
Holomorphic Spaces
MSRI Publications
Volume 33, 1998

Tight Uniform Algebras

SCOTT SACCONE

Abstract. We discuss the relationships between a certain class of uniform

algebras, called tight uniform algebras, and various concepts from Banach

space theory, such as the Dunford–Pettis property, the Pe lczyński property,

and weak sequential completeness. We also mention some connections with

the ∂̄ -problem, interpolation, pointwise bounded approximation, and inner

functions on strictly pseudoconvex domains.

1. Introduction

B. Cole and T. W. Gamelin [1982] introduced a generalized notion of analyt-

icity, which they called tightness. If K is a compact space and X ⊂ C(K) is a

closed subspace (in the uniform norm) we say X is a tight subspace if the Hankel-

type operator Sg : X → C(K)/X defined by f 7→ fg +X is weakly compact for

every g ∈ C(K). Recall that a uniform algebra A on K is a closed, separating

subalgebra of C(K) which contains the constants. We say a uniform algebra A

on K is a tight uniform algebra if it is a tight subspace of C(K). The follow-

ing prototypical example from [Cole and Gamelin 1982] illustrates how tightness

could be thought of as an abstract version of the solvability of a ∂̄ -problem with

a mild gain in smoothness.

Let D be a strictly pseudoconvex domain in C
n with C2 boundary and let A =

A(D) be the uniform algebra on D of functions analytic in D. Let K∞

(0,1) be the

space of smooth ∂̄ -closed (0,1)-forms on D. Then there exists a compact linear

operator R : K∞

(0,1) → C(D) which solves the ∂̄ -problem in D; that is, ∂̄ ◦R = I.

The compactness follows from the fact that there exist Hölder estimates on the

solutions, hence the mild gain in smoothness. If g ∈ C∞(D) then we claim Sg
can be factored through R and is therefore compact. If we set Tg(f) = f∂̄g and

let q : C(D) → C(D)/A be the natural quotient map, the diagram

A
Sg - C(D)/A

K∞

(0,1)

Tg
? R - C(D)

6
q

135
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clearly commutes. It now follows from a density argument that Sg is compact

and therefore weakly compact for every g in C(D). Thus A(D) is a tight uniform

algebra.

Another example, also from [Cole and Gamelin 1982], is this. Let K be a

compact planar set and let A = R(K) be the uniform algebra of continuous

functions on K which are uniform limits of rational functions with poles off K.

A similar argument shows that the operators Sg on R(K) are compact for every

g ∈ C(K). If we consider the Vitushkin localization operator Tg : C(K) → C(K)

defined by

(Tgf)(ζ) = f(ζ)g(ζ) +
1

π

∫ ∫

K

1

z − ζ
∂̄g(z)f(z) dx dy(z)

where g ∈ C1
c (C), then Tg is a continuous linear operator under which R(K) is

invariant [Gamelin 1969]. If we define Vg : A→ C(K) by

(Vgf)(ζ) =
1

π

∫ ∫

K

1

z − ζ
∂̄g(z)f(z) dx dy(z),

it can be seen that Vg is compact. Since the diagram

A

C(K)
q

-
�

−
V g

C(K)/A

S
g

-

commutes (where q is the natural quotient map) it follows that Sg is compact

for every g ∈ C(K). In particular, R(K) is tight for every compact K. If we

note that the Cauchy transform solves the ∂̄ -problem in the plane (see [Gamelin

1969] or [Conway 1991]), then we see the method applied to R(K) is exactly the

same as the method applied to A(D).

In all our examples thus far we have found that the operators Sg are compact.

We say X ⊆ C(K) is a strongly tight subspace if Sg is compact for every g, and

similarly we define strongly tight uniform algebras.

Clearly any uniform algebra on a compact planar set K which is invariant

under Tg for all smooth g is strongly tight. We say A is a T -invariant uniform

algebra if A is a uniform algebra on a compact planar set K which contains

R(K) and is invariant under Tg. For example the algebra A(K) of functions in

C(K) which are analytic in the interior of K is T -invariant [Gamelin 1969] and

is therefore strongly tight.

One of the main results in [Cole and Gamelin 1982] is that if C = C(K) then

A is a tight uniform algebra if and only if A∗∗ +C is a (closed) subalgebra of C∗∗

(A∗∗ +C is always a closed subspace of C∗∗). This result allowed the authors to

extend Sarason’s theorem about the Hardy space H∞ on the unit circle to other
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domains. For example, let K be any compact planar set and let Q be the set of

non-peak points for R(K) (z is a peak point for A if there exists an f ∈ A with

f(z) = 1 and |f | < 1 elsewhere). Let λQ be Lebesgue measure restricted to Q

and define H∞(λQ) to be the weak-star closure of R(K) in L∞(λQ). Cole and

Gamelin proved that H∞(λQ) + C is a closed subalgebra of L∞(λQ).

Tight uniform algebras have some Banach space properties that are typical of

C(K) spaces. We will discuss these properties and their relation to tightness, and

also mention some applications of tightness to pointwise bounded approximation

theory and inner functions on domains in C
n.

2. The Dunford–Pettis Property

The following result is from [Dunford and Pettis 1940]. Recall that a contin-

uous linear operator T : X → Y is completely continuous if T takes weakly null

sequences in X to norm null sequences in Y .

Theorem 2.1. Let (Ω,Σ, µ) be any measure space. Then:

(a) If Y is a Banach space and T : L1(µ) → Y is a weakly compact operator

then T is completely continuous.

(b) If Y is a separable dual space then any bounded linear operator T : L1(µ) →

Y is completely continuous.

Later, Grothendieck [1953] studied Banach spaces X that exhibited property (a)

of the above theorem. Following Grothendieck, we say a Banach space X has

the Dunford–Pettis property if whenever Y is a Banach space and T : X → Y is

a weakly compact linear operator then T is completely continuous.

Part of Grothendieck’s work was to provide various characterizations of the

Dunford–Pettis property, some of which do not involve operators. It is not

difficult to deduce from these characterizations, which we shall present shortly,

that part (b) of Theorem 2.1 can be deduced from part (a). Furthermore, by

using the result on the factorization of weakly compact operators in [Davis et al.

1974], it can be shown that (a) can also be deduced from (b). These ideas can

also be found in [Diestel 1980].

Evidently L1(µ) has the Dunford–Pettis property for every µ. From this it can

be deduced that C(K) has the Dunford–Pettis property for every compact space

K. It has been shown that many uniform algebras, such as the disk algebra,

have the Dunford–Pettis property as well. It is easy to see that any infinite

dimensional reflexive space fails to have the Dunford–Pettis property. Also, the

Hardy space H1 on the unit circle fails to have the Dunford–Pettis property. To

see this, consider the Paley operator P : H1 → l2 defined by f 7→ (f̂(2k))∞k=1.

It is well-known that P is a bounded linear operator [Pe lczyński 1977] and is

therefore weakly compact since it maps into a Hilbert space. However, if fn(ζ) =

ζ2n

then ‖Pfn‖ = 1 while fn
w

−→ 0 in H1 by the Riemann–Lebesgue Lemma.

Therefore P is not completely continuous.
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We have mentioned that many uniform algebras have the Dunford–Pettis

property. However, this is not true for all uniform algebras. It is easy to see that

if X has the Dunford–Pettis property and Y is a complemented subspace of X

then Y has the Dunford–Pettis property as well. It is a theorem of Milne [1972]

(also, see [Wojtaszczyk 1991]) that every Banach space X is isomorphic to a

complemented subspace of a uniform algebra A. The space A can be taken to be

the uniform algebra on BX∗ (the unit ball in X∗ with the weak-star topology)

generated by X. If we let X = l2 then A fails to have the Dunford–Pettis

property. The author is not aware of any uniform algebra on a compact subset

of R
n which fails the to have the Dunford–Pettis property.

Grothendieck proved the following popular characterizations of the Dunford–

Pettis property. (See also [Diestel 1980].) Recall that a sequence {x} in a Banach

space X is a weak-Cauchy sequence if lim x∗(xn) exists for every x∗ ∈ X∗.

Proposition 2.2. The following statements are equivalent for any Banach space

X.

(a) X has the Dunford–Pettis property .

(b) If T : X → c0 is a weakly compact linear operator then T is completely

continuous.

(c) If xn
w

−→ 0 in X and x∗n
w

−→ 0 in X∗ then x∗n(xn)−→ 0.

(d) If xn
w

−→0 in X and {x∗n} is a weak Cauchy sequence in X∗ then x∗n(xn)−→0.

(e) If xn
w

−→ 0 in X and E ⊂ X∗ is relatively weakly compact then

lim
n→∞

sup
x∗∈E

∣

∣x∗(xn)
∣

∣ = 0.

It is well-known that, if K is a compact space, the dual of C(K) is isomorphic

to some L1-space. The following corollary is now an immediate consequence of

the proposition and Theorem 2.1.

Corollary 2.3. (a) If X is a Banach space and X∗ has the Dunford–Pettis

property then X has the Dunford–Pettis property .

(b) If K is a compact space then C(K) has the Dunford–Pettis property .

We mentioned above that the two conclusions of the theorem of Dunford and

Pettis are actually equivalent. This is not difficult to prove with the aid of the

following important result from [Davis et al. 1974].

Theorem 2.4. Let X and Y be Banach spaces and suppose T : X → Y is a

weakly compact linear operator . Then there exist bounded linear operators S1

and S2 and a reflexive Banach space Z such that the diagram

X
T - Y

Z

S 2

-

S
1 -
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commutes.

This theorem can be used to form yet another characterization of the Dunford–

Pettis property. We require the following result of Rosenthal and Dor [Diestel

1984]. We say a sequence {xn} in a Banach space X is a c0-sequence if {xn}

is equivalent to the unit vector basis of c0; that is, there exists an isomorphic

embedding T : c0 → X such that T (en) = xn. We define l1-sequences in the same

manner. The result is that if X is any Banach space and {xn} is a sequence in BX
which fails to have a weak-Cauchy subsequence then {xn} has an l1-subsequence.

Theorem 2.5. The following statements are equivalent for a Banach space X.

(a) X has the Dunford–Pettis property .

(b) If T : X → Z∗ is a bounded linear operator and Z contains no copy of l1

then T is completely continuous.

(c) Every bounded linear operator T : X → Y from X to a separable dual space

Y is completely continuous.

(d) Every bounded linear operator T : X → Y from X to a reflexive Banach

space is completely continuous.

Proof. (a) =⇒(b) Assume X has the Dunford–Pettis property and let T :

X → Z∗ be a bounded linear operator where Z contains no copy of l1. Let {xn}

be a weakly null sequence in X and assume {Txn} fails to tend to zero in norm,

so after passing to a subsequence we may assume ‖Txn‖ > ε for some ε > 0 and

for all n. Define z∗n = Txn and let zn ∈ BZ be such that z∗n(zn) > ε for every n.

Since Z contains no copy of l1, by the Rosenthal–Dor Theorem we may assume

{zn} is a weak-Cauchy sequence. Let x∗n = T ∗(zn). Then by Proposition 2.2 we

have x∗n(xn)−→ 0. However x∗n(xn) = z∗n(zn), a contradiction.

Now (b) =⇒(c) =⇒(d) follows easily and the rest follows from Theorem 2.4.

˜

Property (c) provides us with another way of showing the space H1 fails to have

the Dunford–Pettis property. This is because H1 is separable and is easily seen

to be a dual space by the F. and M. Riesz Theorem. If H1 had the Dunford–

Pettis property then by (c) the identity operator on H1 would be completely

continuous. This would say that weakly null sequences in H1 are norm null.

However the characters fn(ζ) = ζn are weakly null by the Riemann-Lebesgue

Lemma. Thus, H1 cannot have the Dunford–Pettis property.

We now present a well-known way of detecting when a bounded subset of the

dual of a Banach space fails to be weakly compact. We say that a sequence {xn}

in a Banach space X is a weakly unconditionally Cauchy series (w.u.C. series for

short) if
∑

|x∗(xn)| <∞ for every x∗ ∈ X. For example, ifX is a closed subspace

of C(K) then {fn} is a w.u.C. series if and only if
∑

|fn(z)| ≤ C for every

z ∈ K for some constant C. We say a continuous linear operator T : X → Y is

an unconditionally converging operator if T takes every weakly unconditionally

Cauchy series to a series which converges unconditionally in norm. It is a theorem
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of Bessaga and Pe lczyński [1958] that T is an unconditionally converging operator

if and only if there does not exist a copy of c0 in X on which T is an isomorphism.

Proposition 2.6. Let X be a Banach space and suppose E ⊂ X∗ is a bounded

subset . Then the following statements are equivalent :

(a) There exists a weakly unconditionally Cauchy series
∑

xn in X such that

lim
n→∞

sup
x∗∈E

∣

∣x∗(xn)
∣

∣ > 0. (2–1)

(b) There exists a c0-sequence {xn} in X such that (2–1) holds.

If (a) and (b) hold , E contains an l1-sequence. In particular , E fails to be

relatively weakly compact .

Proof. (a) =⇒(b) Assume {xn} is a w.u.C. series in X such that (2–1)

holds. Then there exists some ε > 0 and a sequence {x∗n} in E such that, after

passing to a subsequence of {xn} if necessary, we have
∣

∣x∗n(xn)
∣

∣ > ε for all n.

Define T : X → l∞ by T (x) = (x∗n(x))∞n=1, so ‖Txm‖ > ε for m ≥ 1. In

particular, the series
∑

Txn does not converge and so by definition T fails to be

an unconditionally converging operator. By the result of Bessaga and Pe lczyński

mentioned above there exists a subspace X0 ⊆ X such that X0 is isomorphic

to c0 and T |X0
is an isomorphic embedding. The unit vector basis in X0 is the

desired c0-sequence.

Part (a) follows trivially from (b) since the unit vector basis in c0 is a weakly

unconditionally Cauchy series.

To prove the final claim, assume E fails to contain an l1-sequence. By the

Rosenthal–Dor Theorem every sequence in E has a weak-Cauchy subsequence.

Let {xn} be a w.u.C. series in X. We now claim that lim
n→∞

supx∗∈E

∣

∣x∗(xn)
∣

∣ = 0.

To see this, define an operator T : X∗ → l1 by T (x∗) = (x∗(xn))∞n=1. It follows

from the Closed Graph Theorem that T is a bounded linear operator. Let

K = T (E). Recall that l1 is a Schur space, i.e., the weak and norm convergence

of sequences coincide. It follows from this that K has compact closure. In

particular, K is totally bounded and it now follows easily that given an ε > 0

there exists an integer N such that
∑∞

k=N

∣

∣x∗(xk)
∣

∣ ≤ ε for every x∗ ∈ E. This

proves the claim and finishes the proposition. ˜

An l1-sequence {x∗n} in a dual space X∗ cannot always be paired with a c0-

sequence in the way described above. For example, let Y = C[0, 1] and let

X = Y ∗. The Banach–Mazur Theorem states that every separable Banach space

is isometrically isomorphic to a closed subspace of C[0, 1] (we say that C[0, 1] is a

universal space; see [Wojtaszczyk 1991]). In particular X∗ contains a copy of l1,

but X contains no copy of c0. To see this, we recall the well-known fact that X

is isomorphic to L1(µ) for some abstract measure µ. We say a Banach space X

is weakly sequentially complete if every weak-Cauchy sequence converges weakly
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in X. Every L1-space is weakly sequentially complete [Dunford and Schwartz

1958]. However c0 is not, which implies X contains no copy of c0.

We will now mention some of the work of J. Bourgain, who showed that

certain spaces of continuous functions, such as the ball-algebras and the polydisk

algebras, have the Dunford–Pettis property. The following two theorems are

easily deduced from the results in [Bourgain 1984a], as was observed in [Cima

and Timoney 1987]. Recall the definition of the operators Sg from Section 1.

Theorem 2.7 [Bourgain 1984a]. Let X be a closed subspace of C(K) and assume

Sg is completely continuous for every g ∈ C(K). Then:

(a) If fn
w

−→ 0 in X and E ⊂ X∗ is a bounded subset with

lim
n→∞

sup
x∗∈E

∣

∣x∗(fn)
∣

∣ > 0,

there exists a c0-sequence {xn} in X failing to tend to zero uniformly on E.

(b) X has the Dunford–Pettis property .

The conclusion of (a) implies that E fails to be relatively weakly compact, by

our previous proposition. Therefore any weakly null sequence must tend to zero

uniformly on relatively weakly compact subsets of X∗. Hence, (a) implies (b) by

Proposition 2.2.

Theorem 2.8 [Bourgain 1984a]. Let X be a closed subspace of C(K) and assume

(Sg)
∗∗ is completely continuous for every g ∈ C(K). Then X∗ has the Dunford–

Pettis property .

We therefore have the following immediate consequence of Bourgain’s work.

Theorem 2.9. If X is a strongly tight subspace of C(K) then X and X∗ have

the Dunford–Pettis property .

In fact, it follows from the technique mentioned in Theorem 2.7 that X has a

property somewhat stronger than the Dunford–Pettis property. We will discuss

this more in the next section.

It now follows immediately from [Cole and Gamelin 1982] that if A is any

T -invariant uniform algebra (for example R(K) or A(K) for compact planar K)

then A and A∗ have the Dunford–Pettis property. Cima and Timoney, using

different methods, also proved these results by showing S∗∗
g is completely contin-

uous for every g ∈ C(K) for a T -invariant uniform algebra A. It also follows from

the work in [Cole and Gamelin 1982] that when A = A(D) for D strictly pseu-

doconvex with C2 boundary, then A and A∗ have the Dunford–Pettis property

(also, see [Li and Russo 1994]).

Incidentally, if X is a subspace of C(K) we define Xb to be those g ∈ C(K)

such that Sg is completely continuous. Cima and Timoney [1987] showed that

Xb is always an algebra, called the Bourgain algebra of X. The set of g for which

Sg is weakly compact is also an algebra, and likewise the set of g for which Sg is
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compact. The weakly compact case is done in [Cole and Gamelin 1982] (for the

case when X = A itself is an algebra, but the result holds for subspaces) and

the compact case is in [Saccone 1995a].

3. The Pe lczyński Property

The Pe lczyński property involves certain types of series in Banach spaces

and how the convergence of these series is affected by linear operators. We

begin with a result that follows from the work of Orlicz [1929]: if X and Y are

Banach spaces and T : X → Y is a weakly compact linear operator then T takes

weakly unconditionally Cauchy series to series that converge unconditionally in

norm. In other words, weakly compact operators are necessarily unconditionally

converging operators (defined above). For example, this implies any w.u.C. series

in L2[0, 1] must be a norm convergent series.

Now we turn to the paper [Pe lczyński 1962], entitled “Banach spaces on which

every unconditionally converging operator is weakly compact,” where the con-

verse of Orlicz’s result is studied. As the title suggests, we say a Banach space X

has the Pe lczyński property if whenever Y is a Banach space and T : X → Y is an

unconditionally converging operator then T is weakly compact. Trivially, every

reflexive space has the Pe lczyński property. It follows from the result of Bessaga

and Pe lczyński mentioned in the previous section that X has the Pe lczyński

property if and only if every non-weakly compact linear operator from X fixes a

copy of c0 (i.e., is an isomorphism on a copy of c0 in X).

Evidently, when studying the Pe lczyński property it is important to know

which Banach spaces contain copies of c0. If (Ω,Σ, µ) is any measure space then

L1(µ) is weakly sequentially complete and therefore does not contain a copy of

c0. Assume L1(µ) has the Pe lczyński property. Then the identity operator can-

not fix a copy of c0. Therefore, the identity operator is weakly compact and so

L1(µ) is reflexive. Furthermore, L1(µ) has the Dunford–Pettis property so the

identity operator is also completely continuous which implies weakly convergent

sequences in L1(µ) are norm convergent. It now follows that every bounded

sequence in L1(µ) has a weakly convergent subsequence (by the reflexivity) and

therefore a norm convergent subsequence. Therefore the unit ball in L1(µ) is

compact and L1(µ) is finite-dimensional. Hence, L1(µ) has the Pe lczyński prop-

erty if and only if it is reflexive which occurs if and only if it is finite-dimensional.

The Pe lczyński property does not share the duality property of the Dunford–

Pettis property. It was shown in Pe lczyński’s original paper [Pe lczyński 1962]

that if K is any compact space then C(K) has the Pe lczyński property. There-

fore, any infinite-dimensional L1-space fails to have the Pe lczyński property in

spite of the fact that its dual, which is isomorphic to C(K) for some K, has the

Pe lczyński property. To complete this picture, suppose X is any Banach space

such that X and X∗ have the Pe lczyński property. Then X∗ is weakly sequen-

tially complete and therefore contains no copy of c0. This implies the identity
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operator on X∗ is an unconditionally converging operator. Since X∗ has the

Pe lczyński property, the identity operator must be weakly compact and so X ∗

is reflexive. It now follows that X and X∗ have the Pe lczyński property if and

only if X is reflexive.

The following result presents some more or less well-known characterizations

of the Pe lczyński property.

Theorem 3.1. If X is a Banach space, the following conditions are equivalent .

(a) X has the Pe lczyński property .

(b) If T : X → Y is a continuous linear operator which fails to be weakly compact

then T is an isomorphism on some copy of c0 in X.

(c) If E ⊆ X∗ is a bounded subset and the weak closure of E fails to be weakly

compact then there exists a weakly unconditionally Cauchy series {xn} in X

which fails to tend to zero uniformly on E.

(d) (i) X∗ is weakly sequentially complete, and (ii) if {x∗n} is an l1-sequence in

X∗ then there exists a c0-sequence {xk} in X such that
∣

∣x∗nk
(xk)

∣

∣ > δ > 0 for

all k for some sequence {nk}.

The equivalence of (a) and (b) follows from the remarks above. That of (a) and

(c) is due to Pe lczyński. The equivalence of (a) and (d) is less well-known, but

can be deduced from (c) and the Rosenthal–Dor Theorem.

Note that (i) and (ii) of part (d) are distinct properties. Bourgain and Delbaen

[1980] have constructed a Banach space X such that X∗ is isomorphic to l1,

while X contains no copy of c0; thus (i) holds while (ii) fails. R. C. James [1950]

constructed a separable Banach space X such that X is nonreflexive and whose

natural embedding into X∗∗ has a codimension 1 image. In particular X∗∗ is

separable and therefore X∗ contains no copy of l1 and every sequence in X∗ has

a weak-Cauchy subsequence. Therefore X satisfies (ii) but fails (i).

As an illustration, consider the following theorem.

Theorem 3.2 [Mooney 1972]. Let m be Lebesgue measure on the unit circle

Γ and let H∞ ⊂ L∞(m) be the Hardy space of boundary values of bounded

analytic functions in the unit disk . Suppose {fn} is a bounded sequence in L1(m)

such that lim
n→∞

∫

fnh dm exists for every h ∈ H∞. Then there exists an element

f ∈ L1(m) such that

lim
n→∞

∫

fnh dm =

∫

fh dm

for every h ∈ H∞.

A proof of this can be found in [Garnett 1981]. It uses facts about peak sets

in the maximal ideal space of H∞. Mooney’s theorem can easily be related to

weak sequential completeness. Since H∞ = (L1/H1
0 )∗ where H1

0 is the subspace

of the Hardy space H1 consisting of functions vanishing at the origin, Mooney’s

theorem is equivalent to the weak sequential completeness of L1/H1
0 . Let A
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be the disk algebra on the unit circle. By the F. and M. Riesz Theorem we

have A⊥ =
{

f dm : f ∈ H1
0

}

. It follows that if L is the space of measures

singular to Lebesgue measure then A∗ is isometrically isomorphic to L1/H1
0⊕l1L.

Furthermore, L is isomorphic to L1(µ) for some abstract measure µ. Since

L1(µ) is weakly sequentially complete, Mooney’s theorem is equivalent to the

weak sequential completeness of A∗. The disk algebra is an example of a tight

uniform algebra and as we note below, all tight uniform algebras have weakly

sequentially complete duals.

The Pe lczyński property can be related to some ideas in interpolation. It is

not hard to see that a bounded sequence {xn} in a Banach space is an l1-sequence

if and only if it interpolates X∗; i.e., for every bounded sequence of scalers {βn}

there exists an x∗ in X∗ with x∗(xn) = βn. Consider the following result of P.

Beurling (which can be found in [Garnett 1981]). Let D be the open unit disk.

If {zn} is a sequence of points in D which interpolates H∞ then there exists a

sequence {hn} in H∞ such that
∑

|hn(z)| ≤ C for all z ∈ D and some constant

C and hn(zk) = δnk where δ is the Kronecker delta function. Note that if A is

the disk algebra then the point evaluations in A∗ corresponding to the sequence

{zn} form an l1-sequence, and it is not hard to see that the sequence {hn} is

a w.u.C. series in H∞. The Pe lczyński property for the disk algebra A offers a

similar, but different, result. Given an arbitrary l1-sequence {x∗n} in the dual of

A (not necessarily point evaluations), there exists a c0-sequence {xn} in A such

that |x∗nk
(xk)| > δ > 0 for some subsequence. This result applies to more general

sequences in the dual, but the conclusion is weaker than that of Beurling.

Delbaen [1977] and Kisliakov [1975] independently showed that the disk alge-

bra has the Pe lczyński property. Delbaen [1979] extended these results to R(K)

for special classes of planar sets K, as did Wojtaszczyk [1979] (although the

results of Delbaen were more extensive). It was shown in [Saccone 1995a] that

R(K) has the Pe lczyński property for every compact planar set K, and also that

every T-invariant uniform algebra on a compact planar set has the Pe lczyński

property. The T-invariant class includes R(K) as well as A(K) for all compact

planar sets K. Bourgain [1983] showed that the ball-algebras and the polydisk-

algebras have the Pe lczyński property. This result was extended in [Saccone

1995a] to A(D) for strictly pseudoconvex domains D in C
n.

It follows from Milne’s theorem, mentioned in the previous section, that there

exist uniform algebras which fail to have the Pe lczyński property. As in the case

of the Dunford–Pettis property, the author is not aware of any uniform algebras

on compact subsets of R
n which fail to have the Pe lczyński property.

We will now elaborate on work from [Bourgain 1983]. If X ⊆ C(K) we say

that m ∈ M(K) is a weakly rich measure for X if, whenever {fn} is a bounded

sequence in X such that
∫

|fn| d|m| −→ 0, the sequence fng+X converges weakly

to 0 for every g ∈ C(K). If fng +X converges to 0 in norm, we say that m is a

strongly rich measure. This latter concept was introduced by Bourgain [1984a],

who showed that X has the Pe lczyński property if there exists a strongly rich
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measure for X. For example, it is shown that the surface-area measure on

the unit sphere in C
n is a strongly rich measure for the ball-algebras. Note

that weakly rich measures on strongly tight spaces (where the operators Sg are

compact) are strongly rich.

As in the case of determining whether Sg is weakly compact, compact, or

completely continuous, to show m is a weakly or strongly rich measure it suf-

fices to check only a collection of those g which generate C(K) as a uniform

algebra. Given a measure m ∈ M(K) and a closed subspace X of C(K), define

(X,m)wr and (X,m)sr to be the sets of those g ∈ C(K) such that fng+X
w

−→ 0

and ‖fng + X‖−→ 0, respectively, whenever {fn} is a bounded sequence in X

such that
∫

|fn| d|m| −→ 0. Then (X,m)wr and (X,m)sr are closed subalgebras

of C(K) where (X,m)sr clearly contains Xb [Saccone 1995a]. Furthermore, it

follows from Bourgain’s result that if X possesses a strongly rich measure then

X is a tight subspace.

It was shown in [Saccone 1995a] that every strongly tight uniform algebra on

a compact metric space possesses a strongly rich measure and therefore has the

Pe lczyński property. (The proof actually works for strongly tight subspaces.) As

noted in the same paper, it now follows from results in [Cole and Gamelin 1982]

that R(K) has the Pe lczyński property for every compact planar set, and that

A(D) has the Pe lczyński property for every strictly pseudoconvex domain D in

C
n with C2 boundary. It was also noted in [Saccone 1995a] that by examining

Bourgain’s proof it can be seen that indeed every strongly tight uniform algebra

(or subspace) on an arbitrary compact space K has the Pe lczyński property.

The following more general result is proved in [Saccone 1997].

Theorem 3.3. Let K be a compact space and let X be a tight subspace of C(K).

Then X has the Pe lczyński property and X∗ is weakly sequentially complete.

If we only assume the operators Sg to be weakly compact instead of compact

(that is, if we assume X is tight instead of strongly tight) then Bourgain’s re-

sults no longer appear to be of use. The basic gliding hump construction used

to prove the theorem remains essentially the same, however some calculations

in Bourgain’s original proof which involved Hilbert space geometry had to be

replaced by more general arguments dealing with weak compactness in arbitrary

Banach spaces.

Corollary 3.4 [Saccone 1995a]. (a) If K is any compact planar set and A is

a T -invariant uniform algebra on K then A has the Pe lczyński property . In

particular R(K) and A(K) have the Pe lczyński property .

(b) If D is any strictly pseudoconvex domain in C
n with C2 boundary then A(D)

has the Pe lczyński property .

Although it is now known that a large of class of planar uniform algebras, includ-

ing R(K) and A(K), have such Banach space properties as the Dunford–Pettis

property and the Pe lczyński property, it is not known if any of these spaces,
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when they are not all of C(K), fail to be isomorphic (as Banach spaces) to the

disk algebra. For example, it is a theorem of Milutin that if K is any uncount-

able compact metric space then C(K) is isomorphic to C[0, 1]; see [Wojtaszczyk

1991]. On the other hand, the polydisk algebras were shown in [Henkin 1968]

not to be isomorphic to the ball-algebras in higher dimensions.

It is not currently known whether H∞(Bn) has the Dunford–Pettis property

or the Pe lczyński property when n > 1. Astoundingly enough, Bourgain [1984b]

has shown that if A is the disk algebra then all the duals of A have the Dunford–

Pettis property and all the even duals of A have the Pe lczyński property. The

proof involves the theory of ultraproducts of Banach spaces. It follows from this

that H∞ on the unit circle has the Pe lczyński property.

We say a Banach space X is a Grothendieck space if weak-star null sequences

in X∗ are weakly null. It is known that any dual space with the Pe lczyński

property is a Grothendieck space. It follows from Bourgain’s work that all the

even duals of the disk algebra are Grothendieck spaces, and in particular H∞ is a

Grothendieck space. It is not hard to see that this implies every continuous linear

operator from H∞ to a separable Banach space is weakly compact. In particular,

if A is the disk algebra, every continuous linear operator T : H∞ → A is weakly

compact, and furthermore T 2 must be compact since A has the Dunford–Pettis

property.

4. Band Theory

The theory of bands is useful for studying abstract properties of uniform al-

gebras. Good sources for band theory are [Cole and Gamelin 1982] and [Conway

1991].

Let K be a compact Hausdorff space. If B ⊆ M(K) we say B is a band of

measures if B is a closed subspace of M(K) and has the property that when

µ ∈ B, ν ∈ M(K), and ν � µ, then ν ∈ B. There is a Lebesgue decomposition

theorem for bands which says that if µ ∈M(K) then µ can be uniquely written as

µ = µa+µs where µa ∈ B and µs is singular to every element of B. If B is a band

the complementary band B′ of B is the collection of measures singular to every

measure in B. It follows from the Lebesgue decomposition thatM(K) = B⊕l1B′.

It is well known that if B is a band of measures then there exists some measure

space (Ω,Σ, µ) such that B is isomorphic to L1(µ).

If B is a band we define L∞(B) to be the space of uniformly bounded fam-

ilies of functions F = {Fν}ν∈B where Fν ∈ L∞(ν) and Fν = Fµ a.e. with

respect to dν whenever we have ν � µ. The norm in L∞(B) is given by ‖F‖ =

supν∈B ‖Fν‖L∞(ν). The pairing 〈ν, F 〉 =
∫

Fν dν for ν ∈ B and F ∈ L∞(B)

defines an isometric isomorphism between L∞(B) and B∗. If A is a uniform

algebra on K we define H∞(B) and H∞(µ) to be the weak-star closure of A in
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L∞(B) and L∞(µ) respectively. If µ ∈ B there is a natural “projection”

H∞(B)
τ

−→H∞(µ)

defined by F 7→ Fµ. Since H∞(m) is not identified with a subspace of H∞(B)

the map τ is not a projection in the usual sense. However, A is a closed subspace

of H∞(B) and we have τ(f) = f for every f ∈ A. The map τ is the adjoint of

the natural injection
L1(µ)

L1(µ) ∩A⊥

σ
−→

B

B ∩A⊥
(4–1)

defined by

f dµ+ L1(µ)/L1(µ) ∩ A⊥ 7→ f dµ+A⊥.

It is easy to see that the intersection of an arbitrary collection of bands is a

band. If C is an arbitrary subset of M(K) we define the band generated by C

to be the smallest band containing C. If µ ∈ M(K) then we identify the space

L1(µ) with the band of measures absolutely continuous with respect to µ. If K

is a metric space and C is a separable subset of M(K) then the band B generated

by C is separable and a band B will be separable if and only if there exists some

measure µ ∈M(K) such that B = L1(µ).

If A is a uniform algebra on K we define BA⊥ to be the band generated by

the measures in A⊥ and S to be the band complement of BA⊥ . It follows from

the Lebesgue decomposition that

A∗ ∼=
BA⊥

A⊥
⊕l1 S

and

A∗∗ ∼= H∞(BA⊥) ⊕l∞ L∞(S),

where the above isomorphisms are isometries.

We say a band B is a reducing band for A if for any measure ν ∈ A⊥ the

projection νa of ν into B by the Lebesgue decomposition is also in A⊥. We say

B is a minimal reducing band if B 6= {0} while {0} is the only reducing band

properly contained in B. It is easy to see that the intersection of two reducing

bands is a reducing band. Therefore, any two minimal reducing bands are either

identical or singular.

If A is a uniform algebra we denote the maximal ideal space of A by M
A

. The

following version of the abstract F. and M. Riesz Theorem can be found in [Cole

and Gamelin 1982].

Theorem 4.1. Let A be a uniform algebra and let ϕ ∈ M
A

. Then the band

generated by the representing measures for ϕ is a minimal reducing band .

We say a point z ∈ K is a peak point for A if there exists an element f ∈ A such

that f(z) = 1 and |f(w)| < 1 for w 6= z. We say z is a generalized peak point if

the only complex representing measure for z is the point mass at z. The Choquet

boundary of A is the collection of all generalized peak points.
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Now suppose B is a minimal reducing band such that B ⊆ S, the singular

band to BA⊥ . Then every subband of B is reducing. By the minimality of B it

can be seen that this implies B is all multiples of a point mass δz at some point

z ∈ K. Theorem 4.1 now implies that z is a generalized peak point. Conversely,

if z is a generalized peak point then it can be seen that the point mass δz at z lies

in S and therefore all multiples of δz form a minimal reducing band contained in

S. We call these reducing bands trivial minimal reducing bands and the others

nontrivial minimal reducing bands. Note that a minimal reducing band B is

trivial if and only if B ∩ A⊥ = 0. Furthermore, since the intersection of two

reducing bands is a reducing band, B is non-trivial if and only if B ⊆ BA⊥ .

Let ϕ ∈ M
A

and let Bϕ be the band generated by the representing measures

for ϕ. The Gleason part of ϕ is the collection of elements ψ ∈ M
A

such that ψ has

a representing measure in Bϕ. This is equivalent to saying that ‖ψ − ϕ‖A∗ < 2.

If ϕ and ψ lie in the same Gleason part then Bϕ = Bψ, otherwise Bϕ and Bψ

are singular. We say a Gleason part is a trivial Gleason part if it corresponds

to a point on the Choquet boundary and a non-trivial Gleason part otherwise.

Note that a trivial Gleason part is a one-point part, but that there may be some

one-point parts which are non-trivial. (This is not standard; usually a Gleason

part is called trivial if it simply consists of one point. We therefore have more

non-trivial Gleason parts than usual.)

Let z be a point in K and let ϕz ∈ A∗ be the point-evaluation at z. Let Bz

be the minimal reducing band generated by the representing measures for z. If

z lies off the Choquet boundary then Bz is non-trivial and so Bz ⊆ BA⊥ . There-

fore, every representing measure for z lies in BA⊥ and we have ϕz ∈ BA⊥/A⊥.

Similarly, if z lies on the Choquet boundary then ϕz ∈ S.

If we let {Bα} be the collection of all the non-trivial minimal reducing bands

then
⊕

l1 Bα is a reducing band contained in BA⊥ . However, this may not

be all of BA⊥ . For more information, see [Cole and Gamelin 1982]. The sum
⊕

l1 Bα/Bα ∩A
⊥ is now isometric to a closed subspace of A∗ which is contained

in BA⊥/A⊥.

5. Pointwise Bounded Approximation and the Space BA⊥/A⊥

Given a uniform algebra A, the space BA⊥/A⊥ can be a useful object to

study. It controls the uniform algebra in certain ways. For example, represent-

ing measures for points off the Choquet boundary lie in BA⊥ , and therefore their

corresponding point evaluations lie in BA⊥/A⊥. Furthermore, since the dual of

BA⊥/A⊥ is isometrically isomorphic to H∞(BA⊥), and A is identified isometri-

cally with a subspace of H∞(BA⊥), BA⊥/A⊥ is a norming set for A.

It is proved in [Saccone 1997] that when A is a tight uniform algebra on a

compact metric space K then BA⊥/A⊥ is separable. This separability property

gives us even further control over the uniform algebra A. For example, it follows

immediately that A has at most countably many non-trivial Gleason parts since
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if ϕ and ψ are elements of two different non-trivial Gleason parts, then they both

lie in BA⊥/A⊥ and ‖ϕ− ψ‖A∗ = 2. The countability of the non-trivial Gleason

parts can also be deduced from the fact that every such part corresponds to a

distinct nontrivial minimal reducing band. If BA⊥/A⊥ is separable then from

the comments at the end of the last section we see that there can be at most

countably many nontrivial minimal reducing bands.

This separability property can be used to construct special measures for the

uniform algebra. We illustrate with the following result of A.M. Davie. Let K be

a compact planar set and let A = R(K). Let Q be the set of non-peak points for

R(K) and let λQ be Lebesgue measure restricted to Q. Davie’s result [1972] (see

also [Conway 1991]) is that if f ∈ H∞(λQ) then there exists a sequence {fn} in

A with ‖fn‖ ≤ ‖f‖ that converges to f pointwise a.e. with respect to λQ. Such a

phenomenon is sometimes referred to as pointwise bounded approximation with

a reduction in norm. It is easy to see that there exists such a sequence converging

pointwise to f , the hard part is to find a sequence that is bounded. It can be

deduced from Davie’s result, without much difficulty, that every point in Q has

a representing measure absolutely continuous with respect to λQ.

We will now study Davie’s result by considering the space H∞(BA⊥). The

following proposition is not difficult to prove and can be found in [Saccone 1997].

Recall that a linear operator T : X → Y is a quotient map if the induced injection

S : X/Z → Y , where Z = kerT , is an isometry.

Proposition 5.1. Let A be a uniform algebra on a compact space K and let

m ∈ BA⊥ . The following statements are equivalent :

(a) For every f ∈ H∞(m) there exists a sequence {fn} in A with ‖fn‖ ≤ ‖f‖

such that fn−→ f pointwise a.e. with respect to m.

(b) The natural projection H∞(BA⊥)
τ

−→H∞(m) is a quotient map.

If A is a uniform algebra on a compact space K and m ∈ BA⊥ we say m is an

ordinary Davie measure if τ is a quotient map and m is a strong Davie measure

if τ is an isometry. In general, a linear operator between Banach spaces is an

isometric embedding if and only if its dual is a quotient map. Therefore m is

an ordinary Davie measure if and only if the map σ in (4–1) (where B should

be taken to be BA⊥) is an isometric embedding and is a strong Davie measure

if and only if σ is a surjective isometry. Since τ is an algebra homomorphism

between uniform algebras, τ will be an isometry as soon as it is an isomorphism.

Since σ is always injective it follows that m is a strong Davie measure if and

only if σ is onto. Since the evaluations for the points off the Choquet boundary

lie in BA⊥/A⊥, it follows easily that when m is a strong Davie measure then

every point off the Choquet boundary has a representing measure absolutely

continuous with respect to m.

Interestingly enough, the injectivity of τ is closely related to Bourgain’s rich

measures, as the next proposition shows. If m ∈M(K) let m = ma +ms be the

Lebesgue decomposition of m with respect to BA⊥ .
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Proposition 5.2 [Saccone 1995a]. Let A be a uniform algebra on a compact

space K and let m be an element of M(K). Then the following statements are

equivalent :

(a) The natural projection H∞(BA⊥)
τ

−→H∞(ma) is one-to-one.

(b) If {fn} is a bounded sequence in A such that
∫

|fn| d|m| −→ 0 then fn
w∗

−→ 0

in L∞(µ) for every µ ∈ A⊥.

(c) m is a weakly rich measure for A.

If these conditions hold , and K is metrizable, then BA⊥/A⊥ is separable.

We now have the following result from [Saccone 1997]. The fact that (b) holds

for tight uniform algebras appeared in [Cole and Gamelin 1982], although the

proof in [Saccone 1997] is more elementary.

Theorem 5.3. Let A be a tight uniform algebra on a compact metric space K.

Then the following hold .

(a) BA⊥/A⊥ is separable.

(b) A has at most countably many non-trivial Gleason parts and at most count-

ably many nontrivial minimal reducing bands.

(c) A has a strong Davie measure m. In particular , every non-peak point for A

has a representing measure absolutely continuous with respect to m.

Part (b) follows from a more general result which is proved in [Saccone 1997]. We

say a Banach space X is a separable distortion of an L1-space if X = M⊕l1L
1(µ)

where M is separable and µ is some measure. Since every band is isomorphic

to L1(µ) for some µ, A∗ will be isomorphic to a separable distortion of an L1-

space whenever BA⊥/A⊥ is separable. The next result from [Saccone 1997] now

generalizes the observation implicit in part (b).

Theorem 5.4. Let A be a uniform algebra and suppose A∗ is isomorphic to a

closed subspace of a separable distortion of an L1-space. Then A has at most

countably many non-trivial minimal reducing bands and therefore at most count-

ably many non-trivial Gleason parts.

6. Tightness Versus Strong Tightness

The following problem is open: does there exist a tight uniform algebra which

fails to be strongly tight? We need not ask the question of tight subspaces, for

if we let X = l2 then X is tight (in any C(K)-space). However, from Theorem

2.7 we know that all strongly tight subspaces have the Dunford–Pettis property,

a property which l2 clearly fails to have. Thus l2 is not strongly tight in any

C(K)-space.

This problem has been studied in [Carne et al. 1989; Jaramillo and Prieto

1993]. The first of these papers dealt with the following uniform algebra. Let X

be a Banach space and let A be the uniform algebra on BX∗ (with the weak-star
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topology) generated by X. Then A consists of analytic functions of possibly

infinitely many variables. Recall the result of Milne which states that X is

complemented in A (by a norm-one projection in fact). It now follows from

Theorem 3.3 that X must have the Pe lczyński property if A is to be tight.

However, a much stronger result is proved in [Carne et al. 1989], namely that if

A is tight then X is reflexive.

We now claim that A is strongly tight if and only if X is finite-dimensional

(this result was also proved in [Carne et al. 1989] by a more direct means). Since

the ball-algebras are known to be strongly tight (proved in [Cole and Gamelin

1982], for example), we need only prove necessity. If A is strongly tight then

A has the Dunford–Pettis property by Corollary 2.3 and therefore X has the

Dunford–Pettis property since it is complemented in A. However, by the result

in [Carne et al. 1989] , X must also be reflexive, from which it follows that X

must be finite-dimensional.

It was shown in [Carne et al. 1989] that if X = l2 then A fails to be tight.

However, it is still unknown if there exists an infinite-dimensional (reflexive)

space X such that A is tight. In [Jaramillo and Prieto 1993], some strong versions

of reflexivity were studied, but no example was produced.

Another example that is not well understood is the space A(D) when D is a

bounded domain in C
n. It is known that A(D) is strongly tight whenever the

∂̄ -problem can be solved in D with Hölder estimates on the solutions; however

no satisfactory necessary conditions are known, although the following is proved

in [Saccone 1995b].

Proposition 6.1. Suppose D is a bounded domain in C
n and let A = A(D).

Then the following statements are equivalent :

(a) A is strongly tight on D.

(b) A has the property that when {fn} is a bounded sequence in D that tends to

zero pointwise in D then we have ‖fng +A‖−→ 0 for every g ∈ C(D).

7. Inner Functions

Recall the Chang–Marshall Theorem, which states that if m is Lebesgue mea-

sure on the unit circle then every closed subalgebra of L∞(m) which contains

H∞ is generated by H∞ and a collection of conjugates of inner functions. The

following result shows how this phenomenon breaks down in higher dimensions.

Theorem 7.1. Let D be a strictly pseudoconvex domain with C2 boundary

in C
n. Suppose f is an inner function in H∞(∂D). If f(zn)−→ 0 for some

sequence {zn} tending to ∂D then f̄ /∈ H∞ + C. In particular , if n > 1 then

f̄ ∈ H∞ +C if and only if f is constant . If D is the unit disk then f̄ ∈ H∞ +C

if and only if f is a finite Blaschke product .
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The proof is indirect and uses such tools as the Pe lczyński property and tight

uniform algebras. Given a function g ∈ L∞(m), we define

Sg,H∞ : H∞(m) −→ L∞(m)/H∞(m)

by f 7→ fg+H∞(m). It is shown that when g ∈ H∞ +C then Sg,H∞ is compact

and if f is an inner function that tends to zero towards the boundary then Sf̄ ,H∞

is an isomorphism on a copy of c0 in H∞.
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