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CONNECTIONS BETWEEN CERTAIN CLASSES OF
HARMONIC UNIVALENT MAPPINGS INVOLVING

GENERALIZED BESSEL FUNCTIONS

SAURABH PORWAL1∗ AND DILSHAD AHAMAD2

Abstract. In the present paper, we obtain some sufficient conditions of cer-
tain convolution operator involving generalized Bessel functions of first kind
belonging to various subclasses of harmonic univalent functions. To be more
precise, we investigate such connections with harmonic γ-uniformly convex and
harmonic γ-uniformly starlike mappings in the plane.

1. Introduction and preliminaries

Let A denote the class of functions f of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and satisfy
the normalization condition f(0) = f ′(0)− 1 = 0.

A continuous complex-valued function f = u + iv is said to be harmonic in
a simply-connected domain D if both u and v are real harmonic in D. In any
simply-connected domain we can write f = h+ g , where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and sense-preserving in D is that∣∣h′

(z)
∣∣ > ∣∣g′

(z)
∣∣ , z ∈ D. See Clunie and Sheil-Small [7], for more basic results

on harmonic functions one may refer to the following standard introductory text
book by Duren [8].

Let H be the family of all harmonic functions of the form f = h+ g, where

h(z) = z +
∞∑
n=2

Anz
n, g(z) =

∞∑
n=1

Bnz
n, |B1| < 1, (1.2)

are in the class A. Let SH denote the subclass of H consisting of functions
f = h + g of the form (1.2) that are harmonic univalent and sense-preserving in
the open unit disk U for which f (0) = fz (0)− 1 = 0.
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Note that SH reduces to class S of normalized analytic univalent functions if
the co-analytic part of its member is zero.

The classes S0
H and SH were first studied in [7]. Also, we let K0

H denote the
subclasses of S0

H of harmonic functions which are convex in U . For definitions
and properties of this class, one may refer to [7] or [8].

For 0 ≤ β < 1, let

NH (β) =

{
f ∈ H : <

(
f ′ (z)

z′

)
≥ β, z = reiθ ∈ U

}
,

RH(β) =

{
f ∈ H : <

(
f ′′(z)

z′′

)
≥ β, z = reiθ ∈ U

}
,

where

z′ =
∂

∂θ

(
z = reiθ

)
, z′′ =

∂

∂θ
(z′), f ′ (z) =

∂

∂θ
f
(
reiθ
)
, f ′′(z) =

∂

∂θ
(f ′(z)) .

Define

TNH (β) ≡ NH (β) ∩ T and TRH (β) ≡ RH (β) ∩ T,
where T consists of the functions f = h+ g in SH so that h and g are of the form

h(z) = z −
∞∑
n=2

|An| zn, g(z) =
∞∑
n=1

|Bn| zn. (1.3)

The classes NH(β) and RH(β) were initially introduced and studied, respectively,
in [3] and [4].

Let HUC(γ, α) be a subclass of the functions f = h+ g in H which satisfy the
condition

<

{
1 + (1 + γeiη)

z2h′′(z) + 2zg′(z) + z2g′′(z)

zh′(z)− zg′(z)

}
≥ α,

for some γ (0 ≤ γ <∞), α (0 ≤ α < 1) and z ∈ U .
Define THUC(γ, α) ≡ HUC(γ, α) ∩ T .
A mapping in HUC(γ, α) or THUC(γ, α) is called γ-uniformly harmonic con-

vex in U . These classes were studied in by Kim et al. in [10]. For g ≡ 0, γ = 1
and α = 0 the class HUC(γ, α) reduces to the class UCV of analytic uniformly
convex functions studied by Goodman [9].

Analogues to HUC(γ, α) is the class HUS∗(γ, α) consisting of harmonic func-
tions f = h+ g in H which satisfy the condition

<
{
zf ′(z)

z′f(z)
− α

}
≥ γ

∣∣∣∣zf ′(z)

z′f(z)
− 1

∣∣∣∣
for some γ (0 ≤ γ < ∞), α(0 ≤ α < 1) and z ∈ U . Also define THUS∗(γ, α) ≡
HUS∗(γ, α) ∩ T. The mappings in HUS∗(γ, α) or THUS∗(γ, α) are called γ-
harmonic uniformly starlike in U . For α = 0, these classes were studied in [20].
For g ≡ 0, γ = 1 and α = 0, HUS∗(γ, α) reduces to the family US∗ of analytic
uniformly starlike functions defined by Rønning [11].
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Now, we recall that the generalized Bessel function of the first kind of order p
is given by the power series

ω(z) = ωp,b,c(z) =
∞∑
n=0

(−1)ncn

n!Γ
(
p+ n+ b+1

2

) (z
2

)2n+p
, z ∈ C. (1.4)

where b, p, c ∈ C. The equation (1.4) is a generalization of Bessel, modified Bessel,
spherical Bessel and modified spherical Bessel functions. It is worth mentioning
that, in particular, when b = c = 1, we reobtain the Bessel function ωp,1,1 = Jp,
and for c = −1, b = 1 the function ωp,1,−1 becomes the modified Bessel function
Ip. Now, consider the function up,b,c defined by the transformation

up,b,c(z) = 2pΓ

(
p+

b+ 1

2

)
z−p/2ωp,b,c(z

1/2).

By using the well-known Pochhammer (or Appell) symbol, defined in terms of
the Euler Gamma function for a 6= 0,−1,−2, . . . by

(a)n =
Γ(a+ n)

Γ(a)
=

{
1, if n = 0

a(a+ 1) . . . (a+ n− 1), if n = 1, 2, 3, . . . ,
,

we obtain for the function up,b,c the following representation

up,b,c(z) =
∞∑
n=0

(−c/4)n(
p+ (b+1)

2

)
n

zn

n!
, (1.5)

where p+ (b+ 1)/2 6= 0,−1,−2, . . .. This function is analytic on C and satisfies
the second-order linear differential equation

4z2u′′(z) + 2 (2p+ b+ 1) zu′(z) + czu(z) = 0.

For convenience throughout in the sequel, we use the following notations:

up,b,c = up, k = p+
b+ 1

2
.

For complex parameters c1, k1, c2, k2 (k1, k2 6= 0,−1,−2, . . .), Porwal [12] define
the functions φ1(z) = zup1(z) and φ2(z) = zup2(z) .

Corresponding to these functions, they introduce the following convolution
operator

Ω ≡ Ω

(
k1, c1
k2, c2

)
: H → H

defined by

Ω

(
k1, c1
k2, c2

)
f = f ∗ (φ1 + φ2) = h(z) ∗ φ1(z) + g(z) ∗ φ2(z)

for any function f = h+ g in H.
Letting

Ω

(
k1, c1
k2, c2

)
f(z) = H(z) +G(z),
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where

H(z) = z +
∞∑
n=2

(−c1/4)n−1

(k1)n−1(n− 1)!
Anz

n, G(z) =
∞∑
n=1

(−c2/4)n−1

(k2)n−1(n− 1)!
Bnz

n. (1.6)

In the present paper, we generalize the convolution operator Ω

(
k1, c1
k2, c2

)
in to

Ωλ

(
k1, c1
k2, c2

)
as follows

Ωλ

(
k1, c1
k2, c2

)
f = h(z)∗

(
λzφ

′

1(z) + (1− λ)φ1(z)
)

+g(z) ∗
(
λzφ

′
2(z) + (1− λ)φ2(z)

)
or equivalently

Ωλ

(
k1, c1
k2, c2

)
f(z) = H(z) +G(z),

where

H(z) = z+
∞∑
n=2

(−c1/4)n−1

(k1)n−1(n− 1)!
(λn+ (1− λ))Anz

n, G(z) =
∞∑
n=1

(−c2/4)n−1

(k2)n−1(n− 1)!
(λn+ (1− λ))Bnz

n.

(1.7)
Throughout this paper, we will frequently use the notation

Ωλ (f) = Ωλ

(
k1, c1
k2, c2

)
f.

The generalized Bessel function is a recent topic of study in Geometric Function
Theory (e.g. see the work of [5], [12]-[17]). Motivated by results on connections
between various subclasses of analytic and harmonic univalent functions by using
hypergeometric functions (see [1], [6], [18]-[19] [21]), we establish a number of
connections between the classes HUC(γ, α), HUS∗(γ, α), TNH(β) and TRH(β)
by applying the convolution operator Ωλ.

2. Connections with harmonic uniformly convex mappings

In order to establish connections between harmonic convex mappings and har-
monic γ-uniformly convex mappings, we need following results in Lemma 2.1 [7],
Lemma 2.2 [10] and Lemma 2.4 [5].

Lemma 2.1. If f = h+ g ∈ K0
H , where h and g are given by (1.2) with B1 = 0,

then

|An| ≤
n+ 1

2
, |Bn| ≤

n− 1

2
.

Lemma 2.2. Let f = h+ g be given by (1.2). If 0 ≤ γ <∞, 0 ≤ α < 1 and

∞∑
n=2

n {n(γ + 1)− (γ + α)} |An|+
∞∑
n=1

n {n(γ + 1) + (γ + α)} |Bn| ≤ 1−α, (2.1)

then f is harmonic, sense-preserving univalent functions in U and f ∈ HUC(γ, α).
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Remark 2.3. In [10], it is also shown that f = h+g given by (1.3) is in the family
THUC(γ, α), if and only if the coefficient condition (2.1) holds. Moreover, if
f ∈ THUC(γ, α), then

|An| ≤
1− α

n {n(γ + 1)− (γ + α)}
, n ≥ 2,

|Bn| ≤
1− α

n {n(γ + 1) + (γ + α)}
, n ≥ 1.

Lemma 2.4. If b, p, c ∈ C and k 6= 0,−1,−2, . . . then the function up satisfies
the recursive relation 4ku′p(z) = −cup+1(z) for all z ∈ C.

Theorem 2.5. If 0 ≤ α < 1, 0 ≤ γ < ∞, 0 ≤ λ ≤ 1, c1, c2 < 0 and k1, k2 > 0
and the inequality

λ(γ + 1)
{
uivp1(1) + (10γ + 11− α)u′′′p1(1) + (24γ + 31− 7α)u′′p1(1) + (12γ + 22− 10α)u′p1(1)

+2(1− α) (up1(1)− 1)}
+ (1− λ)

{
(γ + 1)u′′′p1(1) + (6γ + 7− α)u′′p1(1) + (6γ + 10− 4α)u′p1(1) + 2(1− α) (up1(1)− 1)

}
+ λ

{
(γ + 1)uivp2(1) + (10γ + 9 + α)u′′′p2(1) + (24γ + 19 + 5α)u′′p2(1) + (12γ + 8 + 4α)u′p2(1)

}
+ (1− λ)

{
(γ + 1)u′′′p2(1) + (6γ + 5 + α)u′′p2(1) + (6γ + 4 + 2α)u′p2(1)

}]
≤ 2(1− α),

is satisfied then Ωλ (K0
H) ⊂ HUC(γ, α).

Proof. Let f = h + g ∈ K0
H where h and g are of the form (1.2) with B1 = 0.

We need to show that Ωλ (f) = H +G ∈ HUC (γ, α), where H and G defined by
(1.7) with B1 = 0 are analytic functions in U .

In view of Lemma 2.2, we need to prove that

P1 ≤ 1− α,
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where

P1 =

∞∑
n=2

n {n(γ + 1)− (γ + α)}
∣∣∣∣ (−c1/4)n−1

(k1)n−1(n− 1)!
(λn+ (1− λ))An

∣∣∣∣
+

∞∑
n=2

n {n(γ + 1) + (γ + α)}
∣∣∣∣ (−c2/4)n−1

(k2)n−1(n− 1)!
(λn+ (1− λ))Bn

∣∣∣∣
≤ 1

2

[ ∞∑
n=2

n(n+ 1) {n(γ + 1)− (γ + α)} (−c1/4)n−1

(k1)n−1(n− 1)!
(λn+ (1− λ))

+

∞∑
n=2

n(n− 1) {n(γ + 1) + (γ + α)} (−c2/4)n−1

(k2)n−1(n− 1)!
(λn+ (1− λ))

]

=
1

2

[
λ

∞∑
n=2

{(γ + 1)(n− 1)(n− 2)(n− 3)(n− 4) + (10γ + 11− α)(n− 1)(n− 2)(n− 3)

+(24γ + 31− 7α)(n− 1)(n− 2) + (12γ + 22− 10α)(n− 1) + 2(1− α)} (−c1/4)n−1

(k1)n−1(n− 1)!

+ (1− λ)

∞∑
n=2

{(γ + 1)(n− 1)(n− 2)(n− 3) + (6γ + 7− α)(n− 1)(n− 2)

+(6γ + 10− 4α)(n− 1) + 2(1− α)} (−c1/4)n−1

(k1)n−1(n− 1)!

+ λ

∞∑
n=2

{(γ + 1)(n− 2)(n− 3)(n− 4) + (10γ + 9 + α)(n− 2)(n− 3)

+(24γ + 19 + 5α)(n− 2) + (12γ + 8 + 4α)} (−c2/4)n−1

(k2)n−1(n− 2)!

+ (1− λ)

∞∑
n=2

{(γ + 1)(n− 2)(n− 3) + (6γ + 5 + α)(n− 2)

+(6γ + 4 + 2α)} (−c2/4)n−1

(k2)n−1(n− 2)!

]
1

2

[
λ
{

(γ + 1)uivp1
(1) + (10γ + 11− α)u′′′p1

(1) + (24γ + 31− 7α)u′′p1
(1) + (12γ + 22− 10α)u′p1

(1)

+2(1− α) (up1
(1)− 1)}

+ (1− λ)
{

(γ + 1)u′′′p1
(1) + (6γ + 7− α)u′′p1

(1) + (6γ + 10− 4α)u′p1
(1) + 2(1− α) (up1

(1)− 1)
}

+ λ
{

(γ + 1)uivp2
(1) + (10γ + 9 + α)u′′′p2

(1) + (24γ + 19 + 5α)u′′p2
(1) + (12γ + 8 + 4α)u′p2

(1)
}

+ (1− λ)
{

(γ + 1)u′′′p2
(1) + (6γ + 5 + α)u′′p2

(1) + (6γ + 4 + 2α)u′p2
(1)
}]

≤ 1− α,

by given hypothesis.
This completes the proof of Theorem 2.5. �

If we put λ = 0, then we obtain the following result of Porwal [12].

Corollary 2.6. If 0 ≤ α < 1, 0 ≤ γ < ∞, c1, c2 < 0 and k1, k2 > 0 and the
inequality

(γ + 1)
{
u′′′p1(1) + 7u′′p1(1) + 10u′p1(1) + 2up1(1) + u′′′p2(1) + 5u′′p2(1) + 10u′p2(1)

}
− (γ + α)

{
u′′p1(1) + 4u′p1(1) + 2up1(1)− u′′p2(1)− 2u′p2(1)

}
≤ 4(1− α),

is satisfied then Ω (K0
H) ⊂ HUC(γ, α).
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In order to determine connection between TNH(β) and HUC(γ, α), we require
the following result obtained in [3].

Lemma 2.7. Let f = h + g where h and g as given by (1.3) and suppose that
0 ≤ β < 1. Then

f ∈ TNH (β)⇔
∞∑
n=2

n |An|+
∞∑
n=1

n |Bn| ≤ 1− β.

Remark 2.8. If f ∈ TNH(β), then

|An| ≤
1− β
n

, n ≥ 2,

|Bn| ≤
1− β
n

, n ≥ 1.

Theorem 2.9. If 0 ≤ β < 1, 0 ≤ α < 1, 0 ≤ γ < ∞, 0 ≤ λ ≤ 1, c1, c2 < 0,
k1, k2 > 0 and the inequality

(1− β)
[
λ
{

(γ + 1)u′′p1(1) + (2γ + 3− α)u′p1(1) + (1− α) (up1(1)− 1)
}

+ (1− λ)
{

(γ + 1)u′p1(1) + (1− α) (up1(1)− 1)
}

+ λ
{

(γ + 1)u′′p2(1) + (4γ + α + 3)u′p2(1) + (2γ + α + 1)up2(1)
}

+(1− λ)
{

(γ + 1)u′p2(1) + (2γ + α + 1)up2(1)
}]

≤ 1− α

is satisfied, then

Ωλ(TNH(β)) ⊂ HUC(γ, α).

Proof. Let f = h + g ∈ TNH(β) where h and g are given by (1.3). In view of
Lemma 2.2, it is enough to show that P2 ≤ 1− α, where

P2 =
∞∑
n=2

n {n(γ + 1)− (γ + α)}
∣∣∣∣ (−c1/4)n−1

(k1)n−1(n− 1)!
(λn+ (1− λ))An

∣∣∣∣
+
∞∑
n=1

n {n(γ + 1) + (γ + α)}
∣∣∣∣ (−c2/4)n−1

(k2)n−1(n− 1)!
(λn+ (1− λ))Bn

∣∣∣∣ .
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Using Remark 2.8, it follows that

P2 ≤ (1− β)

[
∞∑
n=2

{n(γ + 1)− (γ + α)} (−c1/4)n−1

(k1)n−1(n− 1)!
(λn+ (1− λ))

+
∞∑
n=1

{n(γ + 1) + (γ + α)} (−c2/4)n−1

(k2)n−1(n− 1)!
(λn+ (1− λ))

]

= (1− β)

[
λ
∞∑
n=0

(n+ 2) [(n+ 2)(γ + 1)− (γ + α)]
(−c1/4)n+1

(k1)n+1(n+ 1)!

+ (1− λ)
∞∑
n=0

[(n+ 2)(γ + 1)− (γ + α)]
(−c1/4)n+1

(k1)n+1(n+ 1)!

+ λ

∞∑
n=0

(n+ 1) [(n+ 1)(γ + 1) + (γ + α)]
(−c2/4)n

(k2)nn!

+ (1− λ)
∞∑
n=0

[(n+ 1)(γ + 1)− (γ + α)]
(−c2/4)n

(k2)nn!

]
= (1− β)

[
λ
{

(γ + 1)u′′p1(1) + (2γ + 3− α)u′p1(1) + (1− α) (up1(1)− 1)
}

+ (1− λ)
{

(γ + 1)u′p1(1) + (1− α) (up1(1)− 1)
}

+ λ
{

(γ + 1)u′′p2(1) + (4γ + α + 3)u′p2(1) + (2γ + α + 1)up2(1)
}

+(1− λ)
{

(γ + 1)u′p2(1) + (2γ + α + 1)up2(1)
}]

≤ 1− α
by the given hypothesis, this completes the proof of Theorem 2.9. �

For the relationship between the classes TRH(β) and HUC(γ, α), we shall
require the following lemma which is due to [4].

Lemma 2.10. Let f = h+ g where h and g are given by (1.3), and suppose that
0 ≤ β < 1. Then

f ∈ TRH (β)⇔
∞∑
n=2

n2 |An|+
∞∑
n=1

n2 |Bn| ≤ 1− β.

Remark 2.11. If f = h+ g ∈ TRH(β) where h and g are given by (1.3), then

|An| ≤
1− β
n2

, n ≥ 2

and

|Bn| ≤
1− β
n2

, n ≥ 1.

Lemma 2.12. ([12]) If c < 0 and k > 1, then
∞∑
n=0

(−c/4)n

(k)n(n+ 1)!
=
−4(k − 1)

c
[up−1(1)− 1] .
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Theorem 2.13. If c1, c2 < 0, k1, k2 > 1, 0 ≤ α < 1, 0 ≤ λ ≤ 1, 0 ≤ β < 1, γ ≥ 0
and the inequality

(1− β)
[
λ
{

(γ + 1)u′p1(1) + (1− α) (up1(1)− 1)
}

+ (1− λ)

{
(γ + 1) (up1(1)− 1) + (γ + α)

(
4(k1 − 1)

c1
(up1−1(1)− 1) + 1

)}
+ λ

{
(γ + 1)u′p2(1) + (2γ + α + 1)up2(1)

}
+(1− λ)

{
(γ + 1)up2(1) + +(γ + α)

(
−4(k2 − 1)

c2
(up2−1(1)− 1)

)}]
≤ 1− α

is satisfied then

Ωλ (TRH(β)) ⊂ HUC(γ, α).

Proof. Making use of Lemma 2.2 and the definition of P2 in Theorem 2.9, we need
only to prove that P2 ≤ 1 − α. Using Remark 2.11 and Lemma 2.12, it follows
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that

P2 =
∞∑
n=2

n {n(γ + 1)− (γ + α)}
∣∣∣∣ (−c1/4)n−1

(k1)n−1(n− 1)!
(λn+ (1− λ))An

∣∣∣∣
+
∞∑
n=1

n {n(γ + 1) + (γ + α)}
∣∣∣∣ (−c2/4)n−1

(k2)n−1(n− 1)!
(λn+ (1− λ))Bn

∣∣∣∣
≤ (1− β)

[
∞∑
n=2

{n(γ + 1)− (γ + α)}
n

(−c1/4)n−1

(k1)n−1(n− 1)!
(λn+ (1− λ))

+
∞∑
n=1

{n(γ + 1) + (γ + α)}
n

(−c2/4)n−1

(k2)n−1(n− 1)!
(λn+ (1− λ))

]

= (1− β)

[
λ

(
∞∑
n=0

{(n+ 2)(γ + 1)− (γ + α)} (−c1/4)n+1

(k1)n+1(n+ 1)!

)

+ (1− λ)

(
∞∑
n=0

{
(γ + 1)− (γ + α)

n+ 2

}
(−c1/4)n+1

(k1)n+1(n+ 1)!

)

+ λ

(
∞∑
n=0

{(n+ 1)(γ + 1) + (γ + α)} (−c2/4)n

(k2)n(n)!

)

+(1− λ)

(
∞∑
n=0

{
(γ + 1) +

(γ + α)

n+ 1

}
(−c2/4)n

(k2)n(n)!

)]
= (1− β)

[
λ
{

(γ + 1)u′p1(1) + (1− α) (up1(1)− 1)
}

+ (1− λ)

{
(γ + 1) (up1(1)− 1) + (γ + α)

(
4(k1 − 1)

c1
(up1−1(1)− 1) + 1

)}
+ λ

{
(γ + 1)u′p2(1) + (2γ + α + 1)up2(1)

}
+(1− λ)

{
(γ + 1)up2(1) + +(γ + α)

(
−4(k2 − 1)

c2
(up2−1(1)− 1)

)}]
≤ 1− α,

by the given hypothesis. �

Theorem 2.14. If c1, c2 < 0, k1, k2 > 0, 0 ≤ α < 1, 0 ≤ λ ≤ 1, γ ≥ 0 and the
inequality

λ
(
u′p1(1) + u′p2(1)

)
+ up1(1) + up2(1) ≤ 2 (2.2)

is satisfied, then Ωλ (THUC(γ, α)) ⊂ HUC(γ, α).

Proof. By adopting the technique of the proof of Theorem 2.9, Lemma 2.2 and
Remark 2.3, we obtain
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P2 ≤ (1− α)

[
∞∑
n=2

(−c1/4)n−1

(k1)n−1(n− 1)!
(λn+ (1− λ)) +

∞∑
n=1

(−c2/4)n−1

(k2)n−1(n− 1)!
(λn+ (1− λ))

]

= (1− α)

[
λ
∞∑
n=0

(−c1/4)n+1(n+ 2)

(k1)n+1(n+ 1)!
+ (1− λ)

∞∑
n=0

(−c1/4)n+1

(k1)n+1(n+ 1)!

+ λ
∞∑
n=0

(−c2/4)n(n+ 1)

(k2)nn!
+ (1− λ)

∞∑
n=0

(−c2/4)n

(k2)nn!

]
= (1− α)

[
λu′p1(1) + up1(1)− 1 + λu′p2(1) + up2(1)

]
≤ 1− α,

by the given condition and this completes the proof of the theorem. �

Theorem 2.15. If c1, c2 < 0, k1, k2 > 0, 0 ≤ α < 1, γ ≥ 0 and the inequality
(2.2) is satisfied, then Ωλ (THUC(γ, α)) ⊂ THUC(γ, α).

Proof. The proof of this theorem is much akin to that of Theorem 2.14. Therefore
we omits the details involved. �

3. Connections with harmonic uniformly starlike mappings

In this section we obtain the analogous results involving between various classes
of planar harmonic mappings and HUS∗(γ, α) by applying the convolution oper-
ator Ωλ.

Lemma 3.1. Let f = h+ g ∈ H be given by (1.2). If 0 ≤ γ <∞, 0 ≤ α < 1 and

∞∑
n=2

{n(γ + 1)− (γ + α)} |An|+
∞∑
n=1

{n(γ + 1) + (γ + α)} |Bn| ≤ 1− α, (3.1)

then f is harmonic, sense-preserving univalent functions in U and f ∈ HUS∗(γ, α).

Remark 3.2. The result in Lemma 3.1 is a special case of the corresponding result
proved in [2]. However, for γ = 1, Lemma 3.1 reduces to the result found in [20].

Remark 3.3. In [2], it is also shown that f = h+ g given by (1.3) is in the family
THUS∗(γ, α), if and only if the coefficient condition (3.1) holds. Moreover, if
f ∈ THUS∗(γ, α), then

|An| ≤
1− α

{n(γ + 1)− (γ + α)}
, n ≥ 2,

|Bn| ≤
1− α

{n(γ + 1) + (γ + α)}
, n ≥ 1.

Applying the Lemma 3.1 and using the techniques of the proof of Theorem 2.5
so we only state the results of following theorems.
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Theorem 3.4. If 0 ≤ α < 1, 0 ≤ γ < ∞, 0 ≤ λ ≤ 1, c1, c2 < 0 and k1, k2 >
0, (k1, k2 6= 0,−1,−2, . . .) and the inequality

λ
{

(γ + 1)u′′′p1(1) + (6γ + 7− α)u′′p1(1) + (6γ + 10− 4α)u′p1(1) + 2(1− α) (up1(1)− 1)
}

+ (1− λ)
{

(γ + 1)u′′p1(1) + (3γ + 4− α)u′p1(1) + 2(1− α) (up1(1)− 1)
}

+ λ
{

((γ + 1)u′′′p2(1) + (6γ + 5 + α)u′′p2(1) + (6γ + 4 + 2α)u′p2(1)
}

+ (1− λ)
{

(γ + 1)u′′p2(1) + (3γ + 2 + α)u′p2(1)
}]

≤ 2(1− α),

is satisfied then Ωλ (K0
H) ⊂ HUS∗(γ, α).

Theorem 3.5. If all the restrictions and coefficient condition in Theorem 2.13
are satisfied then Ωλ (TNH(β)) ⊂ HUS∗(γ, α).

Theorem 3.6. If all the restrictions and coefficient condition in Theorem 2.14
are satisfied then Ωλ (THUS∗(γ, α)) ⊂ HUS∗(γ, α).

Remark 3.7. If we put λ = 0 in Theorems 2.9-3.6 then we obtain the correspond-
ing results of Porwal [12].
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