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RADII OF STARLIKENESS AND CONVEXITY OF ANALYTIC FUNCTIONS
SATISFYING CERTAIN COEFFICIENT INEQUALITIES

V. RAVICHANDRAN

ABSTRACT. For0< a < 1, the sharp radii of starlikeness and convexity of omésr functions

of the formf(z) = z4 a,Z% +agZ> + - - whose Taylor coefficients, satisfy the conditionga,| =
2b,0<b<1,andla, <n,MorM/n(M > 0) forn> 3 are obtained. Also a class of functions
related to Carathéodory functions is considered.

1. INTRODUCTION

Let o7 be the class of analytic functiorisn the unit diskD = {z€ C: |z < 1} with Taylor
series expansiof(z) = z+ 35 a,Z". For functions belonging to the subclagsof .7 consisting
of univalent functions, it is well-known tha,| < nforn> 2. A function f whose coefficients
satisfy the inequalityan| < n for n > 2 are analytic inD (by the usual comparison test) and
hence they are members.of. However, they need not be univalent. For example, the ioimct

z
f(2)=z2-22-32—-4—... =2z =27
satisfies the inequalityy,| < n but its derivative vanishes insidkand therefore the functioh
is not univalent inD. In 1970, Gavrilov|[5] showed that the radius of univalen€éuactions
satisfying the inequalitja,| < nis the real root of the equatiorf2—r)3 — (14-r) = 0 while, for
the functions whose coefficients sati$fyy| < M, the radius of univalence is1,/M/(1+M).
Later, in 1982, Yamashita showed that the radius of univaertained by Gavrilov is also the
same as the radius of starlikeness of the correspondingidmsc He also found lower bounds
for the radii of convexity for these functions. Recently2i006, Grahanet al.[7, Theorem 4.2
and Lemma 5.6] considered the corresponding radius prablermholomorphic mappings on
the unit ball inC". Kalaj, Ponnusamy, and Vuorinén [4] have investigatedeelaroblems for
harmonic functions. In this paper, several related radioblpms for the following classes of
functions will be investigated.

ForO0<a <1, let.*(a) and%'(a) be subclasses o consisting of starlike functions
of ordera and convex functions of order, respectively defined analytically by the following
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equalities:

S(a) = {f SN Re(sz;g)) > a}, and ¢ (a) = {f S Re(l-l—sz,”((;)) > a}.

The classes”* :=.7*(0) and¥ := % (0) are the familiar classes of starlike and convex func-
tions respectively. Closely related are the following skssof functions:

| <1-al.

zf'(2)
f(2)

Note that¥; C .*(a) and%y C € (a).

yj::{er:

—1'<1—a}, and %qu ::{er:

A function f € . is uniformly convexf f maps every circular arg contained inD with
center{ € D onto a convex arc. The class of all uniformly convex funcsiomtroduced by
Goodmanl[6], is denoted by 7. Rgnningl[9, Theorem 1, p. 190], and Ma and Minda [8,
Theorem 2, p. 162], independently showed that.# is uniformly convex if and only if

zf"(2) zf"(2)
Re(” (2 ) ke

Renning[[9] also considered the clagp of parabolic starlike functions consisting of functions
f € of satisfying
zf(2) zf'(2)
R
e( 2 ) BN

In other words, the clas$p consists of functiorf = zF’ whereF € %7 ¢ 7 . For a recent survey
on uniformly convex functions, seel[2].

(zeD).

—1) (ze D).

For a fixedb with 0 < b < 1, let.@%, denote the class of all analytic functioh®f the form
f(2) =z+aZ + @+ e+ (|ag] =2b, z€ D).

The second coefficient of univalent functions determingsartant properties such as growth
and distortion estimates. For recent investigation of fiems with fixed second coefficients,
seel[1/ 8]. For & a < 1, the sharp radii of starlikeness and convexity of omere obtained
for functionsf € .o, satisfying the conditiofia,| < nor |a,| <M (M > 0) for n > 3. Special
case ¢ = 0) of the results shows that the lower bounds for the radiiarfvexity obtained
by Yamashita/[10] are indeed sharp. The coefficient inetjealare natural in the sense that
the inequality|an| < n is satisfied by univalent functions and while the inequaliéy < M

is satisfied by functions which are boundedMy For a functionp(z) = 1+ ¢y z+ 22 + - --
with positive real part, it is well-known thdt,| < 2 and so iff € & and Ref’(z) > 0, then
lan] < 2/n. In view of this, the determination of the radius of starfikss and the radius of
convexity of functions whose coefficients satisfy the ira@du |a,| < M/nis also investigated.
A corresponding radius problem for certain functjgia) = 1+ c¢;z+ c,Z% + - - - with coefficients
satisfying the conditiong;| = 2b, 0 < b <1 and|cy| < 2M (M > 0) is also investigated.
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2. RADII OF STARLIKENESS OF ORDERO AND PARABOLIC STARLIKENESS

In this section, the sharg”*(a)-radius and the sharg’;-radius for 0< a < 1 as well as
the sharp#p-radius are obtained for functiorfsc .o, satisfying one of the conditionja,| < n,
lan] <M or|ap| <M/n(M > 0) forn> 3.

Theorem 2.1. Let f € o4 and|an| < nforn> 3. Then f satisfies the inequality
zf(2)
f(2)
where p =ro(a) is the real root in(0, 1) of the equation
1-a+(1+a)=2(1-a+2-a)(l-br)L-r) (2)

The number ¢(a) is also the radius of starlikeness of order The numberg(1/2) is the
radius of parabolic starlikeness of the given functionse Tésults are all sharp.

-1

<l—a (|7<ro) (1)

Proof. If
Z (n—a)lanrg *<1-a, (3)

then the functiorf (z) = z+ 57, anZ" satisfies, oz = ro,
2f(2) - (9| - (1-a)|f(9) < Zz(n— Dlanllz" ~ (1-a)(|2 - Zzlanl 12")

—1-a)d+ i(n—ananuzw

§r0< (1- a—l—zzn a)lan|rg” 1)

<0.

This shows that the conditiohl(3) is a sufficient conditiontfee inequality[(l) to hold. Using
lag| = 2b for the functionf € .4, and the inequalityan| < n for n > 3, it follows that, for
2| <o,
(n—a)lan||Z" < 5 (n—a)lanlrg ™
2 3

00

<2(2—a)bro+ Zgang L a Zznrg !
n= n=

1 1
—2(2—a)bro+ 1% 1 4ro—a <7—1—2r0)

(1- ro)3 (1- r0)2
- (1+r0) —a(1—rg)
=a—-1-2(2—a)(1—b)ro+ (1—r0)3

=1-a
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providedr is the root of the Equation{2) in the hypothesis of the theor&he Equation(2)
has clearly a root in (0,1).

The functionfg given by

fo(z):22+2(1—b)£—Fzz)2:z—2b22—323—4z4—-~- @)
satisfies the hypothesis of the theorem and, for this functie@ have
22 ., 2(1-b)z(1-2)3—-2z
fo(z2 = (2+2(1-b)z)(1-23-(1-2)

Forz=rq, we have

zfh(2) ‘_ 2ro—2(1—Db)ro(1—rp)3
fo(2) (24+2(1—b)ro)(1—ro)*~ (1-ro)
This shows that the radiug of functions to satisfy((1) is sharp. The numerator of theorsl
function in the middle of(5) is positive as01—b <1 and 0< (1—rp) < 1 which shows that
(1—b)(1—rp)® < 1. The denominator expression is also positive2as 2(1 —b)rg) (1—rg)? >
2(1—rg)? > 1. The inequality 21 —rg)? > 1 is in fact equivalent top < 1—1/+/2 = 0.292893.
This inequality holds asy = ro(a) < ro(0) = 0.1648776.

=1-aqa. (5)

Since the functions satisfyingl(1) are starlike of ordethe radius of starlikeness is at least
ro(a). However, this radius is also sharp for the same functipes

Re(zfzé((zz)>> —a (z=ro). 6)

The inequality
zf(2) 1
f(2) =2
is sufficient (see [2]) for the function to be parabolic skaland hence the radius of parabolic
starlikeness is at leagg(1/2). The Equationd (5) andl(6) witln = 1/2 shows that

zfy(2) ‘ 1 <zf6(z))
—1/===Re Z=rp), 7
w2 Rk ) T @
and hence the radius of parabolic starlikeness is sharp. O

Corollary 2.2. The radius of starlikeness of order of functions whose coefficients satisfy
lan| < nforall n> 2is the real root in(0, 1) of the equation
21—a)1-rP=1—a+A+a)r
In particular, the radius of starlikeness is given by
ro(0) =1+ 62—1/3 ((@— 18)1/° — (v/330+ 18)1/3) ~ 0.164878
The radius of starlikeness of order 1/2 is the same as theusaali parabolic starlikeness and it
is given by

ro(1/2) =1+ %2 ((3— 2&) Ve <3+ 2&) Y 3) ~ 0.120385
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The results are sharp.

Corollary 2.3. The radius of starlikeness of order of functions whose coefficients satisfy
ap =0and|ay| < nforall n> 3is the real root in(0, 1) of the equation

20—a+Q2-a))1-r2=1—a+{A+a)r.
In particular, the radius of starlikeness is the rogt® 0.2535710f the equation
2(1+2r)(1—r)¥=1+r.

The radius of starlikeness of order 1/2 which is the same asatiius of parabolic starlikeness
isro=1—/1/2~0.206299 The results are sharp.

Remark 2.4. It is clear from Corollarie§ 212 arid 2.3 that the variousiradé improved if the
second coefficient of the function vanishes.

Theorem 2.5. Let f € o4 and |a,| <M for n > 3. Then f satisfies the conditidfil) where
ro=ro(a) is the real root in(0, 1) of the equation
M(1—a+ar)=((1+M)(1—a)—(2—a)(2b—M)r)(1—r)?

The number ¢(a) is also the radius of starlikeness of order The number ¢(1/2) is the
radius of parabolic starlikeness of the given functionse Tésults are all sharp.

Proof. Using|ay| = 2b for the functionf € 2%, and the inequalitya,| < M for n > 3, a calcu-
lation shows that, fofz| < ro,

[ee] [ee]

ZZ(”— a)lan|z"t < ;(n— o) [an|r3?

<2(2-a)bro+M (Zznrg‘l—a ;r8‘1>
n= n=

1 1
=22—a)brg+ M| ———-1—-2rg—a —1-—r
(2= ajbro+ ((1—ro>2 0 (1—ro 0))
l-a-+arg

(1—rp)?

=2-a)(2b—M)ro—M(1—a)+M
=1-a

wherer is as stated in the hypothesis of the theorem. Thus, theiumtsatisfies the condition
(@). The other two results follow easily.

The results are sharp for the functidpngiven by

MZ
fo(z):z—2b22—M(z3+z4+---):z—2bzz—1TZ. (8)
A calculation shows that
202, _ 2bz+ 1% + %
fol = 1_2bz—VMZ

1-z
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At the pointz = rg, the functionfy satisfies

M
zf(2) 2bl‘o+ o ro .t = ig)
Re =1- =
fo(2) 1 2brg— M6
—ro

Sincea < 1, the last equation shows that the denominator of the ratiexpression in the
middle is positive. This leads to the following equality:

2Mr2 Mr2
zf)(2) 1' _ 2bro+ 15, + 7= r8> g
fo@ 1 2br0 % |
Also the Equation(7) holds. This proves the sharpness aiethdts. O

Corollary 2.6. Let f € & and|a,| <M for n > 2. Then f satisfies the conditidl) where
ro(a) is the real root in(0, 1) of the equation

M(1—a+ar)=(1+M)(1-a)(1-r)%
The number ¢(a) is also the radius of starlikeness of order The number ¢(1/2) is the
radius of parabolic starlikeness of the given functionse Tésults are all sharp.

Remark 2.7. The radius of starlikeness of the functiohwith |a,| < M given byrg=1—
vM/(1+M) is the root in (0,1) of the equation
M= (1+M)(1-r)2
When the second coefficieab = 0, the radius of starlikeness is the root in (0,1) of the
equation
M= (14+M+2Mr)(1—r)2
Clearly,r1 > ro.
Theorem 2.8. Let f € o, and|a,| < M/n for n> 3. Then f satisfies the conditidfi) where
ro=ro(a) is the real root in(0, 1) of the equation
2M(A+a(1—r)(log(l—r1))/r) = (2(1+M)(1—a)+(2—a)(M—4b)r)(1—r)

The number ¢(a) is also the radius of starlikeness of order The numberg(1/2) is the
radius of parabolic starlikeness of the given functionse Tésults are all sharp for the function
fo given by

fo(2) := (14+M)z+ (M/2—2b)Z +Mlog(1—2).

The logarithm in the above equation is the branch that tdkesdlue 1 az = 0. Proof of
this theorem is omitted as it is similar to those of Theoremiksa?nd 2.b.

3. RADII OF CONVEXITY AND UNIFORM CONVEXITY

In this section, the sharg'(a)-radius and the shafg,-radius for 0< a < 1 as well as the
sharpz ¢ ¥ -radius for functiond € .4, satisfying the conditiofa,| < norl|as| <M (M > 0)
for n> 3 are obtained.
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Theorem 3.1. Let f € @4 and|ay| < nforn> 3. Then f satisfies the condition

zf"(2)
<1- <
() |~ 1-a (|7 <ro) 9)
where p =ro(a) is the real root in(0, 1) of the equation
2(1-a+22-a)(1-b)r)(1-r*=1—a+4r+(1+a)r? (10)

The numberg(a) is also the radius of convexity of ordaer The numberd(1/2) is the radius
of uniform convexity of the given functions. The resultsadireharp.

Proof. A function f satisfies[(D) if and only it f’ satisfies[(L). In view of this and the inequality
@3), the inequality

00

Zzn(n—a)|an||2\”1§1—a, (I2/ <o) (11)

is sufficient for functionf to satisfy [9). Letrg be the root in(0, 1) of the Equation[(10). Now,
for |z| <ro,

[ee]

n(n—a)lan||2"* < Y n(n—a)lanlrg ™
<4(2—a)brg+ Zz(n— a)n’ryt
n—

1+4ro+r3 1+rg
= 4(2— - 0 7 —a(——.-1-4
( a)bro-l—( A=10)% 8ro a TAE ro

1—a+4ro+(1+a)r?
(1—[’0)4

=—(1-a+4(2—a)(1-b)ro) +

=1-a.

To prove the sharpness, consider the funcfigdefined by[(#). For this function, a calcu-
lation shows that

Zf(/)/(Z) 4(1_ b)Z— (]jzz)s - (1€i)4

2 2+4(1-b)z— 25 — 7%

If ro is the root of the equatiof_(1L0), then, at the pairt ro,

4 6r2
Re<z fé’(z>) AL D)Mo~ G — ey

6@ /) 24+4(1-b)ro— e — 720

The denominator of the rational function in the middle of gugiation above is positive while
the numerator is negative. Noting this, it also follows tlathe poinz = ro,

=a-1

6 2
26(@)|_ 41Dt 5Ton +
! - 1 e~ — L Q.
fo(2) | 2+4(1—b)ro— _ %o

(1-r0)>  (1-ro)®
In the case ofr = 1/2, the equatiori(7) also holds. O
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The special case whebe= 1 is important and it is stated as a corollary below.

Corollary 3.2. Let f € & and|ay| < n for n> 2. Then f satisfies the conditid) where
ro=ro(a) is the real root in(0, 1) of the equation

21—a)(A-n*=1—a+4r+(1+a)r? (12)
The numberg(a) is also the radius of convexity of order. The numberg(1/2) ~ 0.064723
is the radius of uniform convexity of the given functionse fiésults are all sharp.
Remark 3.3. Fora = 0, the Equation (12) reduces to

2(1—r1)* = (1+4r +r?).

The root of this equation in (0,1) is approximately 0.090&3ur result shows that radius of
convexity obtained by Yamashita [10, Theorem 2] is sharp.

Corollary 3.4. Let f € o/, a =0and|a,| <n for n> 3. Then f satisfies the conditid@)
holds where § = ro(a) is the real root in(0, 1) of the equation

21—a+22—-a)r)(A-r)*=1—a+4r+(1+a)r? (13)
The numberg(a) is also the radius of convexity of order. The numberg(1/2) ~ 0.125429
is the radius of uniform convexity of the given functionse fiésults are all sharp.

Remark 3.5. It is easy to see from Corollariés 8.2 and]3.4 that the radfusoovexity of
ordera improves whera, = 0. In the particular case = 0, the root of the Equation_(112) is
ro(0) ~ 0.0903331 while the Equatioh (1L3) has the rogi0) ~ 0.155972.

Theorem 3.6. Let f € o4 and |a,| < M for n > 3. Then f satisfies the conditid@) where
ro=ro(a) is the real root in(0, 1) of the equation
(1—a)(1+M)—2(2—a)(2o—M)r)(1-r)*=M(1—a+(1+a)r).

The numberg(a) is also the radius of convexity of ordar The numberg(1/2) is the radius
of uniform convexity of the given functions. The resultsadirsharp.

Proof. Using |az| = 2b for the functionf € .«4,, and the inequalitya,| < M for n > 3, a calcu-
lation shows that, fofz| < ro,

00

Zzn(n— a)lan| 2" < ;n(n— a)lan|rg "
n= n=

< - 2.n—1 n—-1
<4(2—a)brg+M <n;n r orn;nrO )
— 42— a)bro+M (ﬂ—l—mo—a (;—1—20))
(1—ro)® (1-ro)?
l1-a+(1+a)rg
(1—[’0)3 )

=—-M(1-a)+22—a)(2b—M)rg+M (

=1-a

wherer is as stated in the hypothesis of the theorem. Thus, theiitmtsatisfies the condition
(@). The other two results follow easily. The results arergtfar the functionfy given by

() O
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Corollary 3.7. Let f € & and|a,| <M for n > 2. Then f satisfies the conditicql) where
ro=ro(a) is the real root in(0, 1) of the equation

(1-a)A+M)(L-1)P=M(1—a+(1+a)r).
The numberg(a) is also the radius of convexity of ordar The numberg(1/2) is the radius
of uniform convexity of the given functions. The resultsadirsharp.
Remark 3.8. Fora = 0, the Equatior (10) reduces to

A+MbHa-r3=1+r.

Our result again shows that radius of convexity obtaineddayashita [10, Theorem 2] is sharp.
Remark 3.9. The problem of determining the radius of convexity of funo8 satisfyinda,| <

M/n is the same as the determination of radius of starlikeneésnations satisfying the in-
equality|an| < M. The latter problem is investigated in Theorem 2.8.

4. CARATHEODORY FUNCTIONS

An analytic functionp of the form p(z) = 1+ ¢c1z+ c,Z% + - -- is called a Carathéodory
function if Rep(z) > 0 for all ze D. The class of all such functions is denoted £ For
such functionsp € &, it is well-known that|c,| < 2. Denote the class of all Carathéodory
functions satisfying the inequality R¢z) > a for some 0< a < 1 by Z(a). It is easy to see
that|ch| < 2(1—a) for pe Z(a). In this section, we determing’(a)-radius of functions
satisfying the inequalityc,| < 2M for n > 3 with |c,| = 2b fixed. The proof of the following
result is straightforward and the details are omitted.

Theorem 4.1. Let p be an analytic function of the forniz) = 1+ cyz+c,z% + - - - with |co| = 2b
and|cy| <2M forn > 3. Then

P2 -1 <l-a (|Z<ro)

where
2(1-a)

"1 a+2b+/(I-a+20)2181-_a)M_b)
AlsoRep(z) > a for |z < rp(a). These results are sharp for the functiongiven by

ro=ro(a)

po(z) = 1—2bz— 2M1i.
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