
ON LINEARLY ACCESSIBLE UNIVALENT FUNCTIONS
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Introduction

A domain D in the plane will be said to be linearly accessible if the complement of
D can be written as a union of half-lines. Such a domain is clearly simply-connected
and therefore, if it is not the whole plane, is the image of the unit disc {\z\ < 1} under
an analytic univalent function/(z). We will call such functions linearly accessible.
The notion of linear accessibility is due to Biernacki [1], who studied the case when
the complements of the domains are unions of mutually disjoint half-lines (except
that the endpoint of one half-line can lie on another half-line). As is now well known
Lewandowski [5,6] showed that these latter domains coincide with the close-to-convex
domains of Kaplan [4]. Our problem, then, is to emulate the work of Lewandowski
and seek analytic conditions equivalent to the geometrical definition of a linearly
accessible function. Certain difficulties arise in this programme and the conditions
which we obtain are a good deal more complicated than the conditions for the best
known subclasses of schlicht functions. The main difference between these classes
and our class is that the former are essentially determined by knowledge of local
behaviour (in particular, tangential behaviour). Our conditions appear to indicate
the necessity for global knowledge to fix a function in the class (in particular, know-
ledge of the chordal behaviour). This entails having conditions involving several
variables and the univalence has to be carried as an explicit assumption throughout.
Despite these drawbacks we are still able to obtain information about linearly
accessible functions, and some of this is new even for starlike functions.

1. The first main problem which we must tackle is concerned with the question
as to whether / (z ) being linearly accessible in \z\ < 1 implies that / ( z ) is linearly
accessible in \z\ < r (0 < r < 1) (or, equivalently, f{rz) linearly accessible). Our
approach to this problem is via an approximation argument together with an analytical
formulation of the geometric condition to which the maximum principle can be
applied. We shall require a few simple geometrical lemmas.

(1.1) A domain D is linearly accessible if corresponding to each accessible boundary
point w there is a half-line I with endpoint w which does not meet D.

Proof. Consider first w e 3D, the boundary of D. Each open disc of centre w
and radius l/n (n =1 ,2 , . . . ) contains a point of D and therefore an accessible point wn

of 3D. By hypothesis we obtain a sequence of half-lines ln with endpoints wn such that
/„ c Dc, the complement of D, and there is clearly a limiting half-line / c Dc whose
endpoint is w. Secondly, we suppose that weDC—3D and let L be a line through w.
L is divided by w into half-lines Lx and L2 each with endpoint w, and we may assume
that neither Lt nor L2 lies in Dc. There are then points wt and w2 of 3D lying on L t

and L2 respectively such that the open segment (wlf w2) <=• DC-3D. By the first part
there are half-lines lt and l2 in Dc with respective endpoints ŵ  and w2. The plane is
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divided by lu l2 and (wu w2) into either two or three open components, and just one
of these contains the whole of D. Since for each such component there is at least one
half-line I with endpoint w which does not meet it, the result follows.

(1.2) If Dt and D2 are linearly accessible, then each component of Dtn D2 is
linearly accessible.

Proof. If D is a component of Dt n D2, and if w e dD, then w e Dy
c u D2

C c Dc

and the conclusion is immediate, applying (1.1).
n

(1.3) Let lt (1 < i < n) be n half-lines in the plane and let E = (J /,. Then each
component of Ec is linearly accessible. ' ~1

The proof is a simple induction argument applying (1.2).

The approximation result which we require can now be obtained by an application
of the Carathe'odory kernel theorem [3; p. 74].

(1.4) Let f(z) be linearly accessible in \z\ < 1. Then there is a sequence {/n(z)} of
functions linearly accessible in \z\ < 1 withfn(0) = / (0 ) (n = 1, 2, ...), which converges
locally uniformly in \z\ < 1 to f(z) and which has the property that each fn(z) has a
continuous extension to the unit circle \z\ = 1.

Proof. Let D be the image domain of f(z). The boundary of D is a non-void
closed set and therefore, since the plane is separable, we can find a sequence of points
{wn} such that the closure of the set E = {wlt w2, ...} is the boundary of D. From
each point wn we can find a half-line /„ not meeting D. Let Dn be that component of the
complement of Zt u l2 u ... u /„ which contains/(0), so that by (1.3) Dn is a linearly
accessible domain containing D. Let Dn' be that component of Dn n {\w—/(0)| < n)
which contains /(0). Again £>„' is linearly accessible by (1.2). We define/n(z) as the
function analytic and univalent in \z\ < 1 whose image is Dn', with /„(()) = / (0 ) ,
arg/n'(0) = arg/'(0). The density of the sequence {wn} on dD clearly implies that
{Dn'} converges to its kernel D, so that/n(z) converges locally uniformly in \z\ < 1 to
/(z) . Finally, since the boundary of each domain £)„' is a locally-connected continuum,
fn(z) extends continuously to |z| = 1.

We can now establish an analytic criterion for/(z) to be linearly accessible, which
is adequate for the qualitative information which we require.

(1.5) A function f (z) analytic and univalent in \z\ < 1 is linearly accessible if, and
only if,

f(zz2)-f{z)
(1.5.1) arg < In (\z\ < 1)

f(zZl)-f(z)

for any twopointszx andz2 satisfying \zY\ < 1 and \z2\ < 1.

(1.6) Remark. To be precise, the branch of the argument is chosen to be the
imaginary part of the logarithm, where

f(zz2)-f(z) JJ(zz2)-J(z) = r zj\zQ
gf(zzx)-f(z) J f(zQ-f(z) <"
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the integral being taken along any path in |£| < 1 joining zx to z2: This function is
well-defined and analytic in the three variables z, zx and z2.

Denoting by B the normalized class of linearly accessible functions/(z) satisfying
/(0) = 0,/'(0) = 1, we deduce

(1.7) THEOREM. The class B is a linear invariant, compact, normal family.
Furthermore f (z) eB if, and only if, for each r(0 < r < 1) r~1f(rz)eB.

(1.8) To prove the sufficiency of the condition (1.5.1) we choose an accessible
boundary point w of the image domain D off, and observe that the condition implies
that for any two points x and y satisfying \x\ < 1 and \y\ < 1, we have

arg
f(x)-w
f(y)-w

< In,

the inequality being strict by the maximum principle. It follows immediately that there
is a half-line with endpoint w which does not meet D. Applying (1.1) we deduce that
D is linearly accessible.

(1.9) For the necessity we may assume by (1.4) that/extends continuously to
\z\ — 1. Then for each pair of points zx and z2 in the open unit disc the function

/(zz2)-/(z)
g / ( zz i ) - / ( z )

is harmonic for \z\ < 1 and continuous for |z| ^ 1. If \z\ = 1, the inequality (1.5.1) is a
clear consequence of the existence of a half-line from w = /(z) which does not meet D.
Hence, by the maximum principle, (1.5.1) holds for \z\ < 1, and the proof is complete.

2. Let/(z) be linearly accessible and choose r (0 < r < 1). As we have seen
/(z) maps \z\ = r onto a simple closed curve Cr bounding a linearly accessible domain
Dr. Thus from each point on Cr we can proceed along a half-line to oo without meeting
Dr. It is natural to focus attention on the directions of these half-lines as \z\ = r is
traversed in the positive sense. In the close-to-convex case these directions may be
chosen to increase continuously as the circle is traversed, and we are led by straight-
forward arguments to the Kaplan condition [4]

where g(z) is convex, the function 0+arg g'(rew) giving the direction at w =f(reie)
of an appropriate half-line. In the general case we can formulate a similar condition
and it is not too difficult to see that in this case the function g(z) will have to be close,
to-convex, for we can obtain Kaplan's condition [4]

-u

for 02 > 0v It is not, however, apparent whether or not one can say much more
than this about g(z). Without some additional restriction on g the condition (2.1)
is extremely weak and we are compelled to approach the problem from rather a
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different angle. However, our failure to obtain really sharp results for our class (such
as the Bieberbach conjecture) seems to stem from the difficulties encountered at this
stage.

The basic result of this paper is an intrinsic characterisation of the linearly
accessible functions which comes essentially from a consideration of the behaviour
of the chords emanating from a fixed point on Cr.

(2.2) THEOREM. A function / ( z ) analytic and univalent in \z\ < 1 is linearly
accessible if, and only if, for each r (0 < r < 1) and eachzo(\zo\ < 1), we have

( 2 . 2 . D ^ ^ ^

whenever92 > 9X.

The remainder of this section will be devoted to the proof of this theorem. Suppose,
then, that/(z) is linearly accessible and choose r (0 < /• < 1). Letz0 = reiOa,zy = reWi,
z2 = reWz where 0O < 9X < 92 < 90 + 2n and define

(2.2.2) Co = {w =f(reie): 6, ^ d ^ 92]

(2.2.3) C , = {w =f(rei0) :92^9^ 90 + 2n]

(2.2.4) C2 = {w =f{rei0) :9O^9^ 9,}.

Writing w{ = f(Z{)(i = 0, 1, 2) we denote by a, the change of arg(w-u>,) as w
traverses C{:

(2.2.5) a, = A arg (w-w{) along C{ (i = 0, 1, 2).

(2.3) LEMMA. We have

(2.3.1) - 7 r < a o < 2 7 r .

Proof. We observe firstly that

I « i = I Aarg(w-w,)
f=0 (=0

= £ Aarg / ( Z )" / ( Z < ) + £ A arg (z-zi) = Sl + S2 say,
J = 0 Z—Zt i = 0

where A arg (z—zt) denotes the change in argument along f~l(Ct) on the circle
\z\ = r. It is clear that Sx = 0 and S2 = it, and therefore

(2.3.2) £*, = *•
i=0

Assume then that a0 ^ — n. By (1.5), for each wt we can find a half-line /,- with
endpoint wit which lies (apart from wt) in the exterior of Dr = f(\z\ < r). The assump-
tion a0 < — n implies that the line segment [wlt w2] meets /0. The existence of lx

means that Cx cannot enclose wlt and so ax is the angle at wx of the triangle T whose
vertices are vv0, wt and w2, and we have 0 ^ ax < n. Similarly, the existence of l2
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implies that <x2 is the angle at w2 of T. Since a0 is the exterior angle (measured
negatively) at w0 formed by T, we see that ao+a1 + a2 = — n contradicting (2.3.2).
That a0 < 2n is an immediate consequence of the existence of /0. This establishes the
lemma.

(2.4) We now choose a fixed branch of

and define

f(reie)- f(rei<p)
(2.4.1) *r(M) = / < M ) = i ( 0 + 0 ) + arg J \J9_^i<t> •

We will show that for every 0 we have

(2.4.2) h(e2,<l))-h(eu(f>)> -n
whenever 02 > 9V

In the case 0 < 0i < 62 < <j) + 2n the expression h(02, <f))—h(9u 0) is the change
of arg(/(re(9)-/(re'*)) for 0, < 0 < 02 and therefore, by Lemma 2.3,

(2.4.3) -n <h(d2)(t>)-h(0u(t>)<2n.

Tt is easily seen geometrically that (2.4.3) remains valid for 0 < 0, < 92 < <f> + 2n.
For the general case, suppose that

for some integers m and n, where 0t < 62. Clearly, for any integers j and k we have

(2.4.4) h(d + 2jn, <f> + 2kn) = h{6, 0) + ik +j) n.

There are two possibilities; either (i) (\> + 2nn < 0i + 2{n — m) n ^ 92 < 0 + 2(/z+ 1) rc,
or (ii) <j) + 2nn < 02 ^ 0! +2(n-m) 7t < 0 + 2(n+1) TT. In case (i) we apply the left
inequality in (2.4.3), replacing 0 by <j> + 2nn and 0X by 9X + 2(n — m) n, and we obtain,
with the help of (2.4.4),

h(92,<f))-h(91,<f))> -n + (n-m)n^ -it

since in this case « ^ m. In case (ii) we apply the right inequality in (2.4.3) replacing
0 by 0 + 2nn, 0t by 02 and 02 by 9X + 2(« — m) n, and we obtain using (2.4.4)

h(92,4>)-h(9u4>) > (n-m-\)n-n^ -n

since in this case n ^ m + 1. This establishes (2.4.2).

(2.5) We have thus proved the necessity of the condition (2.2.1) in the case
\zo\ = r. Since for fixed r, 9X and 02 the left member of (2.2.1) is harmonic in the
variable z0, (2.2.1) remains valid if |zo| < r. Let us then choose z0 arbitrarily
(\zo\ < 1) and also 9t and 02 with 02 > 9X, so that (2.2.1) holds for every r satisfying
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lzol < r < 1. In particular let r = |zo|, choose 4> real and arbitrary and set ( = re1'*.
We then have

Since the left member of this inequality is harmonic in £ and the inequality holds for
ICI = |zol> t n e inequality also holds for all ( satisfying |£| ^ |zo|. Thus (2.2.1) is
proved to hold in all cases.

(2.6) It remains to establish the sufficiency of the condition (2.2.1). If (2.2.1)
is satisfied, then it is clear that the condition (2.4.2) holds. For each real (f> we define

(2.6.1)

It is clear from (2.4.2) and the continuity and periodicity property of h(6,(f)) that
the infimum and supremum occurring in (2.6.1) are each attained finitely. Thus,
if 6 > (j>, then

h(9, $)-K{<t>) = h(9, 0 ) - inf h(d, <£)+*( inf h(0, 0)-sup h(B,

inf h(d, $) - sup h(0, $)) > - n/2
6^A 0£d I

by (2.4.2), the inequality being strict since the infimum and the supremum are
attained. Similarly, if 6 < $ we obtain

It follows that, if <f> < d < <f> + 2n, then

(2.6.2) K(4>)< h(6,0) + (n/2) < K(<f>) + 2n.

Now h(6,(l>) + n/2 is the chordal direction arg(/(re'"fl)-/(re'*)) as the circle
|z| = r is traversed once positively starting at z = re1*. Hence the inequality (2.6.2)
implies that the half-line with endpoint/(re'*) and direction K(<j)) fails to meet the
curve {/(re'°) :<f> <6 < 0 + 27r}. Since (j) is arbitrary and the circle \z\ = r (0 < r < 1)
is arbitrary, f(z) is linearly accessible by Theorem 1.7. This completes the proof of
Theorem 2.2.

3. In this section we construct a family of auxiliary functions which are " close "
to a given linearly accessible function/(z). This is to be contrasted with the close-to-
convex case where just one auxiliary function fixes/in the class.

(3.1) THEOREM. A function f(z) analytic and univalent in \z\ < 1 is linearly
accessible if, and only if, corresponding to each fixed point zo(|zo| < 1) there exists a
function g(z) = g(z; z0) starlike of order %, that is, one which satisfies

(3.1.1)
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for which we have the inequality

(3.1.2) R z-z0

Proof. The sufficiency is almost trivial if we observe that g(z) is starlike of order
^ if, and only if, g2(z)/z is starlike, i.e. if, and only if, for each r (0 < r < 1) we have

(3.1.3) arg g{reiB>)-}6>2 - a r g g(reiB^) +^9, > 0

whenever 02>6i. This together with (3.1.2) immediately yields (2.2.1).
Conversely, if /(z) is linearly accessible we construct g(z) by a method similar

to Kaplan's construction [4] of a convex function from his intrinsic characterisation
of the close-to-convex functions. We merely sketch the argument. Putting

\ Z—ZQ I

we have, by (2.2.1),

02 + arg F(reWl) - 0X - arg F(reie>) > — 2n

whenever 62 > Bv We set

tr(d) = inf (0'+arg F(reie'))+n.

Then tr(0) is increasing with 0, tr(B+2n) - tr(0) + 2n and

|/r(0)-argF(re'«)|<7r.

We can find a function Gr(z) starlike for \z\ < r with |G/(0)| = |F'(0)| such that

a0) = argGr(re'°).
We then have

|arg F(z) - arg Gr(z)| < n (\z\ < r).

Choosing a sequence of values of r tending to 1 we obtain a starlike function G{z) such
that

F(z)
arg G{z)

Putting g(z) = z(G(z)/z)* it follows that

Re

n (\z\ < 1).

z-z0 I z

where g(z) is starlike of order £. If equality occurs here, we have

z-z0
= c

by the maximum principle, where c # 0 depends only on z0 and is purely imaginary.
We then obtain (3.1.2) with cg(z) replacing g(z).
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(3.2) The condition (3.1.2) can be formulated in a way that makes its relation
to the close-to-convexity condition clearer. If we set

(3.2.1) </>(z)=zo£'(0) + (z-zo) —

then we have

( 3 . 2 . 2 ) gl)

z—z0

and

(3.2.3) R e ^ ^ O (|z| < 1).
Kz)<Kz)

If <f>(z) is convex then [7] the left-hand member of (3.2.2) is always starlike of order £
and therefore if <f>(z) were independent of z0 the relation (3.2.3) would imply that
/(z) was close-to-convex. On the other hand, if /(z) is close-to-convex, it is well
known that (3.2.3) holds for a convex 0 and therefore (3.1.2) holds. In any case
it is not difficult to show that the function 0(z) defined by (3.2.1) maps the unit
disc onto a domain starlike with respect to the point 0(zo), and in particular that
0(z) is univalent for \z\ < 1.

4. A more general class of functions than the close-to-convex functions can be
obtained by assuming that the function <f>(z) of (3.2.1) has the form

(4.1) 0(z) = c(zo)O)(z)

where <£(z) is convex and independent of z0 and c(z0) is a function of z0 alone. Again
g(z) is starlike of order £, so that/(z) satisfying (3.2.3) is linearly accessible. The
condition (3.2.3) can in this case be formulated as follows.

(4.2) — fM-fl'J < n

for any three points z0, zx and z2 in the open unit disc. This is precisely the condition
for/(z) to be a function " of convex type ", a notion which we have studied elsewhere
[8]. We showed there by other means that such a function was linearly accessible,
and we also showed that these functions are not necessarily close-to-convex. We
conjectured that every linearly accessible function was of convex type. However
this is not the case and we have the following result.

(4.3) THEOREM, / ( Z ) IS linearly accessible in\z\ < 1 if, and only if, for each function
(f>(z) convex univalent in \z\ < 1, we have

(4.3.1)
f{22)-f{z0) <2n

for any three points z0, zx and z2 in the open unit disc. Furthermore, there exists a
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linearly accessible function f(z) such that

393

(4.3.2) sup arg - arg = 2TT

for every convex univalent function 0(z).

Proof. Suppose first that/(z) is linearly accessible and 0(z) convex. Let zo,zi and
z2 be three points in \z\ < 1 and choose r < 1 so thatz0, zv and z2 lie in \z\ < r. Then,
if 0O < 0, < 02 < 0Q + 27I, we

arg (f)(rei6i)-(()(reieo)
- a r g

f(relOi)-f(reiO°)

arg
re«>i-rei9o

The expression in the first bracket lies between — n and 2 ;̂ and the expression in the
second bracket lies between 0 and n. Thus

f (rew>) -f (rew°) f (reWl) -f (rei0°)
<2n.

By periodicity this must hold for all real values of 0O, 6Y and 02 and therefore (4.3.1)
holds by the maximum principle.

(4.4) Conversely, assume that (4.3.1) holds for every convex function 4>(z).
In particular, for an arbitrary real a, (4.3.1) holds for the function

1 —ze'

Thus for 0 < r < 1 and 0O < 0, < 02 < 0o + 27r, we obtain with the notation of
section 2,

Now

Thus, given e > 0, we can find R (r < R < 1) so that

(4.4.2) -n-e
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Now (4.4.2) remains valid for the same e and the same R if we replace 0Oi 6t and 92

by 0o +P, Oi + P and 62 + P, where /? is arbitrary; for the left member of (4.4.1)
will remain the same by putting a = 0o + (} and a = $(0l+62) + f}. Thus we can
employ the maximum principle to replace R by r in (4.4.2); then, since e > 0 is
arbitrary, we deduce that

-n<hr(e2teo)-hr(elteo)<2n

for 60 i^Oi <02 ^60 + 2n, the strictness of the inequalities following from the
maximum principle. It follows tha t / (z ) is linearly accessible, as required.

(4.5) It remains to construct a linearly accessible function/(z) for which (4.3.2)
holds for every convex (f>. We define the image domain D of/ (z) as the upper half-plane
H = {Im w > 0} cut along a countable set {Xn} of line segments with one endpoint
on the real axis R and the other in H, Xn = [an, bn], say, where aneR, bneH. The
construction of each segment Xn will depend only on the previous Xk (1 < k < n — 1)
and will have the following properties.

(4.5.1) fl»>^i;

(4.5.2) the angles an which Xn makes with the positive axis are given by

n 2 n + 1 - l
a2n-l = 2^". a2/i = ( 1 2 )

(4.5.3) the Xn are disjoint and are chosen so that

2 " - l
l*2n-l—«2n-ll = * a n d a r g iP2n-b2n. x) = — ^ ~ ^ (» = 1, 2, ...).

The domain D is clearly linearly accessible. Suppose now that <f>(z) is a convex
function for which the left member of (4.3.2) has the value 2n(l-<5), where 5 > 0.
Roughly speaking, the idea is to show that there are too many large chordal swings
in a forward direction for this to be possible. To be precise, choose k0, an integer,
such that S > 2~k° and choose an integer p > 2/5. We can find real numbers

such that

The forward chordal swings we are concerned with are given by

and with the notation of section 2 we can find a value of r (0 < r < 1) such that

K(yk, uk)-hr(xk,uk) ^ 2n-n/2k-2

for l^k^ko + p. If tr (6U 92) is the corresponding function for 0(z), then since $ is
convex, fr(01} 62) increases in 6^ for fixed 02. It is also symmetric in the two variables.
We thus have for k0 < k < ko+p

tr(yk, uk)-tr(xk, uk) = (tr(yk, uk)-hr(yk, uk))-(tr(xk, uk)-/ir(xk, uk))

- -^ >nS.
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Hence
pnb

kQ+p

2

fco+P

k=fco+l

E (
ft = k0 +1

uk0 +p + l

This gives p < 2/5, a contradiction. This completes the proof.

5. We conclude by establishing a few miscellaneous results.

(5.1) Iff(z) is linearly accessible in \z\ < 1, then for each z0 (|zo| < 1) the function

J <*c
is close-to~convexin\z\ < 1.

This is an immediate consequence of (3.1.2).

(5.2) THEOREM. Iff(z) is linearly accessible in\z\ < 1, then

(5.2.1) - (^•TfeK « 1).

particular, for f eB we have

arg

arg

z/'(z)
/(*)

/ ( Z )

z
<

3n
< 2

" 2 (

(l«l < i);

1*1 < i).

(5.2.2)

(5.2.3)

Proof. We consider the principal branch of arg (1—/) for \t\ < 1 and observe
that it extends continuously to |/| = 1, t # 1, to give

(0 < 6 < 2n).

Writing z = re1* we have

arg{(l-ei f l

f(re{*)-f(Q
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and from Theorem 2.2 we see that this does not exceed 3TI/2 in absolute value for
0 < 0 < 2n. Thus

Re ( 1 -
1/3

for \t\ = 1, and therefore by the maximum principle this inequality holds strictly
for |/| < 1. Putting t = 0 we obtain (5.2.1). The remaining inequalities follow
immediately.

00

(5.3) THEOREM. Let f(z) = £ anz
n be linearly accessible in \z\ < 1 and for each

« = 1,2, ...let x

(5-3.1) />„(*)= ± «***
k = l

denote the nth partial sum. We then have

(5.3.2) 1 -

with equality only when z = 0. We deduce that

(5-3.3) \an\^{2n+\)\f(z)\ + (2n-

which gives

(5.3.5) \an\^4dn (n = 1 , 2 , . . . ) ,

where d is the distance from the origin of the complement of the image domain of f.

Proof. By Theorem 3.1, for each ( (|(| < 1) we can write

j / M z p = s(z)F(2) (|2|<1)i

00 00

where g(z) = Hbnz
n is starlike of order \ and F(z) = £ c n z n has positive real part.

1 0
This implies that

(5-3-6) \bn\ ̂  |&j|; \cn\ ̂  2|co|

for « = 1, 2, .... Now it is easily verified that

s //(0--P.-i(0\ .
~7T~ = M r r
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where we have set P 0 (0 = 0- We therefore obtain

f(Q-Pn(Q ,

397

and hence

rn+l

f(O-Pn(O
rn+l

/(0
c

We immediately deduce (5.3.2). If for some n and z ^ O w e have equality, then by
the maximum principle

1 - < 1)

where \t\ = 1. Simple manipulations then yield the relation

an+k — (2n+l) tak ( / c = l , 2 , ...)
and in particular

This contradicts the inequality |afc| ^ (2k—\)\ax\ for the case k = 2n+l. The
remaining relations are all easily seen.

(5.4) Remark. It is worth noting that for the Koebe function / (z) = z(l — z)~2

we obtain the sharp inequalities

1 -

and so the factor In +1 cannot be improved, and it appears that only a slight improve-
ment in (5.3.2) is needed to give the Bieberbach conjecture.

(5.5) Finally we state a conjecture whose validity would yield solutions to many
linear extremal problems for B and would give, in particular, the Bieberbach conjec-
ture for the class. Our conjecture is that the extreme points of the closed convex hull
of the family B are close-to-convex. From what is known about extreme points of
classes of schlicht functions it is natural to expect in our case for these to be linearly
accessible functions whose image domains have empty exteriors. Clearly such
functions are close-to-convex. Since the extreme points of the close-to-convex
functions are known [2], our conjecture is equivalent to asserting for each / e B the
existence of a positive measure /x of mass 1 on the torus T2 = {\x\ = 1} x {|y| = 1}
such that

z-±(x+y)z2

(5.5.1) - J
2 (\-xz?

dfi.

This representation would, for example, be valid if there were a function $(
Re (0(z)/(z0'(O))) > i such that Re (/'(z)/0'(z)) > 0.

satisfying
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