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Selberg zeta function of a graph and gave its determinant
expression. We present new proofs for three results of Bapat
and Sivasubramanian.
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1. Introduction

Graphs and digraphs treated here are finite. Let G be a connected graph. Then the
symmetric digraph DG corresponding to G is the digraph with vertex set V (G) and arc
set D(G) = {(u, v), (v, u) | uv ∈ E(G)}. For e = (u, v) ∈ D(G), set u = o(e) and v = t(e).
Furthermore, let e−1 = (v, u) be the inverse of e = (u, v). A path P of length n in G is
a sequence P = (e1, . . . , en) of n arcs such that ei ∈ D(G), t(ei) = o(ei+1) (1 � i � n−1).
If ei = (vi−1, vi) for i = 1, . . . , n, then we write P = (v0, v1, . . . , vn−1, vn). Set |P | = n,
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o(P ) = o(e1) and t(P ) = t(en). Also, P is called an (o(P ), t(P ))-path. A path P is called
simple if all vertices of P are distinct. For two vertices u, v ∈ V (G), let the distance
d(u, v) between u and v be the minimum length of simple (u, v)-paths in G.

Bapat and Sivasubramanian [1] presented formulas for the determinant and the inverse
of the product distance matrix of a tree.

Let T = (V (T ), E(T )) be a tree with n = |V (T )| vertices, and D(T ) = {e1, . . . , en−1,

e−1
1 , . . . , e−1

n−1}. Furthermore, we consider a weight function w : D(T ) −→ C such that
w(ej) = qēj and w(e−1

j ) = tēj for each j = 1, . . . , n − 1, where C is the set of complex
numbers, and ēj is the edge corresponding to ej and e−1

j for each j = 1, . . . , n − 1. For
each vertex u �= v of T , let Pu,v be the unique shortest simple path from u to v in T .
Then define

du,v =
∏

e∈Pu,v

w(e).

When u = v, define du,v = 1. The product distance matrix MT is defined as follows:

MT = (du,v)u,v∈V (T ).

Then we define an n× n matrix B = (bxy) as follows:

bxy =
{
w(x, y)/(1 − qxytxy) if (x, y) ∈ D(T ),
0 otherwise.

Furthermore, an n× n matrix D = (dxy) is the diagonal matrix defined by

dxx =
∑

o(e)=x

qētē
1 − qētē

.

The determinant and the inverse of MT were given by Bapat and Sivasubramanian [1].

Theorem 1 (Bapat and Sivasubramanian). Let T be a tree with n vertices, and
w : D(T ) −→ C a weight function. Then the following two results hold:

1. det(MT ) =
∏n−1

i=1 (1 − qēitēi).
2. M−1

T = In − B + D.

Next, we state the Ihara–Selberg zeta function of a graph. We say that a path P =
(e1, . . . , en) has a backtracking if e−1

i+1 = ei for some i (1 � i � n − 1). A (v, w)-path
is called a v-cycle (or v-closed path) if v = w. We introduce an equivalence relation
between cycles. Two cycles C1 = (e1, . . . , em) and C2 = (f1, . . . , fm) are called equivalent
if fj = ej+k for all j. The inverse cycle of C is in general not equivalent to C. Let [C] be
the equivalence class which contains a cycle C. Let Br be the cycle obtained by going
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r times around a cycle B. Such a cycle is called a multiple of B. A cycle C is reduced
if both C and C2 have no backtracking. Furthermore, a cycle C is prime if it is not a
multiple of a strictly smaller cycle. Note that each equivalence class of prime, reduced
cycles of a graph G corresponds to a unique conjugacy class of the fundamental group
π1(G, v) of G at a vertex v of G.

The Ihara(–Selberg) zeta function of G is defined by

Z(G, t) =
∏
[C]

(
1 − t|C|)−1

,

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Ihara [5] defined Ihara zeta functions of graphs, and showed that the reciprocals of

Ihara zeta functions of regular graphs are explicit polynomials. A zeta function of a
regular graph G associated with a unitary representation of the fundamental group of G
was developed by Sunada [7,8]. Hashimoto [4] generalized Ihara’s result on the zeta
function of a regular graph to an irregular graph, and showed that its reciprocal is again
a polynomial by a determinant containing the edge matrix. Bass [2] presented another
determinant expression for the Ihara zeta function of an irregular graph by using its
adjacency matrix.

Let G be a connected graph with n vertices v1, . . . , vn and m edges. Then the adjacency
matrix A(G) = (aij) is the square matrix such that aij = 1 if vi and vj are adjacent,
and aij = 0 otherwise. Let Dv = (dij) be the diagonal matrix with dii = degG vi.

Theorem 2 (Bass). Let G be a connected graph with n vertices and m edges. Then the
reciprocal of the Ihara zeta function of G is given by

Z(G, t)−1 =
(
1 − t2

)m−n det
(
In − tA(G) + t2(Dv − In)

)
.

Bass [2] proved by using a linear algebraic method.
Bapat and Sivasubramanian [1] defined a bivariate Ihara–Selberg zeta function of

a graph. Let G be a connected graph with m edges, and D(G) = {e1, . . . , em, em+1,

. . . , e2m} (em+i = e−1
i (1 � i � m)). Furthermore, we consider a weight function

w : D(G) −→ C such that w(ej) = q and w(e−1
j ) = t for each j = 1, . . . ,m. For a

cycle C, let a(C) and b(C) be the number of arcs with weight q and t, respectively. Note
that a(C) + b(C) = |C|. Then the bivariate Ihara–Selberg zeta function ηG(q, t) of G is
defined by

ηG(q, t) =
∏
[C]

(
1 − qa(C)tb(C))−1

,

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Bapat and Sivasubramanian [1] presented a determinant expression for the bivariate

Ihara–Selberg zeta function of a graph.
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Theorem 3 (Bapat and Sivasubramanian). Let G be a connected graph with n vertices
and m edges. Then

ηG(q, t)−1 = (1 − qt)m−n det(In − W + K),

where two matrices W = (Wu,v)u,v∈V (G) and K = (Ku,v)u,v∈V (G) are given by

Wu,v =
{
w(u, v) if (u, v) ∈ D(G),
0 otherwise,

Ku,v =
{

(deg u− 1)qt if u = v,

0 otherwise.

In Section 2, we present a new proof for the second formula of Theorem 1 by a
combinatorial method. In Section 3, we give a short review on edge zeta function of
a graph, and present a new proof for Theorem 3 by using Watanabe and Fukumizu’s
Theorem on the edge zeta function of a graph. In Section 4, we give a new proof for the
first formula of Theorem 1 by using Watanabe and Fukumizu’s Theorem, again.

2. A new proof for the second formula of Theorem 1

Let T be a tree with n vertices, and w : D(T ) −→ C a weight function of T . Then,
let

NT = −(MT − In).

Thus, we have

MT = In − NT .

Moreover, the (u, v)-entry of NT is given by

(NT )uv =
{
−du,v if u �= v,

0 otherwise.

Furthermore, we have

M−1
T = (In − NT )−1 = In + NT + N2

T + · · · .

Then we consider the (u, v)-entry of In + NT + N2
T + · · · for u, v ∈ V (T ).

Let u, v ∈ V (T ). Furthermore, let P be a (u, v)-path in T . For k ∈ N, we define a
k-simple path partition Φ = (P1, . . . , Pk) of P as follows: each Pi (1 � i � k) is a simple
subpath of P , and

P = P1 ∪ · · · ∪ Pk, Pi ∩ Pj = φ (j �= i− 1, i, i + 1) and

Pi ∩ Pi+1 =
{
o(Pi+1)

}
.
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In general, a k-simple path partition of P is called a simple path partition of P . The
weight w(Φ) of Φ is given by

w(Φ) = (−1)kw(P1) · · ·w(Pk).

Moreover, let Φ(P, k) be the set of k-simple path partitions of P , and let

f(P, k) =
∑

Φ∈Φ(P,k)

w(Φ).

Note that f(P, k) contributes to the (u, v)-entry of the matrix Nk
T . Furthermore, let

f(P ) =
|P |∑
k=1

f(P, k).

Then the (u, v)-entry of M−1
T = In + NT + N2

T + · · · is equal to
∑
P

f(P ), (∗)

where P runs over all (u, v)-paths in T .
Let u, v ∈ V (T ), d(u, v) = d � 2 and Pu,v be a unique simple (u, v)-path in T .

For k = 1, 2, . . . , d, let λ be the number of k-simple path partitions of Pu,v. Then we
have

f(Pu,v, k) = (−1)kλdu,v.

Furthermore, λ is the number of positive integer solutions (x1, . . . , xk) satisfying the
equation

x1 + x2 + · · · + xk = d, x1 � 1, . . . , xk � 1,

and so,

λ =
(
d− 1
k − 1

)
.

Thus, we have

f(Pu,v, k) = (−1)k
(
d− 1
k − 1

)
du,v.

Therefore, it follows that



6 I. Sato / Linear Algebra and its Applications 448 (2014) 1–10
f(Pu,v) = f(Pu,v, 1) + · · · + f(Pu,v, d)

= −du,v

{
1 + (−1)

(
d− 1

1

)
+ (−1)2

(
d− 1

2

)
+ · · · + (−1)d−1

(
d− 1
d− 1

)}
= −du,v · 0 = 0.

In the third equality, we use the binomial theorem. Hence, if d(u, v) � 2, then

f(Pu,v) = 0. (1)

Let P be a (u, v)-path of T . Suppose that P has a simple subpath Q of length � 2.
Then, by (1), we have f(Q) = 0, and so

f(P ) = cf(Q) = 0, (2)

where c is a constant. If u, v ∈ V (T ) and d(u, v) � 2, then each (u, v)-path P in T has
a simple subpath Q of length � 2. By (2), we have f(P ) = 0. Thus, if d(u, v) � 2, then
the (u, v)-entry of M−1

T = In + NT + N2
T + · · · is 0.

Now, we consider the (u, v)-entry of M−1
T for two adjacent vertices u, v ∈ V (T ). If a

(u, v)-path P has a simple subpath of length � 2, then, by (2), f(P ) = 0. Thus, assume
that P has no simple subpath of length � 2. Then P must be of form

P = (e1, e2, . . . , e2m−1) for e2j−1 = e (1 � j � m) and e2k = e−1 (1 � k � m− 1),

where e = (u, v). Therefore, it follows that

f(P ) = (−1)2m−1w(e)mw
(
e−1)m−1 = −w(e)mw

(
e−1)m−1

.

Note that f(P ) contributes to the (u, v)-entry of the matrix N2m−1
T . Hence, the

(u, v)-entry of M−1
T = In + NT + N2

T + · · · is equal to

−
∞∑

m=1
w(e)mw

(
e−1)m−1 = −w(e)

1 − w(e)w(e−1) = −w(e)
1 − qētē

.

Now, we consider the (u, u)-entry of M−1
T for each u ∈ V (T ). Let u ∈ V (T ) and P be

a (u, u)-path, i.e., a u-cycle in T . If f(P ) �= 0, then, by (2), P must be of form

P = (e1, e2, . . . , e2m), e2j−1 = e, e2j = e−1 (1 � j � m),

where e = (u, v) for some v ∈ V (T ). Thus, we have

f(P ) = (−1)2mw(e)mw
(
e−1)m = w(e)mw

(
e−1)m.
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Note that f(P ) contributes to the (u, u)-entry of the matrix N2m
T . Therefore, by (∗), it

follows that the (u, u)-entry of M−1
T = In + NT + N2

T + · · · is equal to

1 +
∑

o(e)=u

∞∑
m=1

w(e)mw
(
e−1)m = 1 +

∑
o(e)=u

w(e)w(e−1)
1 − w(e)w(e−1) = 1 +

∑
o(e)=u

qētē
1 − qētē

.

Hence,

M−1
T = In − B + D.

3. A new proof for Theorem 3

Let G be a connected graph with n vertices and m edges, and D(G) = {e1, . . . , em,

em+1, . . . , e2m} (em+i = e−1
i (1 � i � m)). A bivariate zeta function of Bapat and

Sivasubramanian [1] is a new generalization of the Ihara zeta function of G. The matrix
of the right side in Theorem 3 is the inverse matrix of MT for the weight w such that
w(ej) = q and w(e−1

j ) = t (1 � j � m). They proved Theorem 3 by using Theorem 1.1
and Proposition 8.1 of Foata and Zeilberger [3].

We consider the edge zeta function of G, i.e., the zeta function with respect to a general
weight treated in Theorem 1, and give another proof of Theorem 3 by using Watanabe
and Fukumizu’s Theorem which presents a determinant expression for the edge zeta
function by n× n matrices. A bivariate zeta function of Bapat and Sivasubramanian [1]
is the edge zeta function in the bivariate q, t case. Furthermore, it can be remarked that
the theorem of Watanabe and Fukumizu in the bivariate q, t case gives the same result
as Proposition 8.1 of Foata and Zeilberger [3].

Stark and Terras [6] defined the edge zeta function of a graph G with m edges.
We introduce 2m variables u1, . . . , u2m, and set u = (u1, . . . , u2m). Furthermore, set
g(C) = ui1 · · ·uik for each cycle C = (ei1 , . . . , eik) of G. Then the edge zeta function ζG(u)
of G is defined by

ζG(u) =
∏
[C]

(
1 − g(C)

)−1
,

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Theorem 4 (Stark and Terras). Let G be a connected graph with m edges. Then

ζG(u)−1 = det(I2m − TU) = det(I2m − UT),

where the matrix T = (Te,f )e,f∈D(G) is given by

Te,f =
{

1 if t(e) = o(f) and f �= e−1,
0 otherwise
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and

U = diag(u1, . . . , um, um+1, . . . , u2m).

Watanabe and Fukumizu [9] presented a determinant expression for the edge zeta
function of a graph G with n vertices by means of n × n matrices. Then we define an
n× n matrix Â = Â(G) = (axy) as follows:

axy =
{
u(x,y)/(1 − u(x,y)u(y,x)) if (x, y) ∈ D(G),
0 otherwise.

Furthermore, an n× n matrix D̂ = D̂(G) = (d̂xy) is the diagonal matrix defined by

d̂xx =
∑

o(e)=x

ueue−1

1 − ueue−1
.

Theorem 5 (Watanabe and Fukumizu). Let G be a graph G with m edges, and u =
(u1, . . . , u2m). Then

ζG(u)−1 = det(In + D̂ − Â)
m∏
i=1

(1 − ueiue−1
i

).

A new proof for Theorem 3:
Let G be a connected graph with n vertices and m edges, and D(G) = {e1, . . . , em,

em+1, . . . , e2m} (em+i = e−1
i (1 � i � m)). In Theorem 5, we set

uej = uj = q, ue−1
j

= um+j = t (1 � j � m).

Then two matrices Â = (axy) and D̂ = (d̂xy) are given as follows:

axy =
{
u(x,y)/(1 − qt) if (x, y) ∈ D(G),
0 otherwise,

d̂xx = qt deg x/(1 − qt), x ∈ V (G).

Thus, we have

Â = 1
1 − qt

W and D̂ = qt

1 − qt
Dv.

Again, by Theorem 5, we have

ηG(q, t)−1 = ζG(u)−1 = (1 − qt)m det
(
In − 1

1 − qt
W + qt

1 − qt
Dv

)
= (1 − qt)m−n det

(
(1 − qt)In − W + qtDv

)
= (1 − qt)m−n det(In − W + qtDv − qtIn)

= (1 − qt)m−n det(In − W + K).
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4. A new proof for the first formula of Theorem 1

Bapat and Sivasubramanian [1] proved the first formula of Theorem 1 by introduction
on the number of vertices. We present another proof of it by using the fact that the edge
zeta function of a tree is “1” (the empty product).

Let T be a tree with n vertices, and D(T ) = {e1, . . . , en−1, en, . . . , e2n−2} (en−1+i =
e−1
i (1 � i � n− 1)). In Theorem 5, we set

uej = uj = qēj , ue−1
j

= um+j = tēj (1 � j � n− 1).

Then we have

Â = B and D̂ = D.

By Theorem 5, we have

ζG(u)−1 = det(In − Â + D̂)
n−1∏
j=1

(1 − qēj tēj )

= det(In − B + D)
n−1∏
j=1

(1 − qēj tēj )

= det(MT )−1
n−1∏
j=1

(1 − qēj tēj ).

Since T is a tree, we have

ζG(u)−1 = 1.

Therefore, it follows that

det(MT ) =
n−1∏
j=1

(1 − qēj tēj ).
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