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Inequalities for products of polynomials II

IGOR E. PRITSKER AND STEPHAN RUSCHEWEYH

Summary. In this paper, we continue the study of inequalities connecting the product of uni-
form norms of polynomials with the norm of their product, begun in [28]. Asymptotically sharp
constants are known for such inequalities over arbitrary compact sets in the complex plane. We
show here that such constants can be improved under some natural additional assumptions. Thus
we find the best constants for rotationally symmetric sets. In addition, we characterize all sets
that allow an improvement in the constant when the number of factors is fixed, and find the
improved value.
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1. The problem and its history

Let E be a compact set in the complex plane C. For a function f : E — C define
the uniform (sup) norm as follows:

1f1lz = sup [f(2)]
zelE

Kneser [18] proved the first sharp inequality for norms of products on [—1, 1] (see
also Aumann [1] for a preliminary result)

lp1ll=1,1llP2lli=1.1) < Kewllpipallj=1,17, degpi =4, degpa =n —£,  (1.1)
where

4 n—~{
2k —1 2k —1
Koy = gn—1 H (1 -+ cos on, 7r> H (1 + cos o 7T) . (1.2)

k=1 k=1

Research of 1. E. Pritsker was partially supported by the National Security Agency (grant
H98230-06-1-0055), and by the Alexander von Humboldt Foundation.

S. Ruscheweyh acknowledges partial support from the German-Israeli Foundation (grant
G-809-234.6/2003), from FONDECYT (grants 1070269 and 7080064) and from DGIP-UTFSM
(grant 240862).



120 I. E. PRITSKER AND S. RUSCHEWEYH AEM

Observe that equality holds in (1.1) for the Chebyshev polynomial ¢(z) = cosn
arccos z = p1(z)p2(z), with a proper choice of the factors p;(z) and p2(z). P. B.
Borwein [7] generalized this to the multifactor inequality

m [g] 2% — 1 2
[l <2 I (1400 ™ o) Il (09)
k=1 k=1
Note that
(2] ok —1 \2
on—1 kli[l <1 +oos 7r> ~ (3.20991...)" as n — oco. (1.4)

For another slight generalization of Kneser’s result see Theorem 3.3 below.

A similar inequality for E = D, where D := {w : |w| < 1} is the closed
unit disk, was considered by Gelfond [14, p. 135] in connection with the theory of
transcendental numbers:

[T lxllo < elipllo, (1.5)
k=1
Mabhler [22] later replaced e by 2:

[T Ipxllo < 27 [plln- (1.6)
k=1

It is easy to see that the base 2 cannot be decreased, if m = n and n — oc.

However, (1.6) has been further improved in two directions. D. W. Boyd [8, 9]
showed that, given the number of factors m in (1.6), one has

[ lpello < (Co)"lipll o, (1.7)
k=1

T/m
Cp, = exp <m/ log (2 cos t) dt) (1.8)
™ Jo 2

is asymptotically best possible for each fized m, as n — oo. Kro6 and Pritsker [19]
showed that, for any m < n,

where

LT lpello <27 Hipllo, (1.9)
k=1

where equality holds in (1.9) for each n € N, with m = n and p(z) = 2" — 1.
A natural general problem is to find, for a compact set £ C C, the smallest
constant Mg € (0, 00|, independent of n, such that

[T lpxlle < (Me)"llple (1.10)
k=1
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holds for arbitrary polynomials {py(z)} 7, with complex coefficients, where p(z) =
[1;-; pr(2) and n := deg p. The solution of this problem is based on the logarith-
mic potential theory (cf. [30] and [29]). Let cap(E) be the logarithmic capacity of
a compact set E C C. For E with cap(E) > 0, denote the equilibrium measure of
E by pup. We remark that pg is a positive unit Borel measure supported on OF
(see [30, p.55]). Define

dg(z) == rtnea5<|z—t|, z€C, (1.11)

which is clearly a positive and continuous function in C. It is easy to see that the
logarithm of this distance function is subharmonic in C. Furthermore, it has the
integral representation

logdg(z) = /log |z — t|dog(t), =ze€C,

where op is a positive unit Borel measure in C with unbounded support, see
Lemma 5.1 of [26] and [21]. For further in-depth analysis of the representing
measure o g, we refer to the recent paper [13] of Gardiner and Netuka. This integral
representation is the key fact used by the first author to prove the following result
in [26].

Theorem 1.1. Let E C C be a compact set, cap(E) > 0. Then (1.10) holds with

exp </ log dE(Z)dME(Z)>

Mp = cap(E) . (1.12)

Furthermore, this constant cannot be replaced with a smaller number.

Observe that Mp is invariant under similarity transformations of the plane (see
[26]).
For the closed unit disk D, we have that cap(D) = 1 ([30, p. 84]) and that

de
27’
where df is the arclength on 0D. Thus Theorem 1.1 yields

27 27
Mp = exp (;ﬁ [ rosan(e?) cw) — exp (;ﬂ | o2 de) —2, (L14)
0 0

so that we immediately obtain Mahler’s inequality (1.6).
If £ =[-1,1] then cap([—1,1]) = 1/2 and

dx
V1 — 22’
which is the Chebyshev (or arcsin) distribution (see [30, p. 84]). Using Theorem 1.1,

d,U,D = (113)

du[fl,l] = S [—1, 1], (115)
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we obtain

1 (! logd;_ 2 ! log(l
M[,l 1] = 2exp o8 1’1](:6) dx ) = 2exp os( +$)dx
’ T V1-—a? mJo V1-—2a?

2 71'/2
2 exp < / log(1 + sint)dt) ~ 3.2099123, (1.16)
T Jo

which gives the asymptotic version of Borwein’s inequality (1.3)—(1.4).
Considering the above analysis of Theorem 1.1, it is natural to conjecture that
the sharp universal bounds for Mg are given by

2= MD < ME < M[—l,l] ~ 32099123, (117)

for any bounded non-degenerate continuum E, see [27]. We treated this problem in
a recent paper [28], where the lower bound Mg > Mp = 2 is proved for all compact
sets E, and the upper bound is proved for certain special classes of continua (see
also [3]).

It turns out that the upper bound in (1.17) can be decreased under additional
assumptions. In particular, Section 2 contains improved bounds of the constant
M, for rotationally symmetric sets. The results of Boyd (1.7)—(1.8) suggest that
for some sets the constant Mg can be replaced by a smaller one, if the number of
factors is fixed. We characterize such sets in Section 3, and also find the improved
constant. All proofs are given in Section 4.

The problems considered in this paper have many applications in analysis,
number theory and computational mathematics. We mention specifically applica-
tions in transcendence theory (see Gelfond [14]), and in designing algorithms for
factoring polynomials (see Boyd [10] and Landau [20]). A survey of the results
involving norms different from the sup norm (e.g., Bombieri norms) can be found
in [10]. For polynomials in several variables, see the results of Mahler [23] for
the polydisk, of Avanissian and Mignotte [2] for the unit ball in C*. Also, see
Beauzamy and Enflo [5], and Beauzamy, Bombieri, Enflo and Montgomery [4] for
multivariate polynomials in different norms.

Acknowledgements. This paper was written while the first author was visiting
the University of Wiirzburg as a Humboldt Foundation Fellow. He would like to
thank the Department of Mathematics and the Function Theory research group
for their hospitality.

2. Symmetric sets

Since D has all possible rotational symmetries, one still has Mg > 2 as the best
lower estimate for a symmetric set E (see [28]). However, if E has some symmetry,
then it is usually possible to improve the upper bounds for My obtained in the
previous section. We show this for sets invariant under the cyclic group of rotations
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generated by the angle 27/k, k € N, with respect to a fixed point. Translating
the set, we can assume that the center of rotation is at the origin.

The following result was proved in [28] (see Corollary 2.3 there). It shows that
the constant decreases when the set is enlarged in a certain way. For a compact set
H C C, we define the unbounded domain Qy as the connected component of C\ H
that contains co. Note that the boundary 0y represents the “outer boundary”
of H. Consider the compact set

H*:= () D(zdu(2)).

z€0QH

Since H C D(z,dp(z)) for any z € C, we have that H C H*.

Proposition 2.1. Let H C C be compact, cap(H) > 0. If E is a compact set such
that H C E C H*, then Mg < My. Equality holds if and only if cap(Qu\Qg) = 0.

Define the k-star as Sy := {re? /% .+ € [0,1], I = 1,...,k}. We need to
determine the corresponding set S}, which was defined in Proposition 2.1. It is
not difficult to make a geometric observation that we have S} = D for even k € N.
However, for odd k > 3, S} is obtained by intersecting k congruent disks centered
at the roots of unity (the vertices of Sy ), whose radius is equal to the distance to
the farthest vertex:

k
Si = (D (2%, ds, (*11%)) | kis odd, k> 3.

=1

This is illustrated in Figure 1.

Fig. 1. S3 and S3.
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dt> |

Several numerical values of Mg, are given in the table below, while Figure 2
contains a listplot of Mg, .

Theorem 2.2. IfS;, C EC S}, k> 2, then

kg 27 [k ™
k k k [2]+k . . .
Mg < Mg, = exp < / log / (e £ 1)(e*e — 1)§_1e_”” dx
T™Jo t

2 3.20991 20 2.07389
3 2.35653 30 2.04823
4 246834 40 2.03579
5  2.24386 50 2.02845
10 2.15730 100 2.01404
32
3L
28 -
26
24 F )
2wl " K
2‘0 4‘0 6‘0 80

Fic. 2. Mg, k=2,...,100.

Next we state a corresponding result for convex sets. Let Py be a regular k-gon,
with vertices at the kth roots of unity. If F is a compact convex set (not a single
point) that is invariant under the rotation by the angle 27/k, k € N, k > 2, then
we can assume that P, C £ C D. Note that P} = S} for odd k¥ > 3. When &k > 4
is even, one obtains that P} is the intersection of k£ congruent disks centered at the
midpoints of sides of Py, with radius equal to the distance to the farthest vertex
(see Figure 3):

eQﬂ'il/k_FeQﬂ'i(lfl)/k (627ril/k+e27ri(ll)/k
s WPy

k
P’:_ﬂD< 2 2
=1

>), k is even, k > 4.
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Fic. 3. Py and Pf.

Theorem 2.3. If P, C EC P}, k> 2, then

2m [k+1

k i k 2 ] . 2 .
Mg < Mp, =exp / log / (e““” — ke ™ dx
™ Jo t

dt> |

Several numerical values of Mp, are listed below.

kMg, kMg,
2 3.20991 20 2.00604
3 2.19901 30 2.00270
4 216503 40 2.00152
5 207882 50 2.00098

10 2.02405 100 2.00025

Note that the Mp, converge to the limit 2 much more rapidly than the Mg, ,
which, of course, is expected.

Observe that P, (as well as S3) is just a segment, and Theorems 2.2 and 2.3
reduce to Corollary 2.2 of [28] in this case. We conjecture that Theorems 2.2
and 2.3 hold without the inclusion restrictions. Namely, the largest value of the
constant Mg among all rotationally symmetric sets as defined above is attained
for Sj, while for the convex rotationally symmetric sets Mg is maximized for P.
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3. Fixed number of factors

In this section, we explore possible improvements in the constant when the number
of factors is fixed. The key results in this direction are due to Boyd [8, 9] for the
unit disk, see (1.7)—(1.8). For general sets, this question was touched upon in [26],
where it was shown that the possibility of improvement essentially depends on the
number of extreme points in the set (see Theorem 4.1 in [26]). Specifically, let
{Fn(2)}22,, deg F,, = n, be the Fekete polynomials for the set E (cf. [29, p. 155]),
where E C C is compact, cap(E) > 0. Suppose that there exist points {{(;}7_;
such that

dg(z) = max |z — (| for all z € OF. (3.1)

1<I<s

If m > s then we can find such factoring for the sequence of Fekete polynomials

Fu(2) = [[ Fim(2), neN, (3.2)
k=1
that
m 1/n
Fin
lim (Hk—l I, |E) = Mp. (3.3)
n—oo [ Fnll e

Hence no improvement is possible in (1.10), for a fixed number of factors m > s, as
n — oo. In particular, there is no improvement in constant, for any m > 2, for such
sets as a circular arc of angular measure at most 7 and a segment, cf. (1.1)—(1.3).
Also, there is no improvement for any polygon with s vertices, if m > s.

We give a complete characterization for the possibility of improvement here. A
closed set S C FE is called dominant if

dr(z) = Igla§<|z —t| for all z € supp pug. (3.4)
€

This condition is somewhat less restrictive than (3.1), because supp pg C Qg C
OF, see [30, p. 79]. Note that if F is the closure of a Jordan domain, then supp pg =
0Qg = OE. When FE has at least one finite dominant set, we define a minimal
dominant set ® g as a dominant set with the smallest number of points card(Dg).
Of course, F might not have finite dominant sets at all, in which case we can

take any dominant set as the minimal dominant set with card(Dg) = 0, e.g.,
Dp =0L.
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Theorem 3.1. Let E C C be compact, cap(FE) > 0. For arbitrary polynomials
P, k=1,...,m, and their product p, deg(p) = n, we have

[ lIpellz < Bu(ED" lIpll5, (3-5)
k=1

where

B(B) exp (/ loglg}%xm |z — ekl duE(z)) .

™ = ma .
cnedE cap(FE)

cannot be replaced by a smaller constant. Furthermore, if m < card(Dg) then

B, (E) < Mg, while B,,(E) = Mg for m > card(Dg). When Dg is infinite,

B, (E) < Mg holds for all m € N, m > 2.

The following result shows that we always have an improvement for smooth
sets, which is similar to the disk case.

Corollary 3.2. If E C C is a compact set bounded by finitely many closed C'-
smooth Jordan curves, then By, (E) < Mg for allm € N, m > 2.

On the other hand, we have B,,(E) = Mg for m > s for every polygon with
s vertices. Furthermore, not all vertices may belong to the minimal dominating
set. For example, if F is an obtuse triangle, then ® g consists of only two vertices
that are the endpoints of the longest side. Hence B,,(E) = Mg for m > 2 as
in the segment case. Any circular arc of the angular measure at most 7 has its
endpoints as the minimal dominating set, which gives B,,(E) = Mg for m > 2
here too. However, if the angular measure of this arc is greater than 7, then one
immediately obtains that © g is infinite, and B,,(F) < Mg for all m > 2.

Finding the exact values of By, (FE) for general sets is very complicated. Essen-
tially the only known explicit value is due to Boyd for E = D, see (1.7)—(1.8).

We conclude this section with a simple remark that Kneser’s inequality (1.1)—
(1.2) is true for any compact convex set.

Theorem 3.3. Let E C C be a compact convex set, which is not a single point.
For arbitrary polynomials p1, deg(p1) = ¢, and ps2, deg(p2) = n — £, we have
o1l Ellp2lle < Kenllpip:2llE,

where Ky, is given in (1.2).

4. Proofs
4.1. Proofs for Section 2

Proof of Theorem 2.2. The inequality Mg < Mg, follows immediately from Propo-
sition 2.1. Thus we only need to find Mg, . Consider the conformal mapping
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U(w) :/1 (sF + 1) (¥ = 1)E s 2ds = w + Z Z)Tn
m=0

of the exterior of the unit disk 2p onto the exterior of a k-star, which we denote
by S}, (see [25, pp. 189-196], for example). Note from the symmetry that the k-th
roots of unity are mapped by ¥ to the origin, and the points obtained by the
rotation of these roots of unity by the angle 7/k are mapped to the vertices of ...
Also, it is clear from the expansion of ¥ that the capacity of this k-star is equal
to 1. By the invariance with respect to the similarity transformations, we have
that MSI’@ = Msg,.

Recall that the equilibrium measure pg; is the harmonic measure of the exterior
of S;, at oo, which is invariant under the conformal transformation ¥, see [29, p.
105]. Using this conformal invariance of u s;, we obtain that

1 271' X
log My = [ o dsy () ds () = [ logsy (w(e) a

k k it 27ri[k]+7ri ‘
7T/0 log‘\ll(e) \I/(ek2 k) dt
L o[F [5]+%

/ log
™ Jo

/ (eikm +1)(ezkx _ 1)i7167im dx

t

Proof of Theorem 2.3. The proof of this theorem closely follows the previous one.
We obtain the inequality Mg < Mp, from Proposition 2.1. Next we find Mp, , by
introducing the conformal mapping

U (w) :/1 (s —1)i872ds=w+ Z Z?:L
m=0

[V
Ty

dt. (]

of Qp onto the exterior of a regular k-gon denoted by Pj [25, p.196]. The k-th
roots of unity are mapped by ¥ to the vertices of PJ. Also, it is clear from the
expansion of ¥ that the capacity of P} is equal to 1. Hence we obtain that

log Mp,

1 2 )
log My, = [ logdry(2)dury(2) = [ lowdry((e)) ds
0

k ;cr it zﬂi[kJrl] ‘
77/0 log‘\lf(e) \If(ek 2 ) dt

k Z 27 [k+1
= / log
T™Jo

I . _
/ e (ethr — 1)267”6 dz| dt. O
t
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4.2. Proofs for Section 3

Proof of Theorem 3.1. For any k = 1,...,m, there exists ¢, € OF such that

1Pkl 2 = |pr(ck)l- (4.1)

Applying Lemma 5.1 of [26] to the set {cx}7;, we obtain for the function

Um(2) = max |z — ekl z € C, (4.2)
that
log t, (2) = /log |z — t|dom, (1), z€C, (4.3)
where oy, is a probability measure on C. If Zj, is the set of zeros of pi(z) (counted
according to multiplicities), k = 1,...,m, then
> logllpille = Y loglpr(ei)l =D Y logler —2[ <Y D logum(2)
k=1 k=1 k=1z€2, k=12z€2,

> / log |z — t|don, (t) = / log [p(t)|dom (t). (4.4)

ZGU}’:’ZI Z

Using the Bernstein-Walsh lemma [29, p. 156], we proceed further as follows:

S log Ipills < / (log [Ipll & + ngz(t, 50)) dom (1)
k=1

= / <1og llpll g + nlog capl(E) + n/log |z — t|dUE(z)> dom(t)

1

= loglpllp+nlog o+ [ [ o]z = Hdup () (1)
1

= log||pllg + nlog cap(E) + n//log |z — t|dom (t)dup(z)

1
= logpllp+nlog )+ / log tim (2)dpin (2),

where we changed the order of integration by Fubini’s theorem. It follows from
the above estimate that

u exp ([ log um(2)dpp(2)) )"
Tl < [ ANTE (15)
cap(E)
k=1
Note that logu,,(z) is a continuous function of ¢, € E, k = 1,...,m. Hence
exp (f log um(z)d,uE(z)) is also continuous for ¢, € OF, k=1,...,m, and attains

its maximum on (OE)™ for some set ¢ € OFE, k=1,...,m. Thus (3.5)—(3.6) are
proved. We now show that B,,(E) cannot be replaced by a smaller constant, by
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following the proof of Theorem 4.1 in [26]. Let

ur (z) ==  max |z — cfl, zeC.

For the n-th Fekete points {a; »}; of E, consider the Fekete polynomials [29, pp.
152-155]
F.(z) = H(z —ayn), neN.
=1
We define a subset Fj , C {a;n}]", associated with the point ¢}, k =1,...,m,
so that a;, n € Fp,p for some 1 <[y < n if
Uy (A1g,n) = |a1g,n — - (4.6)

In the case that (4.6) holds for more than one ¢}, we assign a;, » to only one set
Fin, to avoid an overlap of these sets. It is then clear that, for any n € N,

U fk,n = {al,n}?zl and fkl,nﬂfk2,n = @, kl }é k2.

k=1
The desired factors of F),(z) are defined as
Fin(z):= H (z—arn), k=1,...,m, (4.7
al,nej:k,n
so that
1Einlle > JT le—aal= ] wilaa), k=1 m
a1,nE€Fk,n al,n€Fk,n

It follows by Lemma 5.3 of [26] (see also [29, p. 159]) that

m 1/n n 1/n
1iminf<H||Fk7n||E> > lim <Hu:‘n(al,n)>

k=1 =1

1 n
= lim exp( E logufn(ak)n)>
n—oo n
k=1

= exp (/ 1ogu;“n(2)duE(2)) :

In addition, we have that lim,, o HFnH}E/" = cap(F) [29, p. 155], which gives

m 1/n
Fin
lim inf <Hk—1 I, |E> > B (E). (4.8)
n—o0 1Fnll

Since um (z) < dg(z) for any z € C, we immediately obtain that B,,(E) < Mg.
Suppose that m < card(®g). Then there is zp € suppug such that u},(20) <
dg(z0). As both functions are continuous, the same strict inequality holds in a
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neighborhood of zg, so that [logu},(z) dug(z) < [logdr(z) dug(z) and B, (E) <
Mpg. When D is infinite, this argument gives that B,,(F) < Mg, m > 2. Assume
now that D p is finite and that m > card(®g). Then u’,(z) = dg(z) for all z €
supp pg, because one of the possible choices of the points {c;}7"; C OF includes
points of the set D p. It is immediate that [logu},(2) dup(z) = [logdg(z) dug(z)
and B,,(E) = Mg in this case. O

Proof of Corollary 3.2. We need to show that the minimal dominant set is infinite,
hence the result follows from Theorem 3.1. Suppose to the contrary that Op =
{G:};_, is finite. Let J C 0N be a smooth closed Jordan curve. Then J C
supp ug = 0Qg [30, p. 79]. Define

Jl:{ZEJdE(Z):|Z_Cl|}7 lzl,...,S.

It is clear that J = Uj_;J;. Observe that the segment [z, (;], z € J;, is orthogonal
to 0Ng at ;. Hence each J; is contained in the normal line to Qg at (;, | =

1,...,s. We thus obtain that J is contained in a union of straight lines, so that
J cannot have a continuously turning tangent, which contradicts the smoothness
assumption. O

Proof of Theorem 3.3. Let z1, z2 € OF be such that ||p1]|g = [p1(z1)] and ||p2||g =

|p2(22)|. Since E is convex, we have that I := [z1,22] C E and
Irlzleale _ Il _ Inlileels _ e
Ip1p2llE Ip1p2]lr Ip1p2|l1
by Kneser’s inequality. O
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