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Abstract

The authors aim at presenting a systematic investigation of several families of infinite
series which are associated with the Riemann Zeta function, the Digamma (and Po-
lygamma) functions, the harmonic (and generalized harmonic) numbers, and the Stir-
ling numbers of the first kind. Relevant connections of the results derived here with
those considered in many earlier works on this subject are also indicated.
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1. Introduction, definitions, and preliminaries

Many recent works (or serendipities) involving fractional calculus, especially
in the area of closed-form summation of certain classes of infinite series, re-
vived (as illustrations emphasizing the usefulness of the underlying fractional
calculus techniques) various special cases and consequences of the following
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well-known (rather classical) result in the theory of the Psi (or Digamma)
function ¥ (z) := Y% (2):

P SLCEI I

7( ( b)>0; c g7y ==1{0,~1,-2,...}), (1.1)

where, in general, " (z) denotes the Polygamma functions defined by (cf., e.g.,
(11])

PP (2) ;:%{logf(z)}
7%{%2)} (peNg:=NU{0}; N:={1,2,3,...}) (1.2)

and (1), denotes the Pochhammer symbol (or the shifted factorial, since
(1), = n!) defined, in terms of the familiar Gamma function I'(z), by

_T@+n) 1 (n=0),
()‘)""W—{;v(z+1)-~-(i+n—1) (neN). (13)

For a reasonably detailed historical account of the summation formula (1.1),
and indeed also of its numerous consequences and generalizations, we refer the
interested reader to the work on the subject by Nishimoto and Srivastava [14],
who also provided a number of relevant earlier references on summation of
infinite series by means of fractional calculus. Many further developments on
this subject are reported by (among others) Srivastava [19], Al-Saqgabi et al. [1],
Aular de Duran et al. [2], Wu et al. [21], and Chen and Srivastava [5]. Each of
these recent works contains citations of many other earlier investigations on
the subject.

Yet another classical result, which is related rather closely to the summation
formula (1.1), is the celebrated Gauss summation theorem:

g (Z).(S) - ?E?f(ac)r(i — Z; (R(c—a—b)>0; c¢7Z), (1.4)

which, in view of the obvious derivative formulas:

aa{ ] (“225“" '} =3 DOy o) — y(a)

n=0 n n=1 (c)n n!
(lz2] < 1; |zl =1 when R(c—a—b) >0; c & Z,), (L.5)

%{ > } 3 Wb+ m) —w))

n=0 n= !

(2| < 1; |zl =1 When ‘R(c—a—b)>(); ceZy), (1.6)
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n n=1

(lz2] < 1; |zl =1 when R(c —a —b) > 0; c € Z;), (1.7)

o @), | S @uB e
ac{; ® n!} > o (e +m) —vle)]

yields the fOllOWing summation identities:

> 1) = T e )~ e —a— )
(‘R(C—a— b)>0; ¢ & 75), (1.8)
> O 1) = T e~ )~ e —a— )
(Rlc—a—b)>0; cg7Z;), (1.9)
and (cf., e.g., [5, p. 380, Eq. (2.5)])

>

_I'(c)I'(¢c —a—b) . D) — (e — e —
R ST g e =)+ e =) = b(e) e —a =)

R(c—a—-0b)>0; c&7Z), (1.10)

n l’l

where, for convenience, H,(z; k) denotes the generalized harmonic numbers
defined by (cf. [8] for the special case z = 1)

n 1 B
Hn(z;;c)::z;m (meN; keC; zeC\ 7)), (1.11)

so that we readily have
H,(z;1)=y(z+n)—y(z) (neN), (1.12)
since [7, p. 16, Eq. 1.7.1(10)]

Y(z+n)=y(z)+ z”: zﬁ—lc%l (neN). (1.13)

More generally, in view of the definitions (1.2) and (1.11), it is easily observed
from (1.13) that

Hy(zp+1) = (1Y +n) —y? )] (pe Ny neN). (1.14)
We recall also the following well-known series representation for y(z) (cf. [12,
p. 13]):
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> 1 1
. _ 1.1
2) })+;(n+l n+z>7 (L15)

where y denotes the Euler—-Mascheroni constant given by
y:= —y(1) =2 0.577215664901532860606512 . ..

The main object of this paper is to consider and investigate several classes of
infinite series associated especially with the harmonic numbers and Digamma
functions. Some of the summation formulas, which are considered in this
paper, involve the Riemann Zeta function {(s) and the Polygamma functions
¥ (z) (p € N) as well. We also point out relevant connections of the results
presented here with those discussed in many recent works on this subject.

2. Some interesting deductions

First of all, in view of the series representation (1.15), we can write

21)C:<n+u nii)’ @1

n=0

so that the well-known (rather classical) result (1.1) can immediately be re-
written in its equivalent form:

i i(fwc— nic) (Re—b)>0; cg7;), (22)

which happens to be one of the main results proven recently by Shen [18, p.
1397, Proposition 2(30)].
Next we recall here the other main result of Shen [18, p. 1397, Proposition

2031)]:
7 1 >

(i3
U () S (o)

(R(c—b)>0; c&75), (2.3)

._

;=

hgE
=

i
-
i

which can immediately be rewritten in its equivalent form:

ii ( ii)i(nﬂ—2bz<n+c— n—lﬁ-c>

0
(R(c—b)>0; cZ75). (2.4)
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The summation formulas (2.3) and (2.4) do not appear to hold true as
claimed by Shen [18]. Indeed, upon differentiating both sides of the classical
result (1.1) or (2.2) partially with respect to the parameter b, if we apply the
definition (1.11), we find that

oo (b)n . _x; c— e -
2o, M= 2 Gy (et > teg ). 29)

Now let Q(b, ¢) denote the second member of the equivalent formulas (2.3) and
(2.4). Then, making use of (2.2) and (2.5), we obtain

where we have also applied the relationships (1.12) and (1.13). Therefore,
judging it by its claimed right-hand side, Shen’s assertion (2.3) may be corrected
to read as follows (see also Eq. (2.17) below for another corrected version when
it is judged by its claimed left-hand side):

ib lnl
(c), \'m lb—|—k

n=1 n

{n (n+c— n+0) +nzooo:< n+c—b) _(n—ic)2>}
)

(R(c—b)>0; c&75) (2.6)

or, equivalently,

X (), [1E 1 o 1 & 1
Z c) <Z;m>_;(n+0_ 2_Ez<n+c— n—i—c)

n=1 n n=0

(R(c—b)>0; c&75). (2.7)

Evidently, both (2.6) and (2.7) are rather simple consequences of the classical
result (1.2) which, in view of the relationship (1.14), also yields the following
Sfurther summation formulas:

S O 1)1 — H,(5:2)] = P - b)

n=1 n(c)n

(R(c—b)>0; c&75), (2.8)
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i (b) [{H (b; 1)} = 3H,(b; 1)H, (b;2) + H,(b; 3)]
=yt (c—b) (R(c—0D)>0; c&Zy), (2.9)
and (in general)

Sen(1) 5 eI S,y

J=0 n

="V —b) (1€ Ny R(c—b)>0; cZy), (2.10)

where we have also used the following immediate consequence of the series
representation (1.15):

W) = = 1Y

n=0 n+Zp

— P __ (peN). (2.11)

We remark in passing that, by differentiating both sides of the classical result
(1.1) partially with respect to the parameter ¢, one readily gets

n:lncn

> et =90 -0
(R(c—b)>0; c&Zy) (2.12)

or, more generally,

S () 5 et}

Jj=0 n=1

_ lﬂ(l“)(c —b)— l//(Hl)(c) (1 € No; R(e—b)>0; c£7Z,), (2.13)

which may be compared with the summation formula (2.10).
Finally, by setting a = 1 in (1.8) or 5 =1 in (1.9), we obtain a summation
formula of the form:

(‘R(C —-b)>1; c¢Z), (2.14)

Y e ) = ble= b 1)

which, for b = 1, immediately yields
)

or, equivalently,

n

(R(e) >2) (2.15)

| =
—
o
|
\S}
~
(S}
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|nl

(R(c) > 1). (2.16)

??‘l*—‘

; ) k=1 (c— 1
The summation formula (2.16) was derived recently by Mavromatis [13, p.
294, Eq. (3.20)] using standard nondegenerate perturbation theory. In fact,
(2.16) is the obvious special case b = 1 of the following corrected version of
Shen’s assertion (2.3) when it is judged by its claimed left-hand side (see also
Eq. (2.6) above):

as pointed out by Srivastava and Choi [20, p. 253, Eq. 3.5(17)].
By letting ¢ = 1 in (1.10), we obtain

o0 n

n=1

(R(a+0b) < 1), (2.18)

which, for a=—-b=m (m € N), is recorded by (for example) Hansen [9,
p- 362, Entry (55.4.7)]. Several other interesting special cases of the summa-
tion formulas (1.8), (1.9), and (1.10) are also recorded by Hansen [9, p. 362].

3. General summation formulas

The following unification (and generalization) of many (known or new)
summation formulas, which extend the classical result (1.1), was given by
Srivastava (cf. [19, p. 80, Eq. (1.3)]):

a+2n (0),(c),1+2a—b—c+m) (—m),
— n(a+n) 1+a—->),(1+a—c),(b+c—a—m),(1+a+m),
=y(l4+a-b)+y(I1+a—-c)+y(l+a+m)
F (i ta—b-ctm)—p(l+a)—y(l+a—b—c)
—y(l+a—-b+m)—y(l+a—c+m) (meNy), (3.1)
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where an empty sum is interpreted (as usual) to be nil. In this section, we
consider some of the applications of Srivastava’s general result (3.1), which are
relevant to our present investigation, in place of those of its very specialized
form (1.1).

Upon differentiating each member of (3.1) partially with respect to the pa-
rameter b, if we make use of the relationship (1.14), we obtain the general
summation formula:

i a+2n (0),(c),1+2a—b—c+m),(—m),

(a+n) 1+a-0),(1+a—c),(b+c—a—m),(1+a+m),
[Hy(b;1)—H,(1+2a—-b—c+m;1)+H,(1+a—0b;1)
—H,(b+c—a—m;1)]

=H,(1+a—-b-¢2)—H,(1+a—5;2) (meNy). (3.2)

If, in the summation formula (3.2), we let m — oo and apply (2.11) in
conjunction with the definition (1.11), we find that

i ncza_:_z:) (1 - _(Zinﬁ?i — c) [Hn(b; 1) Jr]—[n(] +a— b; 1)}

=yY1+a-b-c)-yV(1+a-b) Ra-b—c)>-1). (3.3)

Next, if we replace ¢ on both sides of (3.2) by 1 +a — ¢, and then let a — oo,
we shall get

Z’j: n(c) ((1b?|’-7(b_in();n_ m) [H,(b;1) — H, (1 +b— ¢ —m;1)]

=H,(c—b;2) (meNy), (3.4)

which, for m — oo, immediately yields the summation formula (2.5).
In its limit case when ¢ — —oo, the general summation formula (3.2) reduces
to the form:

Zoj: ncza++2:) (1 ps Eb;;((_lm_gna - m) [Hn(b; 1) —i—Hn(] +a-—b; 1)]
=—H,(1+a—5;2) (meN,), (3.5)

which, upon letting m — oo, yields

zx: aa++2Z 11131(_b3,n) [H,(b;1) + Hy(1 +a — b;1)]

= V(1 +a-b) (R(a—2b)>-2). (3.6)

Several further consequences of the general summation formula (3.2) can be
deduced by suitably specializing the various parameters involved.
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4. Remarks and observations

By setting ¢ = 1 and b = z in the classical result (1.1), and expanding each
side of the resulting equation in power series about z = 0, it is easily seen for
the Riemann Zeta function {(s) that

B 00 (_l)n—k
g(k+1)_; (. k), (4.1)
where s(n, k) denotes the Stirling numbers of the first kind, defined by [16, p. 90]
2z=1)-—nt1)=(=1)"(~2), =) s(n k)2 (4.2)
=0
so that

s(n, 1) = (=) (n = 1), (4.3)

s(n,2) = (=1)"(n—1)! , (4.4)

1
k
n—1 2 n—1
1 1
IS (43)
(k—l k> k=1 k2 }

(4.6)

and so on.

The summation formula (4.1), derived recently by Shen [18, p. 1397, Eq.
(32)] from the classical result (1.1) in the aforementioned manner, is actually a
special case of the following known result (cf. [10, p. 343, Eq. (14)]; see also [9,
p. 348, Entry (52.1.16)]):

- (=D o (=a)yw,

;7(n+k)(a)ns(n+k,k)_ - k) (a — k) (4.7)
when a =k + 1 (and n—n — k), since [cf. Eq. (2.11)]

YO (1) = (=1 "pl tp+1) (peN). (4.8)

Indeed the special case (4.1) of (4.7) when a =k + 1 is recorded by (for ex-
ample) Jordan [10, p. 166, Eq. (6); p. 194, Eq. (11); p. 339]. It is the summation
formula (4.1) that was actually used by James Stirling (1692-1770) in 1730 for
the determination of sums of reciprocal power series (cf., e.g., [10, p. 195]).
Several interesting companions of the summation formula (4.1) are also known
(see Eqs. (4.22), (4.25), (4.26), and (4.27) below).
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For the simple harmonic numbers H, defined by [cf. Eq. (1.11) above]

" 1
H, =H,(1;1) = -, 4.9
(=35 (49)
(4.1) with £ = 2 immediately yields the following summation formula:
= H,
L —(¢(3), (4.10)
2 ory=to

which was given by Leonhard Euler (1707-1783) in 1775 (cf., e.g., [3, p. 252 et
seq.] for a detailed historical account of Euler’s formula (4.10) above). In fact,
Euler’s formula (4.10) also follows as the special case £ = 2 of another known
result [9, p. 362, Entry (55.5.1)]:

ni: <nf1f>['<’k>,,k§1*“”<kl>- (4.11)

In his 1775 paper (referred to by Berndt [3, p. 252]), Euler not only dis-
covered (4.10) or its obvious variant:

> % = 2((3), (4.12)
n=1
and
00 ; 5
Z%:Zm)’ (4.13)

[

3

i&:%(m+2)é(m+l)— {m=n)l(n+1) (meN\{1}).

(4.14)

Since

i (n Tl)" = i n— - i nh.lﬂ (R(x) > 1), (4.15)

n=1

by choosing x = 3 and applying Euler’s formula (4.13), we readily arrive at the
known summation formula (cf., e.g., [9, p. 25, Entry (5.5.10); p. 361, Entry
(55.2.5)] and [15, p. 695, Entry 5.1.32.7)):

= H, 1
2 T md@ (4.16)

which was derived markedly differently by Shen [18, p. 1398] (see also [6,
p. 127, Eq. (D).
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Another interesting known result in this context is the summation formula
(cf., e.g., [17, p. 267]; see also [9, p. 366, Entry (55.8.2)]):

> (%) -, @)

which was rediscovered recently by (for example) Borwein and Borwein [4,
p.- 1192, Eq. (3)]. Since

1
Hn__: n—1s
n

by squaring both sides of this identity and applying the known results (4.13)
and (4.17), we are led fairly easily to the following essentially equivalent form of
(4.17):

i(wl)z—{:cw, (4.18)

n=1

which can be found in the works of (for example) de Doelder [6, p. 129, Eq. (9)]
(see also [4, p. 1192, Eq. (2)].
In view of the explicit representation (4.5), we find from (4.1) with k = 3 that

which, in conjunction with the known result (4.18), immediately yields (cf., e.g.,
[18, p. 1396, Eq. (25)])

Z PR Z =704, (4.19)
which can at once be rewritten in the (relatively simpler) form:

1 K1 3

ZTZEZ {5(2)}2—15(4)- (4.20)

It should be remarked in passing that the general problem of evaluating
double sums of the type:

S
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Ziipqu (p e NA{l} g €N), (4.21)

which corresponds to (4.20) for p = g = 2, was first proposed in a letter from
Christian Goldbach (1690-1764) to Euler in 1742, and that Euler was suc-
cessful in obtaining closed-form sums in several cases (cf., e.g., [3, p. 253]; see
also [20, p. 138, Problem 37; p. 157, Proposition 3.7] for some recent devel-
opments involving the general sum &, ).

Next we turn once again to the general formula (4.7) which, for a = k + 2,
yields the following companion of (4.1) (cf. [10, p. 339, Eq. (2)]):

—k

1+ Z " s(n, k). (4.22)

Two further results, analogous to (4.7), include the following known sum-
mation formulas recorded by (for example) Hansen [9, p. 348, Entries (52.1.17)
and (52.1.20)] (see also [10, p. 343, Eq. (14); p. 339)]):

N e RO TR )
n=0 n !

and
nzi; (n+k— ls(_nlj:k —oy, k) = (k- DG - 1). (4.24)

In particular, for a = k + 1 and a = k£ + 2, we find from (4.23) that (cf., e.g.,
[10, p. 195, Eq. (12); p. 339, Eq. (2)]; see also Eq. (4.1) above)

& (=
C(k) = 2 ms(n,k) (425)
and
_ c- G
(k) =1+2 ; ms(n, k). (4.26)

On the other hand, (4.24) can easily be rewritten in the form (cf. [10, p. 339]):

00 (_ l)n—k
(k 1)_; (n_l)(n_z).(n_l)!s(n,k). (4.27)
Just as the summation formula (4.1), each of the results (4.22), (4.25), (4.26),
and (4.27) is capable of yielding sums involving harmonic numbers by means of
such explicit representations for the Stirling numbers s(n, k) as (4.4) and (4.5),
and possibly also (4.6). The details involved in these derivations are being
omitted here.
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