is uniformly bounded according to Lemma 5.3. The
Lesbegue theorem (see, for example, [12]) implies that the integral in the right-hand
side of formula (5.2) tends to zero. Therefore, jjvnðtÞjj-n-N0; so that

jjVnðtÞðẐ�1
n Ĥn þ zÞ�1PnF� ðẐ�1

n Ĥn þ zÞ�1PnVðtÞFjj-n-N0: ð5:3Þ

for F ¼ ðĤ þ zÞ�1v: Property (5.3) is satisfied for all FADðHÞ; on the dense subset of
B: Therefore, property (5.3) is satisfied for all FAB: Furthermore,

jjVnðtÞððH þ zÞ�1Pn � PnðH þ zÞ�1ÞFjj-n-N0;

jjðẐ�1
n Ĥn þ zÞ�1Pn � PnðH þ zÞ�1ÞVðtÞFjj-n-N0: ð5:4Þ

Eqs. (5.3) and (5.4) imply that

jjðVnðtÞPn � PnVðtÞÞ *Fjj-n-N0 ð5:5Þ

under condition *F ¼ ðĤ þ zÞ�1F: Relation (5.5) is satisfied on the dense subset DðĤÞ
of B: Therefore, it is satisfied on B: First statement of Theorem 3 is proved. Second
statement is proved analogously. &
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