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RADII OF STARLIKENESS AND CONVEXITY OF ANALYTIC FUNCTIONS
SATISFYING CERTAIN COEFFICIENT INEQUALITIES

V. RAVICHANDRAN

ABSTRACT. For 0≤α < 1, the sharp radii of starlikeness and convexity of orderα for functions
of the form f (z) = z+a2z2+a3z3+ · · · whose Taylor coefficientsan satisfy the conditions|a2|=
2b, 0≤ b≤ 1, and|an| ≤ n, M or M/n (M > 0) for n≥ 3 are obtained. Also a class of functions
related to Carathéodory functions is considered.

1. INTRODUCTION

Let A be the class of analytic functionsf in the unit diskD= {z∈C : |z|< 1} with Taylor
series expansionf (z)= z+∑∞

2 anzn. For functions belonging to the subclassS of A consisting
of univalent functions, it is well-known that|an| ≤ n for n≥ 2. A function f whose coefficients
satisfy the inequality|an| ≤ n for n ≥ 2 are analytic inD (by the usual comparison test) and
hence they are members ofA . However, they need not be univalent. For example, the function

f (z) = z−2z2−3z3−4z4−·· ·= 2z− z
(1−z)2

satisfies the inequality|an| ≤ n but its derivative vanishes insideD and therefore the functionf
is not univalent inD. In 1970, Gavrilov [5] showed that the radius of univalence of functions
satisfying the inequality|an| ≤ n is the real root of the equation 2(1−r)3−(1+r) = 0 while, for
the functions whose coefficients satisfy|an| ≤ M, the radius of univalence is 1−

√

M/(1+M).
Later, in 1982, Yamashita showed that the radius of univalence obtained by Gavrilov is also the
same as the radius of starlikeness of the corresponding functions. He also found lower bounds
for the radii of convexity for these functions. Recently, in2006, Grahamet al. [7, Theorem 4.2
and Lemma 5.6] considered the corresponding radius problems for holomorphic mappings on
the unit ball inCn. Kalaj, Ponnusamy, and Vuorinen [4] have investigated related problems for
harmonic functions. In this paper, several related radius problems for the following classes of
functions will be investigated.

For 0≤ α < 1, let S ∗(α) andC (α) be subclasses ofS consisting of starlike functions
of orderα and convex functions of orderα, respectively defined analytically by the following
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2 V. RAVICHANDRAN

equalities:

S
∗(α) :=

{

f ∈ S : Re

(

z f′(z)
f (z)

)

> α
}

, and C (α) :=

{

f ∈ S : Re

(

1+
z f′′(z)
f ′(z)

)

> α
}

.

The classesS ∗ := S ∗(0) andC := C (0) are the familiar classes of starlike and convex func-
tions respectively. Closely related are the following classes of functions:

S
∗

α :=

{

f ∈ S :

∣

∣

∣

∣

z f′(z)
f (z)

−1

∣

∣

∣

∣

< 1−α
}

, and Cα :=

{

f ∈ S :

∣

∣

∣

∣

z f′′(z)
f ′(z)

∣

∣

∣

∣

< 1−α
}

.

Note thatS ∗
α ⊆ S ∗(α) andCα ⊆ C (α).

A function f ∈ S is uniformly convexif f maps every circular arcγ contained inD with
centerζ ∈ D onto a convex arc. The class of all uniformly convex functions, introduced by
Goodman [6], is denoted byU C V . Rønning [9, Theorem 1, p. 190], and Ma and Minda [8,
Theorem 2, p. 162], independently showed thatf ∈ S is uniformly convex if and only if

Re

(

1+
z f′′(z)
f ′(z)

)

>

∣

∣

∣

∣

z f′′(z)
f ′(z)

∣

∣

∣

∣

(z∈ D).

Rønning [9] also considered the classSP of parabolic starlike functions consisting of functions
f ∈ A satisfying

Re

(

z f′(z)
f (z)

)

>

∣

∣

∣

∣

z f′(z)
f (z)

−1

∣

∣

∣

∣

(z∈ D).

In other words, the classSP consists of functionf = zF′ whereF ∈U C V . For a recent survey
on uniformly convex functions, see [2].

For a fixedb with 0≤ b≤ 1, letAb denote the class of all analytic functionsf of the form

f (z) = z+a2z2+a3z3+a4z4+ · · · (|a2|= 2b, z∈ D).

The second coefficient of univalent functions determines important properties such as growth
and distortion estimates. For recent investigation of functions with fixed second coefficients,
see [1, 3]. For 0≤ α < 1, the sharp radii of starlikeness and convexity of orderα are obtained
for functions f ∈ Ab satisfying the condition|an| ≤ n or |an| ≤ M (M > 0) for n≥ 3. Special
case (α = 0) of the results shows that the lower bounds for the radii of convexity obtained
by Yamashita [10] are indeed sharp. The coefficient inequalities are natural in the sense that
the inequality|an| ≤ n is satisfied by univalent functions and while the inequality|an| ≤ M
is satisfied by functions which are bounded byM. For a functionp(z) = 1+ c1z+ c2z2+ · · ·
with positive real part, it is well-known that|cn| ≤ 2 and so if f ∈ A and Ref ′(z) > 0, then
|an| ≤ 2/n. In view of this, the determination of the radius of starlikeness and the radius of
convexity of functions whose coefficients satisfy the inequality |an| ≤ M/n is also investigated.
A corresponding radius problem for certain functionp(z)= 1+c1z+c2z2+ · · · with coefficients
satisfying the conditions|c1|= 2b, 0≤ b≤ 1 and|cn| ≤ 2M (M > 0) is also investigated.
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2. RADII OF STARLIKENESS OF ORDERα AND PARABOLIC STARLIKENESS

In this section, the sharpS ∗(α)-radius and the sharpS ∗
α -radius for 0≤ α < 1 as well as

the sharpSP-radius are obtained for functionsf ∈Ab satisfying one of the conditions|an| ≤ n,
|an| ≤ M or |an| ≤ M/n (M > 0) for n≥ 3.

Theorem 2.1. Let f ∈ Ab and |an| ≤ n for n≥ 3. Then f satisfies the inequality
∣

∣

∣

∣

z f′(z)
f (z)

−1

∣

∣

∣

∣

≤ 1−α (|z| ≤ r0) (1)

where r0 = r0(α) is the real root in(0,1) of the equation

1−α +(1+α)r = 2
(

1−α +(2−α)(1−b)r
)

(1− r)3. (2)

The number r0(α) is also the radius of starlikeness of orderα. The number r0(1/2) is the
radius of parabolic starlikeness of the given functions. The results are all sharp.

Proof. If
∞

∑
n=2

(n−α)|an|rn−1
0 ≤ 1−α, (3)

then the functionf (z) = z+∑∞
n=2anzn satisfies, on|z|= r0,

|z f′(z)− f (z)|− (1−α)| f (z)| ≤
∞

∑
n=2

(n−1)|an||z|n− (1−α)(|z|−
∞

∑
n=2

|an| |z|n)

=−(1−α)|z|+
∞

∑
n=2

(n−α)|an||z|n

≤ r0

(

−(1−α)+
∞

∑
n=2

(n−α)|an|rn−1
0

)

≤ 0.

This shows that the condition (3) is a sufficient condition for the inequality (1) to hold. Using
|a2| = 2b for the function f ∈ Ab, and the inequality|an| ≤ n for n ≥ 3, it follows that, for
|z| ≤ r0,

∞

∑
n=2

(n−α)|an| |z|n−1 ≤
∞

∑
n=2

(n−α)|an|rn−1
0

≤ 2(2−α)br0+
∞

∑
n=3

n2rn−1
0 −α

∞

∑
n=3

nrn−1
0

= 2(2−α)br0+
1+ r0

(1− r0)3 −1−4r0−α
(

1
(1− r0)2 −1−2r0

)

= α −1−2(2−α)(1−b)r0+
(1+ r0)−α(1− r0)

(1− r0)3

= 1−α
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providedr0 is the root of the Equation (2) in the hypothesis of the theorem. The Equation (2)
has clearly a root in (0,1).

The functionf0 given by

f0(z) = 2z+2(1−b)z2− z
(1−z)2 = z−2bz2−3z3−4z4−·· · (4)

satisfies the hypothesis of the theorem and, for this function, we have

z f′0(z)
f0(z)

−1=
2(1−b)z(1−z)3−2z

(2+2(1−b)z)(1−z)3− (1−z)
.

Forz= r0, we have
∣

∣

∣

∣

z f′0(z)
f0(z)

−1

∣

∣

∣

∣

=
2r0−2(1−b)r0(1− r0)

3

(2+2(1−b)r0)(1− r0)3− (1− r0)
= 1−α. (5)

This shows that the radiusr0 of functions to satisfy (1) is sharp. The numerator of the rational
function in the middle of (5) is positive as 0≤ 1−b≤ 1 and 0≤ (1− r0)< 1 which shows that
(1−b)(1− r0)

3 < 1. The denominator expression is also positive as(2+2(1−b)r0)(1− r0)
2 ≥

2(1− r0)
2 > 1. The inequality 2(1− r0)

2 > 1 is in fact equivalent tor0 < 1−1/
√

2= 0.292893.
This inequality holds asr0 = r0(α)≤ r0(0) = 0.1648776.

Since the functions satisfying (1) are starlike of orderα, the radius of starlikeness is at least
r0(α). However, this radius is also sharp for the same functionf0 as

Re

(

z f′0(z)
f0(z)

)

= α (z= r0). (6)

The inequality
∣

∣

∣

∣

z f′(z)
f (z)

−1

∣

∣

∣

∣

≤ 1
2

is sufficient (see [2]) for the function to be parabolic starlike and hence the radius of parabolic
starlikeness is at leastr0(1/2). The Equations (5) and (6) withα = 1/2 shows that

∣

∣

∣

∣

z f′0(z)
f0(z)

−1

∣

∣

∣

∣

=
1
2
= Re

(

z f′0(z)
f0(z)

)

(z= r0), (7)

and hence the radius of parabolic starlikeness is sharp. �

Corollary 2.2. The radius of starlikeness of orderα of functions whose coefficients satisfy
|an| ≤ n for all n≥ 2 is the real root in(0,1) of the equation

2(1−α)(1− r)3 = 1−α +(1+α)r.

In particular, the radius of starlikeness is given by

r0(0) = 1+
1

62/3

(

(
√

330−18)1/3− (
√

330+18)1/3
)

≈ 0.164878.

The radius of starlikeness of order 1/2 is the same as the radius of parabolic starlikeness and it
is given by

r0(1/2) = 1+
1√
2

(

(

3−2
√

2
)1/3

−
(

3+2
√

2
)1/3

)

≈ 0.120385.
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The results are sharp.

Corollary 2.3. The radius of starlikeness of orderα of functions whose coefficients satisfy
a2 = 0 and|an| ≤ n for all n≥ 3 is the real root in(0,1) of the equation

2(1−α +(2−α)r)(1− r)3 = 1−α +(1+α)r.

In particular, the radius of starlikeness is the root r0 ≈ 0.253571of the equation

2(1+2r)(1− r)3 = 1+ r.

The radius of starlikeness of order 1/2 which is the same as the radius of parabolic starlikeness
is r0 = 1− 3

√

1/2≈ 0.206299. The results are sharp.

Remark 2.4. It is clear from Corollaries 2.2 and 2.3 that the various radii are improved if the
second coefficient of the function vanishes.

Theorem 2.5. Let f ∈ Ab and |an| ≤ M for n ≥ 3. Then f satisfies the condition(1) where
r0 = r0(α) is the real root in(0,1) of the equation

M(1−α +αr) =
(

(1+M)(1−α)− (2−α)(2b−M)r
)

(1− r)2

The number r0(α) is also the radius of starlikeness of orderα. The number r0(1/2) is the
radius of parabolic starlikeness of the given functions. The results are all sharp.

Proof. Using|a2|= 2b for the functionf ∈ Ab, and the inequality|an| ≤ M for n≥ 3, a calcu-
lation shows that, for|z| ≤ r0,

∞

∑
n=2

(n−α)|an| |z|n−1 ≤
∞

∑
n=2

(n−α)|an|rn−1
0

≤ 2(2−α)br0+M

(

∞

∑
n=3

nrn−1
0 −α

∞

∑
n=3

rn−1
0

)

= 2(2−α)br0+M

(

1
(1− r0)2 −1−2r0−α

(

1
1− r0

−1− r0

))

= (2−α)(2b−M)r0−M(1−α)+M
1−α +αr0

(1− r0)2

= 1−α

wherer0 is as stated in the hypothesis of the theorem. Thus, the function f satisfies the condition
(1). The other two results follow easily.

The results are sharp for the functionf0 given by

f0(z) = z−2bz2−M(z3+z4+ · · ·) = z−2bz2− Mz3

1−z
. (8)

A calculation shows that

z f′0(z)
f0(z)

−1=−
2bz+ 2Mz2

1−z + Mz3

(1−z)2

1−2bz− Mz2

1−z
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At the pointz= r0, the functionf0 satisfies

Re

(

z f′0(z)
f0(z)

)

= 1−
2br0+

2Mr2
0

1−r0
+

Mr3
0

(1−r0)2

1−2br0− Mr2
0

1−r0

= α.

Sinceα < 1, the last equation shows that the denominator of the rational expression in the
middle is positive. This leads to the following equality:

∣

∣

∣

∣

z f′0(z)
f0(z)

−1

∣

∣

∣

∣

=
2br0+

2Mr2
0

1−r0
+

Mr3
0

(1−r0)2

1−2br0− Mr2
0

1−r0

= 1−α.

Also the Equation (7) holds. This proves the sharpness of theresults. �

Corollary 2.6. Let f ∈ A and |an| ≤ M for n ≥ 2. Then f satisfies the condition(1) where
r0(α) is the real root in(0,1) of the equation

M(1−α +αr) = (1+M)(1−α)(1− r)2.

The number r0(α) is also the radius of starlikeness of orderα. The number r0(1/2) is the
radius of parabolic starlikeness of the given functions. The results are all sharp.

Remark 2.7. The radius of starlikeness of the functionsf with |an| ≤ M given by r0 = 1−
√

M/(1+M) is the root in (0,1) of the equation

M = (1+M)(1− r)2.

When the second coefficienta2 = 0, the radius of starlikenessr1 is the root in (0,1) of the
equation

M = (1+M+2Mr)(1− r)2.

Clearly,r1 > r0.

Theorem 2.8. Let f ∈ Ab and |an| ≤ M/n for n≥ 3. Then f satisfies the condition(1) where
r0 = r0(α) is the real root in(0,1) of the equation

2M(1+α(1− r)(log(1− r))/r) = (2(1+M)(1−α)+(2−α)(M−4b)r)(1− r)

The number r0(α) is also the radius of starlikeness of orderα. The number r0(1/2) is the
radius of parabolic starlikeness of the given functions. The results are all sharp for the function
f0 given by

f0(z) := (1+M)z+(M/2−2b)z2+M log(1−z).

The logarithm in the above equation is the branch that takes the value 1 atz= 0. Proof of
this theorem is omitted as it is similar to those of Theorems 2.1 and 2.5.

3. RADII OF CONVEXITY AND UNIFORM CONVEXITY

In this section, the sharpC (α)-radius and the sharpCα -radius for 0≤ α < 1 as well as the
sharpU C V -radius for functionsf ∈ Ab satisfying the condition|an| ≤ n or |an| ≤ M (M > 0)
for n≥ 3 are obtained.
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Theorem 3.1. Let f ∈ Ab and |an| ≤ n for n≥ 3. Then f satisfies the condition
∣

∣

∣

∣

z f′′(z)
f ′(z)

∣

∣

∣

∣

≤ 1−α (|z| ≤ r0) (9)

where r0 = r0(α) is the real root in(0,1) of the equation

2
(

1−α +2(2−α)(1−b)r
)

(1− r)4 = 1−α +4r +(1+α)r2 (10)

The number r0(α) is also the radius of convexity of orderα. The number r0(1/2) is the radius
of uniform convexity of the given functions. The results areall sharp.

Proof. A function f satisfies (9) if and only ifz f′ satisfies (1). In view of this and the inequality
(3), the inequality

∞

∑
n=2

n(n−α)|an||z|n−1 ≤ 1−α, (|z| ≤ r0) (11)

is sufficient for functionf to satisfy (9). Letr0 be the root in(0,1) of the Equation (10). Now,
for |z| ≤ r0,

∞

∑
n=2

n(n−α)|an||z|n−1 ≤
∞

∑
n=2

n(n−α)|an|rn−1
0

≤ 4(2−α)br0+
∞

∑
n=3

(n−α)n2rn−1
0

= 4(2−α)br0+

(

1+4r0+ r2
0

(1− r0)4 −1−8r0

)

−α
(

1+ r0

(1− r0)3 −1−4r0

)

=−
(

1−α +4(2−α)(1−b)r0
)

+
1−α +4r0+(1+α)r2

0

(1− r0)4

= 1−α.

To prove the sharpness, consider the functionf0 defined by (4). For this function, a calcu-
lation shows that

z f′′0 (z)
f ′0(z)

=
4(1−b)z− 4z

(1−z)3
− 6z2

(1−z)4

2+4(1−b)z− 1
(1−z)2 −

2z
(1−z)3

.

If r0 is the root of the equation (10), then, at the pointz= r0,

Re

(

z f′′0 (z)
f ′0(z)

)

=
4(1−b)r0− 4r0

(1−r0)3
− 6r2

0
(1−r0)4

2+4(1−b)r0− 1
(1−r0)2

− 2r0
(1−r0)3

= α −1.

The denominator of the rational function in the middle of theequation above is positive while
the numerator is negative. Noting this, it also follows that, at the pointz= r0,

∣

∣

∣

∣

z f′′0 (z)
f ′0(z)

∣

∣

∣

∣

=
−4(1−b)r0+

4r0
(1−r0)3

+
6r2

0
(1−r0)4

2+4(1−b)r0− 1
(1−r0)2

− 2r0
(1−r0)3

= 1−α.

In the case ofα = 1/2, the equation (7) also holds. �
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The special case whereb= 1 is important and it is stated as a corollary below.

Corollary 3.2. Let f ∈ A and |an| ≤ n for n≥ 2. Then f satisfies the condition(9) where
r0 = r0(α) is the real root in(0,1) of the equation

2(1−α)(1− r)4 = 1−α +4r +(1+α)r2 (12)

The number r0(α) is also the radius of convexity of orderα. The number r0(1/2)≈ 0.064723
is the radius of uniform convexity of the given functions. The results are all sharp.

Remark 3.3. For α = 0, the Equation (12) reduces to

2(1− r)4 = (1+4r + r2).

The root of this equation in (0,1) is approximately 0.09033.Our result shows that radius of
convexity obtained by Yamashita [10, Theorem 2] is sharp.

Corollary 3.4. Let f ∈ A , a2 = 0 and |an| ≤ n for n≥ 3. Then f satisfies the condition(9)
holds where r0 = r0(α) is the real root in(0,1) of the equation

2(1−α +2(2−α)r)(1− r)4 = 1−α +4r +(1+α)r2 (13)

The number r0(α) is also the radius of convexity of orderα. The number r0(1/2)≈ 0.125429
is the radius of uniform convexity of the given functions. The results are all sharp.

Remark 3.5. It is easy to see from Corollaries 3.2 and 3.4 that the radius of convexity of
orderα improves whena2 = 0. In the particular caseα = 0, the root of the Equation (12) is
r0(0)≈ 0.0903331 while the Equation (13) has the rootr0(0)≈ 0.155972.

Theorem 3.6. Let f ∈ Ab and |an| ≤ M for n ≥ 3. Then f satisfies the condition(9) where
r0 = r0(α) is the real root in(0,1) of the equation

(

(1−α)(1+M)−2(2−α)(2b−M)r
)

(1− r)3 = M
(

1−α +(1+α)r
)

.

The number r0(α) is also the radius of convexity of orderα. The number r0(1/2) is the radius
of uniform convexity of the given functions. The results areall sharp.

Proof. Using|a2|= 2b for the functionf ∈ Ab, and the inequality|an| ≤ M for n≥ 3, a calcu-
lation shows that, for|z| ≤ r0,

∞

∑
n=2

n(n−α)|an| |z|n−1 ≤
∞

∑
n=2

n(n−α)|an|rn−1
0

≤ 4(2−α)br0+M

(

∞

∑
n=3

n2rn−1
0 −α

∞

∑
n=3

nrn−1
0

)

= 4(2−α)br0+M

(

1+ r0

(1− r0)3 −1−4r0−α
(

1
(1− r0)2 −1−2r0

))

=−M(1−α)+2(2−α)(2b−M)r0+M

(

1−α +(1+α)r0

(1− r0)3

)

= 1−α
wherer0 is as stated in the hypothesis of the theorem. Thus, the function f satisfies the condition
(9). The other two results follow easily. The results are sharp for the function f0 given by
(8). �
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Corollary 3.7. Let f ∈ A and |an| ≤ M for n ≥ 2. Then f satisfies the condition(9) where
r0 = r0(α) is the real root in(0,1) of the equation

(1−α)(1+M)(1− r)3 = M
(

1−α +(1+α)r
)

.

The number r0(α) is also the radius of convexity of orderα. The number r0(1/2) is the radius
of uniform convexity of the given functions. The results areall sharp.

Remark 3.8. For α = 0, the Equation (10) reduces to

(1+M−1)(1− r)3 = 1+ r.

Our result again shows that radius of convexity obtained by Yamashita [10, Theorem 2] is sharp.

Remark 3.9. The problem of determining the radius of convexity of functions satisfying|an| ≤
M/n is the same as the determination of radius of starlikeness offunctions satisfying the in-
equality|an| ≤ M. The latter problem is investigated in Theorem 2.8.

4. CARATHÉODORY FUNCTIONS

An analytic functionp of the form p(z) = 1+ c1z+ c2z2+ · · · is called a Carathéodory
function if Rep(z) > 0 for all z∈ D. The class of all such functions is denoted byP. For
such functionsp ∈ P, it is well-known that|cn| ≤ 2. Denote the class of all Carathéodory
functions satisfying the inequality Rep(z) > α for some 0≤ α < 1 byP(α). It is easy to see
that |cn| ≤ 2(1−α) for p ∈ P(α). In this section, we determineP(α)-radius of functions
satisfying the inequality|cn| ≤ 2M for n ≥ 3 with |c2| = 2b fixed. The proof of the following
result is straightforward and the details are omitted.

Theorem 4.1. Let p be an analytic function of the form p(z)= 1+c1z+c2z2+ · · · with |c2|= 2b
and |cn| ≤ 2M for n≥ 3. Then

|p(z)−1| ≤ 1−α (|z| ≤ r0)

where

r0 = r0(α) =
2(1−α)

1−α +2b+
√

(1−α +2b)2+8(1−α)(M−b)
.

AlsoRep(z)> α for |z| ≤ r0(α). These results are sharp for the function p0 given by

p0(z) = 1−2bz−2M
z2

1−z
.
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