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1. Introduction

Graphs and digraphs treated here are finite. Let G be a connected graph. Then the
symmetric digraph D¢ corresponding to G is the digraph with vertex set V(G) and arc
set D(GQ) = {(u,v), (v,u) | uv € E(G)}. For e = (u,v) € D(G), set u = o(e) and v = t(e).
Furthermore, let e~! = (v,u) be the inverse of e = (u,v). A path P of length n in G is
asequence P = (eq,...,e,) of narcs such that e; € D(G), t(e;) = o(e;41) (1 <i < n—1).
If e; = (vi—1,v;) for i = 1,...,n, then we write P = (vo,v1,...,0n—1,05). Set |P| = n,
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o(P) = o(e1) and t(P) = t(e,). Also, P is called an (o(P),t(P))-path. A path P is called
simple if all vertices of P are distinct. For two vertices u,v € V(G), let the distance
d(u,v) between u and v be the minimum length of simple (u,v)-paths in G.

Bapat and Sivasubramanian [1] presented formulas for the determinant and the inverse

of the product distance matrix of a tree.
Let T = (V(T),E(T)) be a tree with n = |V(T)| vertices, and D(T) = {e1,...,en_1,

er’,...,e; 1 }. Furthermore, we consider a weight function w : D(T) — C such that
w(e;) = ge; and w(e;l) = tg, for each j = 1,...,mn — 1, where C is the set of complex
numbers, and e; is the edge corresponding to e; and e;l for each j =1,...,n — 1. For

each vertex u # v of T', let P, , be the unique shortest simple path from u to v in 7'
Then define

eePu,'v

When u = v, define d,,, = 1. The product distance matriz Mr is defined as follows:

Mr = (du,v)u,veV(T)'

Then we define an n x n matrix B = (b,,) as follows:

by, = {w(w,y)/(l = Qaytay) if (z,y) € D(T),
Y 0 otherwise.

Furthermore, an n x n matrix D = (d,, ) is the diagonal matrix defined by

gete
dpy = _Gele
- Z 1 — gete

o(e)=z
The determinant and the inverse of My were given by Bapat and Sivasubramanian [1].

Theorem 1 (Bapat and Sivasubramanian). Let T be a tree with n wvertices, and
w: D(T) — C a weight function. Then the following two results hold:

1. det(MT) = H,:lz_ll(l - qéitéi)'
9. M;l =1I,-B-+D.

Next, we state the Thara—Selberg zeta function of a graph. We say that a path P =
(e1,...,en) has a backtracking if ei;ll =¢; for some i (1 <i<n-—1). A (v,w)-path
is called a v-cycle (or v-closed path) if v = w. We introduce an equivalence relation
between cycles. Two cycles Cy = (eq,...,en) and Cy = (f1, ..., fm) are called equivalent
if f; = ej4 for all j. The inverse cycle of C' is in general not equivalent to C'. Let [C] be
the equivalence class which contains a cycle C. Let B" be the cycle obtained by going
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r times around a cycle B. Such a cycle is called a multiple of B. A cycle C is reduced
if both C' and C? have no backtracking. Furthermore, a cycle C is prime if it is not a
multiple of a strictly smaller cycle. Note that each equivalence class of prime, reduced
cycles of a graph G corresponds to a unique conjugacy class of the fundamental group
m1(G,v) of G at a vertex v of G.

The Ihara(—Selberg) zeta function of G is defined by

z(G.t) = [J(1— )7,

(€

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Thara [5] defined Thara zeta functions of graphs, and showed that the reciprocals of
Thara zeta functions of regular graphs are explicit polynomials. A zeta function of a
regular graph G associated with a unitary representation of the fundamental group of G
was developed by Sunada [7,8]. Hashimoto [4] generalized Thara’s result on the zeta
function of a regular graph to an irregular graph, and showed that its reciprocal is again
a polynomial by a determinant containing the edge matrix. Bass [2] presented another
determinant expression for the Ihara zeta function of an irregular graph by using its
adjacency matrix.

Let G be a connected graph with n vertices vy, ..., v, and m edges. Then the adjacency
matriz A(G) = (a;;) is the square matrix such that a;; = 1 if v; and v; are adjacent,
and a;; = 0 otherwise. Let D, = (d;;) be the diagonal matrix with d;; = degg v;.

Theorem 2 (Bass). Let G be a connected graph with n vertices and m edges. Then the
reciprocal of the Ihara zeta function of G is given by

Z(G,t)" = (1—3)" " det(I, — tA(G) + *(D, — 1,)).

Bass [2]| proved by using a linear algebraic method.

Bapat and Sivasubramanian [1] defined a bivariate Thara—Selberg zeta function of
a graph. Let G be a connected graph with m edges, and D(G) = {e1,...,€m,Em+1,
o yeam} (emyi = e; ' (1 < i < m)). Furthermore, we consider a weight function
w : D(G) — C such that w(e;) = ¢ and w(e;l) =t for each j = 1,...,m. For a
cycle C, let a(C) and b(C) be the number of arcs with weight ¢ and ¢, respectively. Note
that a(C) 4+ b(C) = |C|. Then the bivariate Thara—Selberg zeta function ng(g,t) of G is
defined by

ne(a.t) = [ (1 - @),
]

where [C] runs over all equivalence classes of prime, reduced cycles of G.
Bapat and Sivasubramanian [1] presented a determinant expression for the bivariate
Thara—Selberg zeta function of a graph.
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Theorem 3 (Bapat and Sivasubramanian). Let G be a connected graph with n vertices
and m edges. Then

ne(q,t) ™" = (1—qt)" " det(L, — W + K),
where two matrices W = (Wy o)y wev(a) and K = (Kyy)uvev(a) are given by

AV.Y4 — UJ(U,,U) Zf (U,U) € D(G)7 K _ (degu— 1)qt ZfU, =,
wy 0 otherwise, o 0 otherwise.

In Section 2, we present a new proof for the second formula of Theorem 1 by a
combinatorial method. In Section 3, we give a short review on edge zeta function of
a graph, and present a new proof for Theorem 3 by using Watanabe and Fukumizu’s
Theorem on the edge zeta function of a graph. In Section 4, we give a new proof for the
first formula of Theorem 1 by using Watanabe and Fukumizu’s Theorem, again.

2. A new proof for the second formula of Theorem 1

Let T be a tree with n vertices, and w : D(T) — C a weight function of T'. Then,
let

Nr = — (Mg —L,).
Thus, we have
My =1, — Np.
Moreover, the (u,v)-entry of N is given by

—dy ifu#v,
0 otherwise.

(NT)uv = {
Furthermore, we have
M;'=(1,-Ng) ' =1, +Np + N& + ...
Then we consider the (u,v)-entry of I,, + N + N2, + - - - for u,v € V(T).
Let u,v € V(T). Furthermore, let P be a (u,v)-path in T. For k € N, we define a
k-simple path partition ® = (Py,...,P) of P as follows: each P; (1 <4 < k) is a simple

subpath of P, and

P:P1U"'UP]€, szpqub (]#Z—l,’é,l-l—].) and
PiN Piy1 = {o(Pis1)}
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In general, a k-simple path partition of P is called a simple path partition of P. The
weight w(P) of ¢ is given by

w(®) = (=1)*w(Pr) - w(Py).

Moreover, let (P, k) be the set of k-simple path partitions of P, and let

fPE) = > w(®).

Hed(P,k)
Note that f(P,k) contributes to the (u,v)-entry of the matrix NX. Furthermore, let
|P|
F(P)=)_f(P.k).

k=1

Then the (u,v)-entry of M7' = I, + Np + N2 + - - - is equal to
> f(p), (%)
P

where P runs over all (u,v)-paths in T'.
Let u,v € V(T), d(u,v) = d > 2 and P,, be a unique simple (u,v)-path in 7.
For £ = 1,2,...,d, let A be the number of k-simple path partitions of P, ,. Then we

have
F(Pu k) = (=1)*Mdu -
Furthermore, A\ is the number of positive integer solutions (x1,...,zx) satisfying the
equation
r1+ o+ taxp=d, x12=21,...,0>1,
and so,

= (i00)

Thus, we have

F(Pyo k) = (_1)k<Z: D -

Therefore, it follows that
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f(Pu,v):f(Pu,v»1)+"'+f(Pu,vvd>

i () s en( ) e (7))

= —dy,-0=0.

In the third equality, we use the binomial theorem. Hence, if d(u,v) > 2, then

Let P be a (u,v)-path of T. Suppose that P has a simple subpath @ of length > 2.
Then, by (1), we have f(Q) = 0, and so

f(P)=cf(Q) =0, (2)

where ¢ is a constant. If u,v € V(T) and d(u,v) > 2, then each (u,v)-path P in T has
a simple subpath @ of length > 2. By (2), we have f(P) = 0. Thus, if d(u,v) > 2, then
the (u,v)-entry of My.! =1, + Ny + N2 + - is 0.

Now, we consider the (u,v)-entry of M;' for two adjacent vertices u,v € V(T). If a
(u,v)-path P has a simple subpath of length > 2, then, by (2), f(P) = 0. Thus, assume
that P has no simple subpath of length > 2. Then P must be of form

P = (e1,€e3,...,eam—1) foregj_1 =€ (1<j<m)and ey et (1<k<m—1),

where e = (u,v). Therefore, it follows that

-1

f(P)= (—1)2m71w(e)mw(671)m = —w(e)mw(efl)mfl.

Note that f(P) contributes to the (u,v)-entry of the matrix N7"~'. Hence, the
(u,v)-entry of M;' =T, + Ny + N2 + - .- is equal to

S wfgraey o —wd_ —u(d

= — —.
-1 1 w(e)w(e ) 1 — gzt

Now, we consider the (u, u)-entry of M;' for each u € V(T). Let u € V(T') and P be
a (u,u)-path, i.e., a u-cycle in T. If f(P) # 0, then, by (2), P must be of form

P:(el,eg,...,egm), 62]'_1:6, 62]‘:671 (1<]<m),
where e = (u,v) for some v € V(T'). Thus, we have

f(p)= (_1)2mw(€)mw(€_l)m = w(e)mw(e_l)m.



I. Sato / Linear Algebra and its Applications 448 (2014) 1-10 7

Note that f(P) contributes to the (u,u)-entry of the matrix N2™. Therefore, by (%), it
follows that the (u,u)-entry of M;' =T, + Np + N2 + - .- is equal to

L+ Y D we) w(e —1+ZI, fﬁﬁfel‘”zm

o(e)=um=1 o(e)=u o(e)=u

Hence,
3. A new proof for Theorem 3

Let G be a connected graph with n vertices and m edges, and D(G) = {ey,...,em,
€mt1y---r€am} (Emei = e;l (1 € i < m)). A bivariate zeta function of Bapat and
Sivasubramanian [1] is a new generalization of the Thara zeta function of G. The matrix
of the right side in Theorem 3 is the inverse matrix of My for the weight w such that
w(e;) = ¢ and w(ej_l) =t (1 < j <m). They proved Theorem 3 by using Theorem 1.1
and Proposition 8.1 of Foata and Zeilberger [3].

We consider the edge zeta function of G, i.e., the zeta function with respect to a general
weight treated in Theorem 1, and give another proof of Theorem 3 by using Watanabe
and Fukumizu’s Theorem which presents a determinant expression for the edge zeta
function by n x n matrices. A bivariate zeta function of Bapat and Sivasubramanian [1]
is the edge zeta function in the bivariate ¢, t case. Furthermore, it can be remarked that
the theorem of Watanabe and Fukumizu in the bivariate g, ¢ case gives the same result
as Proposition 8.1 of Foata and Zeilberger [3].

Stark and Terras [6] defined the edge zeta function of a graph G with m edges.
We introduce 2m variables wuq, ..., usm, and set u = (uq,...,usy,). Furthermore, set
g9(C) = uy, - - uy, foreach cycle C = (e, ..., e;, ) of G. Then the edge zeta function (c(u)
of G is defined by

Co(u) =JJ(1-g() ",

(€]
where [C] runs over all equivalence classes of prime, reduced cycles of G.
Theorem 4 (Stark and Terras). Let G be a connected graph with m edges. Then
Ca(u)™! = det(I,, — TU) = det(I,,, — UT),

where the matriz T = (Te f)c, rep(a) s given by

T, = {1 if tle) = o(f) and f # e 1,

0 otherwise
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and
U = diag(u1, - -« Uy U1y -« - U2m)-

Watanabe and Fukumizu [9] presented a determinant expression for the edge zeta
function of a graph G with n vertices by means of n x n matrices. Then we define an
n x n matrix A = A(G) = (agy) as follows:

A {%,y)/(l — Uy Uy) i (2,y) € D(G),
Ty .
0 otherwise.

Furthermore, an n x n matrix D = f)(G) = (cia:y) is the diagonal matrix defined by
a UeUe—1
dypo = ¢
Z 1-—- UeUe—1
o(e)=x

Theorem 5 (Watanabe and Fukumizu). Let G be a graph G with m edges, and u =
(u1,...,u2m). Then

Ca(u)™! =det(L, + D — A) J](1 — ue,u 1)
i=1

A new proof for Theorem 3:
Let G be a connected graph with n vertices and m edges, and D(G) = {e1,...,€m,
Emtls--s€am} (Emys = e;l (1 <4< m)). In Theorem 5, we set

Ue; = Uj =4, ue;lzuerj:t (I<j<m).

Then two matrices A = (azy) and D= (afzy) are given as follows:

_ Ju@y/(L—qt) if(z,y) €D@G), 5 _ .
Azy {0 otherwise, doz = qtdegz/(1—qt), =€ V(G).

Thus, we have

~ 1 .
A-—1 W and D=2 p,.
1—qt 1—qt

Again, by Theorem 5, we have

1 qt
= =1 —-g)™ I, - W D
nG((Lt) CG(U-) ( qt) det( n 1_ qt + 1— qt 'u)

= (1—qt)™ " det((1 — qt)I, — W + ¢tD,)
(1 —gt)" " det(I, — W+ ¢tD, — ¢qt1,,)
(1 —gt)™ ™ det(I, — W+ K).
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4. A new proof for the first formula of Theorem 1

Bapat and Sivasubramanian [1] proved the first formula of Theorem 1 by introduction
on the number of vertices. We present another proof of it by using the fact that the edge
zeta function of a tree is “1” (the empty product).

Let T be a tree with n vertices, and D(T) = {e1,...,epn—1,€n,...,2n_2} (En_14i =
e; ' (1 <i<n—1)). In Theorem 5, we set

Ue;, = Uj = Gz, , ue;1:um+j:téj (1<j<n-1).
Then we have

and D

5>
I
o
I
o

By Theorem 5, we have

Co(u)™! = det(T, — A+ D H — Qe,tz;)

n—1
= det(M7) " T (1 = ¢z, tz,)
j=1
Since T is a tree, we have
(a(u)™t =1
Therefore, it follows that
n—1
det(MT) = (1 — Qéjtéj)'
j=1
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