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Inequalities for products of polynomials II
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Summary. In this paper, we continue the study of inequalities connecting the product of uni-
form norms of polynomials with the norm of their product, begun in [28]. Asymptotically sharp
constants are known for such inequalities over arbitrary compact sets in the complex plane. We
show here that such constants can be improved under some natural additional assumptions. Thus
we find the best constants for rotationally symmetric sets. In addition, we characterize all sets
that allow an improvement in the constant when the number of factors is fixed, and find the
improved value.
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1. The problem and its history

Let E be a compact set in the complex plane C. For a function f : E → C define
the uniform (sup) norm as follows:

‖f‖E = sup
z∈E

|f(z)|.

Kneser [18] proved the first sharp inequality for norms of products on [−1, 1] (see
also Aumann [1] for a preliminary result)

‖p1‖[−1,1]‖p2‖[−1,1] ≤ Kℓ,n‖p1p2‖[−1,1], deg p1 = ℓ, deg p2 = n − ℓ, (1.1)

where

Kℓ,n := 2n−1
ℓ
∏

k=1

(

1 + cos
2k − 1

2n
π

) n−ℓ
∏

k=1

(

1 + cos
2k − 1

2n
π

)

. (1.2)
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Observe that equality holds in (1.1) for the Chebyshev polynomial t(z) = cosn
arccos z = p1(z)p2(z), with a proper choice of the factors p1(z) and p2(z). P. B.
Borwein [7] generalized this to the multifactor inequality

m
∏

k=1

‖pk‖[−1,1] ≤ 2n−1

[ n
2
]

∏

k=1

(

1 + cos
2k − 1

2n
π

)2

‖p‖[−1,1]. (1.3)

Note that

2n−1

[ n
2
]

∏

k=1

(

1 + cos
2k − 1

2n
π

)2

∼ (3.20991 . . .)n as n → ∞. (1.4)

For another slight generalization of Kneser’s result see Theorem 3.3 below.
A similar inequality for E = D, where D := {w : |w| ≤ 1} is the closed

unit disk, was considered by Gelfond [14, p. 135] in connection with the theory of
transcendental numbers:

m
∏

k=1

‖pk‖D ≤ en‖p‖D, (1.5)

Mahler [22] later replaced e by 2:

m
∏

k=1

‖pk‖D ≤ 2n‖p‖D. (1.6)

It is easy to see that the base 2 cannot be decreased, if m = n and n → ∞.
However, (1.6) has been further improved in two directions. D. W. Boyd [8, 9]
showed that, given the number of factors m in (1.6), one has

m
∏

k=1

‖pk‖D ≤ (Cm)n‖p‖D, (1.7)

where

Cm := exp

(

m

π

∫ π/m

0

log

(

2 cos
t

2

)

dt

)

(1.8)

is asymptotically best possible for each fixed m, as n → ∞. Kroó and Pritsker [19]
showed that, for any m ≤ n,

m
∏

k=1

‖pk‖D ≤ 2n−1‖p‖D, (1.9)

where equality holds in (1.9) for each n ∈ N, with m = n and p(z) = zn − 1.
A natural general problem is to find, for a compact set E ⊂ C, the smallest

constant ME ∈ (0,∞], independent of n, such that

m
∏

k=1

‖pk‖E ≤ (ME)n‖p‖E (1.10)
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holds for arbitrary polynomials {pk(z)}m
k=1 with complex coefficients, where p(z) =

∏m
k=1 pk(z) and n := deg p. The solution of this problem is based on the logarith-

mic potential theory (cf. [30] and [29]). Let cap(E) be the logarithmic capacity of
a compact set E ⊂ C. For E with cap(E) > 0, denote the equilibrium measure of
E by µE . We remark that µE is a positive unit Borel measure supported on ∂E
(see [30, p. 55]). Define

dE(z) := max
t∈E

|z − t|, z ∈ C, (1.11)

which is clearly a positive and continuous function in C. It is easy to see that the
logarithm of this distance function is subharmonic in C. Furthermore, it has the
integral representation

log dE(z) =

∫

log |z − t|dσE(t), z ∈ C,

where σE is a positive unit Borel measure in C with unbounded support, see
Lemma 5.1 of [26] and [21]. For further in-depth analysis of the representing
measure σE , we refer to the recent paper [13] of Gardiner and Netuka. This integral
representation is the key fact used by the first author to prove the following result
in [26].

Theorem 1.1. Let E ⊂ C be a compact set, cap(E) > 0. Then (1.10) holds with

ME =

exp

(
∫

log dE(z)dµE(z)

)

cap(E)
. (1.12)

Furthermore, this constant cannot be replaced with a smaller number.

Observe that ME is invariant under similarity transformations of the plane (see
[26]).

For the closed unit disk D, we have that cap(D) = 1 ([30, p. 84]) and that

dµD =
dθ

2π
, (1.13)

where dθ is the arclength on ∂D. Thus Theorem 1.1 yields

MD = exp

(

1

2π

∫ 2π

0

log dD(eiθ) dθ

)

= exp

(

1

2π

∫ 2π

0

log 2 dθ

)

= 2, (1.14)

so that we immediately obtain Mahler’s inequality (1.6).
If E = [−1, 1] then cap([−1, 1]) = 1/2 and

dµ[−1,1] =
dx

π
√

1 − x2
, x ∈ [−1, 1], (1.15)

which is the Chebyshev (or arcsin) distribution (see [30, p. 84]). Using Theorem 1.1,



122 I. E. Pritsker and S. Ruscheweyh AEM

we obtain

M[−1,1] = 2 exp

(

1

π

∫ 1

−1

log d[−1,1](x)√
1 − x2

dx

)

= 2 exp

(

2

π

∫ 1

0

log(1 + x)√
1 − x2

dx

)

= 2 exp

(

2

π

∫ π/2

0

log(1 + sin t)dt

)

≈ 3.2099123, (1.16)

which gives the asymptotic version of Borwein’s inequality (1.3)–(1.4).
Considering the above analysis of Theorem 1.1, it is natural to conjecture that

the sharp universal bounds for ME are given by

2 = MD ≤ ME ≤ M[−1,1] ≈ 3.2099123, (1.17)

for any bounded non-degenerate continuum E, see [27]. We treated this problem in
a recent paper [28], where the lower bound ME ≥ MD = 2 is proved for all compact
sets E, and the upper bound is proved for certain special classes of continua (see
also [3]).

It turns out that the upper bound in (1.17) can be decreased under additional
assumptions. In particular, Section 2 contains improved bounds of the constant
ME for rotationally symmetric sets. The results of Boyd (1.7)–(1.8) suggest that
for some sets the constant ME can be replaced by a smaller one, if the number of
factors is fixed. We characterize such sets in Section 3, and also find the improved
constant. All proofs are given in Section 4.

The problems considered in this paper have many applications in analysis,
number theory and computational mathematics. We mention specifically applica-
tions in transcendence theory (see Gelfond [14]), and in designing algorithms for
factoring polynomials (see Boyd [10] and Landau [20]). A survey of the results
involving norms different from the sup norm (e.g., Bombieri norms) can be found
in [10]. For polynomials in several variables, see the results of Mahler [23] for
the polydisk, of Avanissian and Mignotte [2] for the unit ball in Ck. Also, see
Beauzamy and Enflo [5], and Beauzamy, Bombieri, Enflo and Montgomery [4] for
multivariate polynomials in different norms.

Acknowledgements. This paper was written while the first author was visiting
the University of Würzburg as a Humboldt Foundation Fellow. He would like to
thank the Department of Mathematics and the Function Theory research group
for their hospitality.

2. Symmetric sets

Since D has all possible rotational symmetries, one still has ME ≥ 2 as the best
lower estimate for a symmetric set E (see [28]). However, if E has some symmetry,
then it is usually possible to improve the upper bounds for ME obtained in the
previous section. We show this for sets invariant under the cyclic group of rotations
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generated by the angle 2π/k, k ∈ N, with respect to a fixed point. Translating
the set, we can assume that the center of rotation is at the origin.

The following result was proved in [28] (see Corollary 2.3 there). It shows that
the constant decreases when the set is enlarged in a certain way. For a compact set
H ⊂ C, we define the unbounded domain ΩH as the connected component of C\H
that contains ∞. Note that the boundary ∂ΩH represents the “outer boundary”
of H . Consider the compact set

H∗ :=
⋂

z∈∂ΩH

D(z, dH(z)).

Since H ⊂ D(z, dH(z)) for any z ∈ C, we have that H ⊂ H∗.

Proposition 2.1. Let H ⊂ C be compact, cap(H) > 0. If E is a compact set such

that H ⊂ E ⊂ H∗, then ME ≤ MH . Equality holds if and only if cap(ΩH \ΩE) = 0.

Define the k-star as Sk := {re2πil/k : r ∈ [0, 1], l = 1, . . . , k}. We need to
determine the corresponding set S∗

k , which was defined in Proposition 2.1. It is
not difficult to make a geometric observation that we have S∗

k = D for even k ∈ N.
However, for odd k ≥ 3, S∗

k is obtained by intersecting k congruent disks centered
at the roots of unity (the vertices of Sk), whose radius is equal to the distance to
the farthest vertex:

S∗
k =

k
⋂

l=1

D
(

e2πil/k, dSk
(e2πil/k)

)

, k is odd, k ≥ 3.

This is illustrated in Figure 1.

Fig. 1. S3 and S∗

3
.
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Theorem 2.2. If Sk ⊂ E ⊂ S∗
k, k ≥ 2, then

ME ≤ MSk
= exp

(

k

π

∫ π
k

0

log

∣

∣

∣

∣

∣

∫ 2π
k [ k

2 ]+ π
k

t

(eikx + 1)(eikx − 1)
2
k
−1e−ix dx

∣

∣

∣

∣

∣

dt

)

.

Several numerical values of MSk
are given in the table below, while Figure 2

contains a listplot of MSk
.

k MSk

2 3.20991
3 2.35653
4 2.46834
5 2.24386

10 2.15730

k MSk

20 2.07389
30 2.04823
40 2.03579
50 2.02845

100 2.01404

20 40 60 80

2.2

2.4

2.6

2.8

3

3.2

Fig. 2. MSk
, k = 2, . . . , 100.

Next we state a corresponding result for convex sets. Let Pk be a regular k-gon,
with vertices at the kth roots of unity. If E is a compact convex set (not a single
point) that is invariant under the rotation by the angle 2π/k, k ∈ N, k ≥ 2, then
we can assume that Pk ⊂ E ⊂ D. Note that P ∗

k = S∗
k for odd k ≥ 3. When k ≥ 4

is even, one obtains that P ∗
k is the intersection of k congruent disks centered at the

midpoints of sides of Pk, with radius equal to the distance to the farthest vertex
(see Figure 3):

P ∗
k =

k
⋂

l=1

D

(

e2πil/k + e2πi(l−1)/k

2
, dPk

(

e2πil/k + e2πi(l−1)/k

2

))

, k is even, k ≥ 4.
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Fig. 3. P4 and P ∗

4
.

Theorem 2.3. If Pk ⊂ E ⊂ P ∗
k , k ≥ 2, then

ME ≤ MPk
= exp

(

k

π

∫ π
k

0

log

∣

∣

∣

∣

∣

∫ 2π
k [ k+1

2 ]

t

(eikx − 1)
2
k e−ix dx

∣

∣

∣

∣

∣

dt

)

.

Several numerical values of MPk
are listed below.

k MPk

2 3.20991
3 2.19901
4 2.16503
5 2.07882

10 2.02405

k MPk

20 2.00604
30 2.00270
40 2.00152
50 2.00098

100 2.00025

Note that the MPk
converge to the limit 2 much more rapidly than the MSk

,
which, of course, is expected.

Observe that P2 (as well as S2) is just a segment, and Theorems 2.2 and 2.3
reduce to Corollary 2.2 of [28] in this case. We conjecture that Theorems 2.2
and 2.3 hold without the inclusion restrictions. Namely, the largest value of the
constant ME among all rotationally symmetric sets as defined above is attained
for Sk, while for the convex rotationally symmetric sets ME is maximized for Pk.
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3. Fixed number of factors

In this section, we explore possible improvements in the constant when the number
of factors is fixed. The key results in this direction are due to Boyd [8, 9] for the
unit disk, see (1.7)–(1.8). For general sets, this question was touched upon in [26],
where it was shown that the possibility of improvement essentially depends on the
number of extreme points in the set (see Theorem 4.1 in [26]). Specifically, let
{Fn(z)}∞n=1, deg Fn = n, be the Fekete polynomials for the set E (cf. [29, p. 155]),
where E ⊂ C is compact, cap(E) > 0. Suppose that there exist points {ζl}s

l=1

such that

dE(z) = max
1≤l≤s

|z − ζl| for all z ∈ ∂E. (3.1)

If m ≥ s then we can find such factoring for the sequence of Fekete polynomials

Fn(z) =

m
∏

k=1

Fk,n(z), n ∈ N, (3.2)

that

lim
n→∞

(∏m
k=1 ‖Fk,n‖E

‖Fn‖E

)1/n

= ME. (3.3)

Hence no improvement is possible in (1.10), for a fixed number of factors m ≥ s, as
n → ∞. In particular, there is no improvement in constant, for any m ≥ 2, for such
sets as a circular arc of angular measure at most π and a segment, cf. (1.1)–(1.3).
Also, there is no improvement for any polygon with s vertices, if m ≥ s.

We give a complete characterization for the possibility of improvement here. A
closed set S ⊂ E is called dominant if

dE(z) = max
t∈S

|z − t| for all z ∈ suppµE . (3.4)

This condition is somewhat less restrictive than (3.1), because supp µE ⊂ ∂ΩE ⊂
∂E, see [30, p. 79]. Note that if E is the closure of a Jordan domain, then suppµE =
∂ΩE = ∂E. When E has at least one finite dominant set, we define a minimal
dominant set DE as a dominant set with the smallest number of points card(DE).
Of course, E might not have finite dominant sets at all, in which case we can
take any dominant set as the minimal dominant set with card(DE) = ∞, e.g.,
DE = ∂E.
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Theorem 3.1. Let E ⊂ C be compact, cap(E) > 0. For arbitrary polynomials

pk, k = 1, . . . , m, and their product p, deg(p) = n, we have

m
∏

k=1

‖pk‖E ≤ (Bm(E))
n ‖p‖E, (3.5)

where

Bm(E) := max
ck∈∂E

exp

(
∫

log max
1≤k≤m

|z − ck| dµE(z)

)

cap(E)
(3.6)

cannot be replaced by a smaller constant. Furthermore, if m < card(DE) then

Bm(E) < ME , while Bm(E) = ME for m ≥ card(DE). When DE is infinite,

Bm(E) < ME holds for all m ∈ N, m ≥ 2.

The following result shows that we always have an improvement for smooth
sets, which is similar to the disk case.

Corollary 3.2. If E ⊂ C is a compact set bounded by finitely many closed C1-

smooth Jordan curves, then Bm(E) < ME for all m ∈ N, m ≥ 2.

On the other hand, we have Bm(E) = ME for m ≥ s for every polygon with
s vertices. Furthermore, not all vertices may belong to the minimal dominating
set. For example, if E is an obtuse triangle, then DE consists of only two vertices
that are the endpoints of the longest side. Hence Bm(E) = ME for m ≥ 2 as
in the segment case. Any circular arc of the angular measure at most π has its
endpoints as the minimal dominating set, which gives Bm(E) = ME for m ≥ 2
here too. However, if the angular measure of this arc is greater than π, then one
immediately obtains that DE is infinite, and Bm(E) < ME for all m ≥ 2.

Finding the exact values of Bm(E) for general sets is very complicated. Essen-
tially the only known explicit value is due to Boyd for E = D, see (1.7)–(1.8).

We conclude this section with a simple remark that Kneser’s inequality (1.1)–
(1.2) is true for any compact convex set.

Theorem 3.3. Let E ⊂ C be a compact convex set, which is not a single point.

For arbitrary polynomials p1, deg(p1) = ℓ, and p2, deg(p2) = n − ℓ, we have

‖p1‖E‖p2‖E ≤ Kℓ,n‖p1p2‖E ,

where Kℓ,n is given in (1.2).

4. Proofs

4.1. Proofs for Section 2

Proof of Theorem 2.2. The inequality ME ≤ MSk
follows immediately from Propo-

sition 2.1. Thus we only need to find MSk
. Consider the conformal mapping
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Ψ(w) =

∫ w

1

(sk + 1)(sk − 1)
2
k
−1s−2 ds = w +

∞
∑

m=0

am

wm

of the exterior of the unit disk ΩD onto the exterior of a k-star, which we denote
by S′

k (see [25, pp. 189–196], for example). Note from the symmetry that the k-th
roots of unity are mapped by Ψ to the origin, and the points obtained by the
rotation of these roots of unity by the angle π/k are mapped to the vertices of S′

k.
Also, it is clear from the expansion of Ψ that the capacity of this k-star is equal
to 1. By the invariance with respect to the similarity transformations, we have
that MS′

k
= MSk

.

Recall that the equilibrium measure µS′

k
is the harmonic measure of the exterior

of S′
k at ∞, which is invariant under the conformal transformation Ψ, see [29, p.

105]. Using this conformal invariance of µS′

k
, we obtain that

log MS′

k
=

∫

log dS′

k
(z) dµS′

k
(z) =

1

2π

∫ 2π

0

log dS′

k
(Ψ(eit)) dt

=
k

π

∫ π
k

0

log
∣

∣

∣
Ψ(eit) − Ψ

(

e
2πi
k [ k

2 ]+ πi
k

)∣

∣

∣
dt

=
k

π

∫ π
k

0

log

∣

∣

∣

∣

∣

∫ 2π
k [ k

2 ]+ π
k

t

(eikx + 1)(eikx − 1)
2
k
−1e−ix dx

∣

∣

∣

∣

∣

dt. �

Proof of Theorem 2.3. The proof of this theorem closely follows the previous one.
We obtain the inequality ME ≤ MPk

from Proposition 2.1. Next we find MPk
, by

introducing the conformal mapping

Ψ(w) =

∫ w

1

(sk − 1)
2
k s−2 ds = w +

∞
∑

m=0

am

wm

of ΩD onto the exterior of a regular k-gon denoted by P ′
k [25, p. 196]. The k-th

roots of unity are mapped by Ψ to the vertices of P ′
k. Also, it is clear from the

expansion of Ψ that the capacity of P ′
k is equal to 1. Hence we obtain that

log MPk
= log MP ′

k
=

∫

log dP ′

k
(z) dµP ′

k
(z) =

1

2π

∫ 2π

0

log dP ′

k
(Ψ(eit)) dt

=
k

π

∫ π
k

0

log
∣

∣

∣
Ψ(eit) − Ψ

(

e
2πi
k [ k+1

2 ]
)
∣

∣

∣
dt

=
k

π

∫ π
k

0

log

∣

∣

∣

∣

∣

∫ 2π
k [ k+1

2 ]

t

(eikx − 1)
2
k e−ix dx

∣

∣

∣

∣

∣

dt. �



Vol. 77 (2009) Inequalities for products of polynomials II 129

4.2. Proofs for Section 3

Proof of Theorem 3.1. For any k = 1, . . . , m, there exists ck ∈ ∂E such that

‖pk‖E = |pk(ck)|. (4.1)

Applying Lemma 5.1 of [26] to the set {ck}m
k=1, we obtain for the function

um(z) := max
1≤k≤m

|z − ck|, z ∈ C, (4.2)

that

log um(z) =

∫

log |z − t|dσm(t), z ∈ C, (4.3)

where σm is a probability measure on C. If Zk is the set of zeros of pk(z) (counted
according to multiplicities), k = 1, . . . , m, then

m
∑

k=1

log ‖pk‖E =

m
∑

k=1

log |pk(ck)| =

m
∑

k=1

∑

z∈Zk

log |ck − z| ≤
m
∑

k=1

∑

z∈Zk

log um(z)

=
∑

z∈
⋃

m
k=1

Zk

∫

log |z − t|dσm(t) =

∫

log |p(t)|dσm(t). (4.4)

Using the Bernstein–Walsh lemma [29, p. 156], we proceed further as follows:

m
∑

k=1

log ‖pk‖E ≤
∫

(log ‖p‖E + ngE(t,∞)) dσm(t)

=

∫
(

log ‖p‖E + n log
1

cap(E)
+ n

∫

log |z − t|dµE(z)

)

dσm(t)

= log ‖p‖E + n log
1

cap(E)
+ n

∫ ∫

log |z − t|dµE(z)dσm(t)

= log ‖p‖E + n log
1

cap(E)
+ n

∫ ∫

log |z − t|dσm(t)dµE(z)

= log ‖p‖E + n log
1

cap(E)
+ n

∫

log um(z)dµE(z),

where we changed the order of integration by Fubini’s theorem. It follows from
the above estimate that

m
∏

k=1

‖pk‖E ≤
(

exp
(∫

log um(z)dµE(z)
)

cap(E)

)n

‖p‖E. (4.5)

Note that log um(z) is a continuous function of ck ∈ ∂E, k = 1, . . . , m. Hence
exp

(∫

log um(z)dµE(z)
)

is also continuous for ck ∈ ∂E, k = 1, . . . , m, and attains
its maximum on (∂E)m for some set c∗k ∈ ∂E, k = 1, . . . , m. Thus (3.5)–(3.6) are
proved. We now show that Bm(E) cannot be replaced by a smaller constant, by
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following the proof of Theorem 4.1 in [26]. Let

u∗
m(z) := max

1≤k≤m
|z − c∗k|, z ∈ C.

For the n-th Fekete points {al,n}n
l=1 of E, consider the Fekete polynomials [29, pp.

152–155]

Fn(z) =

n
∏

l=1

(z − al,n), n ∈ N.

We define a subset Fk,n ⊂ {al,n}n
l=1, associated with the point c∗k, k = 1, . . . , m,

so that al0,n ∈ Fk,n for some 1 ≤ l0 ≤ n if

u∗
m(al0,n) = |al0,n − c∗k|. (4.6)

In the case that (4.6) holds for more than one c∗k, we assign al0,n to only one set
Fk,n, to avoid an overlap of these sets. It is then clear that, for any n ∈ N,

m
⋃

k=1

Fk,n = {al,n}n
l=1 and Fk1,n

⋂

Fk2,n = ∅, k1 6= k2.

The desired factors of Fn(z) are defined as

Fk,n(z) :=
∏

al,n∈Fk,n

(z − al,n), k = 1, . . . , m, (4.7)

so that

‖Fk,n‖E ≥
∏

al,n∈Fk,n

|c∗k − al,n| =
∏

al,n∈Fk,n

u∗
m(al,n), k = 1, . . . , m.

It follows by Lemma 5.3 of [26] (see also [29, p. 159]) that

lim inf
n→∞

(

m
∏

k=1

‖Fk,n‖E

)1/n

≥ lim
n→∞

(

n
∏

l=1

u∗
m(al,n)

)1/n

= lim
n→∞

exp

(

1

n

n
∑

k=1

log u∗
m(ak,n)

)

= exp

(
∫

log u∗
m(z)dµE(z)

)

.

In addition, we have that limn→∞ ‖Fn‖1/n
E = cap(E) [29, p. 155], which gives

lim inf
n→∞

(∏m
k=1 ‖Fk,n‖E

‖Fn‖E

)1/n

≥ Bm(E). (4.8)

Since um(z) ≤ dE(z) for any z ∈ C, we immediately obtain that Bm(E) ≤ ME .
Suppose that m < card(DE). Then there is z0 ∈ suppµE such that u∗

m(z0) <
dE(z0). As both functions are continuous, the same strict inequality holds in a
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neighborhood of z0, so that
∫

log u∗
m(z) dµE(z) <

∫

log dE(z) dµE(z) and Bm(E) <
ME . When DE is infinite, this argument gives that Bm(E) < ME, m ≥ 2. Assume
now that DE is finite and that m ≥ card(DE). Then u∗

m(z) = dE(z) for all z ∈
suppµE , because one of the possible choices of the points {ck}m

k=1 ⊂ ∂E includes
points of the set DE . It is immediate that

∫

log u∗
m(z) dµE(z) =

∫

log dE(z) dµE(z)
and Bm(E) = ME in this case. �

Proof of Corollary 3.2. We need to show that the minimal dominant set is infinite,
hence the result follows from Theorem 3.1. Suppose to the contrary that DE =
{ζl}s

l=1 is finite. Let J ⊂ ∂ΩE be a smooth closed Jordan curve. Then J ⊂
suppµE = ∂ΩE [30, p. 79]. Define

Jl := {z ∈ J : dE(z) = |z − ζl|}, l = 1, . . . , s.

It is clear that J = ∪s
l=1Jl. Observe that the segment [z, ζl], z ∈ Jl, is orthogonal

to ∂ΩE at ζl. Hence each Jl is contained in the normal line to ∂ΩE at ζl, l =
1, . . . , s. We thus obtain that J is contained in a union of straight lines, so that
J cannot have a continuously turning tangent, which contradicts the smoothness
assumption. �

Proof of Theorem 3.3. Let z1, z2 ∈ ∂E be such that ‖p1‖E = |p1(z1)| and ‖p2‖E =
|p2(z2)|. Since E is convex, we have that I := [z1, z2] ⊂ E and

‖p1‖E‖p2‖E

‖p1p2‖E
≤ |p1(z1)||p2(z2)|

‖p1p2‖I
≤ ‖p1‖I‖p2‖I

‖p1p2‖I
≤ Kl,n,

by Kneser’s inequality. �
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