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STARLIKE AND CONVEX FUNCTIONS WITH RESPECT TO
CONJUGATE POINTS

V. RAVICHANDRAN

Abstract. An analytic functions f(z) defined on 4 = {z : |z| < 1} and
normalized by f(0) = 0, f ′(0) = 1 is starlike with respect to conjugate points

if Re
n

zf ′(z)

f(z)+f(z)

o
> 0, z ∈ 4. We obtain some convolution conditions, growth

and distortion estimates of functions in this and related classes.

1. Introduction

Let A denote the class of all analytic functions defined in the unit disk

4 = {z : |z| < 1}
and normalized by f(0) = 0 = f ′(0) − 1. Let S∗(α), C(α) and K(α) denote the
classes of starlike, convex and close to convex functions of order α, 0 ≤ α < 1,
respectively. A function f ∈ A is starlike with respect to symmetric points in 4 if
for every r close to 1, r < 1 and every z0 on |z| = r the angular velocity of f(z)
about f(−z0) is positive at z = z0 as z traverses the circle |z| = r in the positive
direction. This class was introduced and studied by Sakaguchi[7]. He proved that
the condition is equivalent to

Re
{

zf ′(z)
f(z)− f(−z)

}
> 0, z ∈ 4.

A function f ∈ A is starlike with respect to conjugate points in 4 if f satisfies
the condition

Re
{

zf ′(z)
f(z) + f(z)

}
> 0, z ∈ 4.

A function f ∈ A is starlike with respect to symmetric conjugate points in 4 if it
satisfies

Re
{

zf ′(z)
f(z)− f(−z)

}
> 0, z ∈ 4.

Denote the classes consisting of these functions by S∗c and S∗sc respectively. These
classes were introduced by El-Ashwah and Thomas[1]. The functions in these classes
are close to convex and hence univalent. Sokol [11] introduced two more parameter
in this class and obtained structural formula, the coefficient estimate, the radius of
convexity and results about the neighborhoods of functions. See also Sokol [12].

If f(z) = z +
∑∞

n=2 anzn and g(z) = z +
∑∞

n=2 bnzn, then the convolution of
f(z) and g(z), denoted by (f ∗ g)(z) , is the analytic function given by

(f ∗ g)(z) = z +
∞∑

n=2

anbnzn.
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The function f(z) is subordinate to F (z) in the disk ∆ if there exits an analytic
function w(z) with w(0) = 0 and |w(z)| < 1 such that f(z) = F (w(z)) for |z| < 1.
This is written as f(z) ≺ F (z). Notice that f ∈ S∗(α) if and only if

zf ′(z)/f(z) ≺ (1 + (1− 2α)z)/(1− z)

and f ∈ C(α) if and only if f ∗ g ∈ S∗(α) where g(z) = z/(1 − z)2. This enables
to obtain results about the convex class from the corresponding result of starlike
class. Let h(z) be analytic and h(0) = 1. A function f ∈ A is in the class S∗(h) if

zf ′(z)
f(z)

≺ h(z), z ∈ 4.

The class S∗(h) and a corresponding convex class C(h) was defined by Ma and
Minda[3]. But results about the convex class can be obtained easily from the
corresponding result of functions in S∗(h).

If φ(z) = (1 + z)/(1− z), then the classes reduce to the usual classes of starlike
and convex functions. If φ(z) = (1 + (1 − 2α)z)/(1 − z), 0 ≤ α < 1, then the
classes reduce to the usual classes of starlike and convex functions of order α. If
φ(z) = [(1 + z)/(1 − z)]α, 0 < α ≤ 1, then the classes reduce to the classes of
strongly starlike and convex functions of order α. If φ(z) = (1 + Az)/(1 + Bz),
−1 ≤ B < A ≤ 1, then the classes reduce to the classes S∗[A,B] and C[A,B].

Definition 1. A function f ∈ A is in the class S∗s (φ) if

2zf ′(z)
f(z)− f(−z)

≺ φ(z), z ∈ 4,

and is in the class Cs(φ) if

2(zf ′(z))′

f ′(z) + f ′(−z)
≺ φ(z), z ∈ 4.

Let S∗c (φ), S∗sc(φ) denote the corresponding classes of starlike functions with
respect to conjugate points and symmetric conjugate points respectively.

The functions kφn (n = 2, 3, . . .) defined by kφn(0) = k′φn(0)− 1 = 0 and

1 +
zk′′φn(z)
k′φn(z)

= φ(zn−1)

are examples of functions in C(φ). The functions hφn satisfying zk′φn(z) = hφn are
examples of functions in S∗(φ). The odd functions in S∗(φ) (C(φ)) are in the class
S∗s (φ) (Cs(φ)). The function with real coefficient belonging to S∗(φ) (C(φ)) are in
the class S∗c (φ) (Cc(φ)). Similarly, the odd function with real coefficient belonging
to S∗(φ) (C(φ)) are in the class S∗sc(φ) (Csc(φ)).

In this paper, we obtain convolution conditions, growth and distortion inequali-
ties for functions in our classes. Also we prove a convolution result.

2. Convolutions Conditions

Let P = {p = 1 + cz + · · · |Re p(z) > 0}.
Theorem 1. Let f ∈ A, φ ∈ P and φ(z) = 1/q(z). Then f ∈ S∗(φ) if and only if

1
z

[
f(z) ∗

(
z + z2/(q(eiθ)− 1)

(1− z)2

)]
6= 0

for all z ∈ 4 and 0 ≤ θ < 2π.
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Proof. Since zf ′(z)
f(z) ≺ φ(z) if and only if

zf ′(z)
f(z)

6= φ(eiθ)

it follows that
1
z
(zf ′(z)− f(z)φ(eiθ)) 6= 0

for z ∈ 4 and 0 ≤ θ < 2π. Since zf ′(z) = f ∗ z
(1−z)2 and f(z) = f(z) ∗ z

1−z , the
above inequality is equivalent to

1
z

[
f ∗

(
z

(1− z)2
− φ(eiθ)z

1− z

)]
6= 0,

which proves the result. ¤

Corollary 1. Let f ∈ A, φ ∈ P and φ(z) = 1/q(z). Then f ∈ C(φ) if and only if

1
z

[
f(z) ∗

(
z + (1 + 2

q(eiθ)−1
)z2

(1− z)3

)]
6= 0

for all z ∈ 4 and 0 ≤ θ < 2π.

We state the following theorems without proof.

Theorem 2. Let f ∈ A and φ ∈ P. Then f ∈ S∗s (φ) if and only if

1
z
(f ∗ hθ)(z) 6= 0

where

hθ(z) =
z + 1+φ(eiθ)

1−φ(eiθ)
z2

(1− z)2(1 + z)
for all z ∈ 4 and 0 ≤ θ < 2π.

Corollary 2. Let f ∈ A and φ ∈ P. Then f ∈ Cs(φ) if and only if

1
z
(f ∗ kθ)(z) 6= 0

where kθ = zh′θ(z), hθ(z) is as in the previous Theorem, for all z ∈ 4 and

0 ≤ θ < 2π.

Theorem 3. Let f ∈ A and φ ∈ P. Then f ∈ S∗c (φ) if and only if

1
z
[(f ∗ gθ)(z) + (f ∗ eθ)(z)] 6= 0

where

gθ(z) =
2z − φ(eiθ)z(1− z)

(1− z)2
, eθ =

φ(e−iθ)z
1− z

for all z ∈ 4 and 0 ≤ θ < 2π.

Theorem 4. Let f ∈ A and φ ∈ P. Then f ∈ S∗sc(φ) if and only if

1
z
[(f ∗ gθ)(z)− (f ∗ eθ)(−z)] 6= 0

where

gθ(z) =
2z − φ(eiθ)z(1− z)

(1− z)2
, eθ =

φ(e−iθ)z
1− z

for all z ∈ 4 and 0 ≤ θ < 2π.
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Similar results are true for the classes Cc(φ), Csc(φ).
In particular, if φ(z) = (1 + Az)/(1 + Bz),−1 ≤ B < A ≤ 1, then the following

results of Silverman and Silvia[10] are obtained as special cases of the previous
Theorems.

Corollary 3 ([10]). f ∈ S∗[A,B] if and only if for all z ∈ 4 and all ζ, with |ζ| = 1,

1
z

[
f ∗ z + ζ−A

A−B z2

(1− z)2

]
6= 0.

Corollary 4 ([10]). f ∈ C[A,B] if and only if for all z ∈ 4 and all ζ, with |ζ| = 1,

1
z

[
f ∗ z + 2ζ−A−B

A−B z2

(1− z)3

]
6= 0.

3. Growth, Distortion and Covering Theorems

For the purpose of this section, assume that the function φ(z) is an analytic
function with positive real part in the unit disk 4, φ(4) is convex and symmetric
with respect to the real axis, φ(0) = 1 and φ′(0) > 0. The functions kφn (n =
2, 3, . . .) defined by kφn(0) = k′φn(0)− 1 = 0 and

1 +
zk′′φn(z)
k′φn(z)

= φ(zn−1)

are important examples of functions in C(φ). The functions hφn satisfying zk′φn(z) =
hφn are examples of functions in S∗(φ). Write kφ2 simply as kφ and hφ2 simply as
hφ.

Theorem 5 ([3]). Let min|z|=r |φ(z)| = φ(−r), max|z|=r |φ(z)| = φ(r), |z| = r. If
f ∈ C(φ), then

(i) k′φ(−r) ≤ |f ′(z)| ≤ k′φ(r)
(ii) −kφ(−r) ≤ |f(z)| ≤ kφ(r)
(iii) f(4) ⊃ {w : |w| ≤ −kφ(−1)}.

The results are sharp.

If f(z) = z + ak+1z
k+1 + . . . ∈ C(φ), then we can prove that

[k′φ(−rk)]1/k ≤ |f ′(z)| ≤ [k′φ(rk)]1/k.

See [2].
We prove the following

Theorem 6. Let min|z|=r |φ(z)| = φ(−r), max|z|=r |φ(z)| = φ(r), |z| = r. If
f ∈ Cc(φ), then

(i) k′φ(−r) ≤ |f ′(z)| ≤ k′φ(r)
(ii) −kφ(−r) ≤ |f(z)| ≤ kφ(r)
(iii) f(4) ⊃ {w : |w| ≤ −kφ(−1)}.

The results are sharp.

Proof. Since f ∈ Cc(φ) and φ is convex and symmetric with respect to real axis,
it follows that g(z) = [f(z) + f(z)]/2 is in C(φ). Since g ∈ C(φ), it follows that
g′(z) ≺ k′φ(z). Now,

rk′φ(−r) = k′φ(−r)− rk′′φ(−r) ≤ k′φ(−r)φ(−r)
≤ |(zf ′(z))′|
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and
|(zf ′(z))′| = | (zf ′(z))′

g′(z) g′(z)|
≤ φ(r)k′φ(r) = k′φ(r) + rk′′φ(r)
≤ (rkφ(r))′.

By integrating from 0 to r, it follows that

k′φ(−r) ≤ |f ′(z)| ≤ k′φ(r).

Part (ii) follows from (i). Also part (iii) follows from part (ii), since −kφ(−r) is
increasing in (0, 1) and bounded by 1. Here −kφ(−1) = limr→1−kφ(−r).

The results are sharp for the function f(z) = kφ(z) ∈ Cc(φ) since it has real
coefficients and is in C(φ). ¤

Theorem 7. Let min|z|=r |φ(z)| = φ(−r), max|z|=r |φ(z)| = φ(r), |z| = r. If
f ∈ S∗c (φ), then

(i) h′φ(−r) ≤ |f ′(z)| ≤ h′φ(r)
(ii) −hφ(−r) ≤ |f(z)| ≤ hφ(r)
(iii) f(4) ⊃ {w : |w| ≤ −hφ(−1)}.

The results are sharp.

Proof. Part (i) follows from above Theorem and the fact zf ′ ∈ S∗c (φ) if and only if
f ∈ Cc(φ). Let

p(z) =
2zf ′(z)

f(z) + f(z)
=

zf ′(z)
g(z)

,

where g(z) = [f(z) + f(z)]/2. Since g ∈ S∗(φ), and hence,

−hφ(−r) ≤ |g(z)| ≤ hφ(r).

Therefore, for |z| = r < 1,

h′φ(−r) =
φ(−r)hφ(−r)

−r
≤

∣∣∣∣p(z)
g(z)
z

∣∣∣∣ = |f ′(z)| ≤ φ(r)hφ(r)
r

= hφ(r).

This proves (ii). The other part follows easily. ¤

Similar theorems are true for the classes of functions with respect to symmetric
conjugate points.

Theorem 8. Let min|z|=r |φ(z)| = φ(−r), max|z|=r |φ(z)| = φ(r), |z| = r. If
f ∈ Cs(φ), then

1
r

∫ r

0

φ(−r)[k′φ(−r2)]1/2dr ≤ |f ′(z)| ≤ 1
r

∫ r

0

φ(r)[k′φ(r2)]1/2dr

The other results for this class may be obtained easily and hence omitted.

Proof. The function g(z) = [f(z)− f(−z)]/2 = z + a3z
3 + . . . is in C(φ). Then the

result follows easily. ¤

The following theorem gives a growth and distortion estimate for functions sub-
ordinate to starlike functions with respect to conjugate points.

Theorem 9. If f(z) is starlike with respect to conjugate points in 4 and g(z) ≺
f(z), then

|g(z)| ≤ r

(1− r)2
and |g′(z)| ≤ 1 + r

(1− r)3

for |z| = r < 1.



36 V. RAVICHANDRAN

Proof. Since g(z) ≺ f(z) implies g(z) = f(w(z)) for some analytic function w(z)
with |w(z)| ≤ |z|,

|g(z)| = |f(w(z))| ≤ |w(z)|
(1− |w(z)|)2 ≤

r

(1− r)2
,

for |z| = r < 1.
To prove the other inequality, note that

g′(z) = f ′(w(z))w′(z)

and

|w′(z)| ≤ 1− |w(z)|2
1− |z|2 .

Now, for |z| = r < 1,

|g′(z)| = |f ′(w(z))||w′(z)|

≤ 1 + |w(z)|
(1− |w(z)|)3

1− |w(z)|2
1− |z|2

=
[
1 + |w(z)|
1− |w(z)|

]2 1
1− |z|2

≤ 1 + r

(1− r)3
.

¤

Theorem 10. If f(z) is starlike with respect to symmetric conjugate points in 4
and g(z) ≺ f(z), then

|g(z)| ≤ r

(1− r)2
and |g′(z)| ≤ 1 + r

(1− r)3

for |z| = r < 1.

4. Convolution Theorems

Let α ≤ 1. The class Rα of prestarlike functions of order α consists of functions
f(z) ∈ A satisfying the following condition: For α < 1,

f ∗ z

(1− z)2−2α
∈ S∗(α)

and for α = 1

Re
f(z)

z
≥ 1

2
, z ∈ 4.

To prove our results we need the following

Theorem 11. For α ≤ 1, let f ∈ Rα, g ∈ S∗(α), F ∈ A. Then
(

f ∗ gF

f ∗ g

)
(4) ⊂ Co(F (4)),

where Co(F (4)) denotes the closed convex hull of F (4).

Unless or otherwise stated, in this section we assume that φ(z) = 1 + cz + . . . is
convex, Re φ(z) > α, 0 ≤ α < 1. We now prove that the class of starlike functions
with respect to conjugate points is closed under convolution with convex functions.

Theorem 12. Let φ(z) is convex, φ(0) = 1, Re φ(z) > α, 0 ≤ α < 1. If f ∈ S∗(φ),
g ∈ Rα, then f ∗ g ∈ S∗(φ).
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Proof. Since g ∈ S∗(φ), the function F (z) = zg′(z)
g(z) is analytic in4 and F (z) ≺ φ(z).

Also Re φ(z) > α implies Re(zf ′(z)/f(z)) > α. This means that g ∈ S∗(α). Let
f ∈ Rα. Then by an application of Theorem 11, we have(

f ∗ gF

f ∗ g

)
(4) ⊂ Co(F (4)).

Since φ(z) is convex in 4 and F (z) ≺ φ(z), Co(F (4)) ⊂ φ(4). Also (f ∗ gF )(z) =
(f ∗ zg′)(z) = z(f ∗ g)′(z). Therefore,

z(f ∗ g)′(z)
(f ∗ g)(z)

≺ φ(z)

and hence f ∗ g ∈ S∗(φ). ¤
It should be noted that the class C(φ) is also closed under convolution with

prestarlike functions of order α. This follows directly from the above result. Also
the other four classes S∗c (φ), Cc(φ), S∗sc(φ) Csc(φ) are all closed under convolution
with prestarlike functions of order α having real coefficients. We omit the details.

References

[1] R. M. El-Ashwah and D. K. Thomas. Some subclasses of close-to-convex functions. J. Ra-
manujan Math. Soc., 2(1):85–100, 1987.

[2] I. Graham and D. Varolin. Bloch constants in one and several variables. Pacific J. Math.,
174(2):347–357, 1996.

[3] W. C. Ma and D. Minda. A unified treatment of some special classes of univalent functions.
In Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture
Notes Anal., I, pages 157–169, Cambridge, MA, 1994. Internat. Press.

[4] M. S. Robertson. Applications of the subordination principle to univalent functions. Pacific
J. Math., 11:315–324, 1961.

[5] S. Ruscheweyh. Convolutions in geometric function theory, volume 83 of Séminaire de
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