
ar
X

iv
:m

at
h-

ph
/0

10
70

31
 v

1
 3

1
Ju

l 2
00

1

Group-theoretic Approach for Symbolic Tensor
Manipulation: I. Free Indices

R. Portugal1

Laboratório Nacional de Computação Cient́ıfica,
Av. Getúlio Vargas, 333,

Petrópolis, RJ, Brazil. Cep 25651-070.

B. F. Svaiter2

Instituto de Matemática Pura e Aplicada,
Estrada Dona Castorina, 110,

Rio de Janeiro, RJ, Brazil. Cep 22460-320.

Abstract

We describe how Computational Group Theory provides tools for manip-

ulating tensors in explicit index notation. In special, we present an algorithm

that puts tensors with free indices obeying permutation symmetries into the

canonical form. The method is based on algorithms for determining the canon-

ical coset representative of a subgroup of the symmetric group. The complexity

of our algorithm is polynomial on the number of indices and is useful for imple-

mentating general purpose tensor packages on the computer algebra systems.

Key words. Symbolic tensor manipulation, Computational Group The-

ory, Algorithms, Canonical coset representative, Symmetric group3 Poisson,

1 Introduction

The connection between Group Theory and Tensor Calculus was established a long
time ago. For instance, Weyl [1] showed the relation of the symmetric group and
group rings to tensor symmetries and tensor expressions respectively; Littlewood [2]
developed tools in group representation theory to address the problem of determining
the dimension of the space generated by tensor monomials. Recently, Fulling et

1Email: portugal@cbpf.br
2Email: benar@impa.br
32000 Mathematics Subject Classification. 70G45, 20B40, 53A45, 20B35, 53A35, 20B30, 53A15

1

al. [3] used these tools to determine the number of independent monomials up to
order 12 built out of the Riemann tensor and its covariant derivative. On the other
hand, these authors have not established a method to determine the independent
monomials explicitly. The present work performs an important step toward this
direction.

The application of Group Theory to develop algorithms for tensor manipulation
is addressed in refs. [4] and [5]. Ref. [4] uses group algebra which generates an
algorithm of exponential complexity that can address tensor expressions with at
most 11 or 12 indices. Practical applications demand better results. Ref. [5] uses
the backtrack algorithm to find the canonical form of tensor expressions built out of
totally symmetric or antisymmetric tensors.

The present work addresses the problem of finding efficient algorithms for ab-
stract tensor manipulation using Computational Group Theory. The main problem
consists in simplifying tensor expressions, which can be solved if one knows an effi-
cient algorithm that puts tensor expressions into the canonical form. Ref. [6] shows
that the problem of finding the canonical form of a generic tensor expression reduces
to finding the canonical forms of single tensors. At this point, the group-theoretic
approach is the natural language to express the problem, since all informations about
a single tensor can be represented by Group Theory, and can be efficiently processed
using Computational Group Theory.

We suppose that the tensors have only free indices and obey what we now call
permutation symmetries, which are a set of tensor equations of the form

T i1 ··· in = ǫσ T σ(i1 ··· in), (1)

where σ(i1 · · · in) is a permutation of i1 · · · in and ǫσ is either 1 or −1. We present
a polynomial-time algorithm to find the canonical forms of these tensors. This algo-
rithm is a straightforward extension of algorithms to find the canonical coset repre-
sentative of a subgroup of the symmetric group.

In section 2 we describe the representation theory for tensors. In section 3 we
present the main algorithm and discuss its complexity.

2 Representation theory for tensors

In this work we use the abstract-index notation for tensor expressions such as de-
scribed in Penrose and Rindler’s book [7]. We take Lovelock and Rund [8] as a
general reference for Tensor Calculus. Ref. [6] describes in details how a generic ten-
sor expression can be converted into a sum of single tensors. To sum up, a generic
tensor expression can be expanded so that it is a sum of tensor monomials. Each
monomial is merged into a single tensor that inherits the symmetries of the original
tensors. If each single tensor can be put into the canonical form, then the original
tensor expression can be put also. At this point the problem consists in finding the
canonical form of a single tensor obeying permutation symmetries.

2

In the present context, we need only three kind of informations about a tensor:
sign, index configuration, and symmetries. For example, if one wants to find the
canonical form of T cba knowing that the rank-3 tensor T is totally antisymmetric,
one starts with

{+1, [c, b, a]}

and ends up with
{−1, [a, b, c]}.

The natural canonical configuration is −T abc.
In order to use a group-theoretical approach for this kind of manipulation we

have to represent the symmetry as some group which acts on the index configuration
and on the sign. This goal is achieved in the following way.

Definition 1 (Symmetry of rank-n tensor from the group-theoretic point of view.)
Let Sn be the symmetric group on the set of points {1, 2, · · · , n} and H the group
({+1,−1}, ×) with multiplicative operation. A tensor symmetry S is a proper
subgroup of the external direct product H ⊗ Sn such that (−1, id) 6∈ S, where id is
the identity of Sn.

In order to fix notation, from now on we assume that H and S are the groups
described in Def. 1. We also assume that G is the subgroup of Sn such that H⊗G =<

(−1, id), S >, i.e. H ⊗ G is the smallest subgroup of H ⊗ Sn which contains S and
(−1, id). Therefore, the order of H ⊗ G is two times the order of S.

Now let us describe formally how S acts on a tensor. Each element of S is a pair
consisting of a sign (±1) and a permutation. The sign of a permutation π will be
denoted by ǫπ. So, an element of S has the form (ǫπ, π), where ǫπ = ±1 and π ∈ G.
The action of s on a totally contravariant rank-n tensor with index configuration
T i1i2···in is

s(T i1i2···in) = ǫπ T i1π i2π ··· inπ , (2)

where the notation i1π means that the subscript of i is the image of point 1 under
the action of permutation π. This notation clearly shows that the permutation acts
on the positions of the indices and seems to be superior to the one used in (1).

The notation +π stands for (1, π) and −π for (−1, π). For example, the group S

which describes the symmetry of a totally antisymmetric rank-3 tensor is

S = {+id, −(1, 2), −(1, 3), −(2, 3), +(1, 2, 3), +(1, 3, 2)}, (3)

which, in tensor notation, corresponds to

T abc = T abc, T abc = −T bac, T abc = −T cba,

T abc = −T acb, T abc = T bca, T abc = T cab. (4)

3

We use the term “permutation” to describe the elements of S extending the syntax
used for elements of Sn. The term “permutation sign” refers to ǫπ. The sign ǫπ has
no relation to the parity of π in the general case.

With no loss of generality, we take

T i1i2···in (5)

as the standard configuration. All other configurations are obtained by acting per-
mutations of H ⊗ Sn on (5). A generic configuration is denoted by T j1···jn. We use
the sequence of j’s (j1 · · · jn) as a generic permutation of i1 · · · in. The standard con-
figuration (5) is associated with the element (+1, id), which is the minimal element
of H ⊗ Sn.

In Def. 1, the requirement that (−1, id) 6∈ S avoids the cancelation of a tensor
independently of its components. Note that if both (+1, π) and (−1, π) are in S,
then we come to two conclusions: there are two equal index configurations such that
T j1j2···jn = −T j1j2···jn and (−1, id) ∈ S. Vice-versa, if (−1, id) ∈ S then (−1, π) ∈ S

if and only if (+1, π) ∈ S. When implementing a tensor package in some computer
language, it is useful to have an efficient method to exhibit the symmetries that can-
cels the tensor independently of its components. Algorithms for testing membership
provide such method.

The index configuration T j1j2···jn is equivalent to T i1i2···in if and only if there is
an element in S such that

s(T i1i2···in) ≡ T j1j2···jn. (6)

In other words, there is an element (+1, π) ∈ S such that the lists j1j2 · · · jn and
i1π i2π · · · inπ are exactly the same.

Proposition 1 The set of index configurations equivalent to T i1i2···in is given by the
action of S over T i1i2···in. The cardinality of this set is the order of G (|G|).

Note that |G| = |S|.

Proposition 2 Let T i1π i2π ··· inπ be an index configuration which is not equivalent to
±T i1i2···in (i.e. both +π) and −π) are not in S). The set of configurations equivalent
to T i1π i2π ··· inπ is the right coset of S in H ⊗ Sn which contains (+1, π). The number
of index configurations equivalent to T i1π i2π ··· inπ is |G|.

The final part of proposition 2 follows from the fact that all cosets of S in H ⊗ Sn

have cardinality |G|.

Proposition 3 Consider a set of independent index configurations with positive
coefficients. The maximum cardinality of this set is the index of G in Sn (|Sn:G|).

4

Usually, no one describes the symmetry of a tensor in index notation by listing
all equivalent index configurations. In general, one gives a few equations and skips
the ones that can be obtained from the original equations. The following example
illustrates this situation. Let T abcd be a rank-4 tensor with the following permutation
symmetries.

T abcd = −T bacd, (7a)

T abcd = T cdab. (7b)

¿From these equations we can obtain

T abcd = −T abdc. (8)

Note that one can describe the symmetries of T abcd by using a different set of equa-
tions, for example eqs. (7b) and (8). In group-theoretic language, this is equivalent
to describe a group by generators. In the example above, the generating set K for
the symmetry of T abcd, described by eqs. (7), is

K = {−(1, 2), +(1, 3)(2, 4)}. (9)

The symmetry S is the group generated by K (<K>)

S = {+id, −(1, 2), −(3, 4), +(1, 2)(3, 4), +(1, 3)(2, 4),

−(1, 3 2, 4), −(1, 4, 2, 3), +(1, 4)(2, 3)}. (10)

The group G is generated by {(1, 2), (1, 3)(2, 4)} and is obtained from (10) by remov-
ing the permutation signs. ¿From proposition 1, the set of configurations equivalent
to the standard configuration T abcd is given by the action of all elements of S on
T abcd, which yields

{T abcd,−T bacd,−T abdc, T badc, T cdab,−T cdba,−T dcab, T dcba}. (11)

The number of equivalent configurations is 8, the order of S. Now consider T acbd,
which is not in set (11). This index configuration is obtained from T abcd by the action
of +(2, 3). Neither +(2, 3) nor −(2, 3) are in S. Proposition 2 says that the set of
configurations equivalent to T acbd is the right coset of S in H ⊗ S4 which contains
+(2, 3). This coset is obtained by multiplying each element of S by +(2, 3):

S × (+(2, 3)) = {+(2, 3), −(1, 3, 2), −(2, 3, 4), +(1, 3, 4, 2),

+(1, 2, 4, 3), −(1, 2, 4), −(1, 4, 3), +(1, 4)}. (12)

The action of this coset on T abcd generates all index configurations equivalent to
T acbd. Note that |S4:G| = 3. From proposition 3 we know that the set of independent
configurations has cardinality 3. An example of this set is

{T abcd, T acdb, T adcb}, (13)

5

which is a complete right transversal for G in S4 in tensor notation. One can
easily recognize that eqs. (7) and (8) represent the symmetries of the Riemann
tensor without taking into account the cyclic symmetry. The group generated by
{(1, 2), (1, 3)(2, 4)} is the dihedral group of order 8 (D8). Then, the symmetry of
the Riemann tensor given by (10) is the largest subgroup of H ⊗D8 which does not
contain (−1, id).

In order to address the problem of finding the canonical configuration equivalent
to a given index configuration, we have to define an order for the permutations of
Sn. Let b = [b1, · · · , bn] be a list of n distinct points of the set {1, · · · , n}. Suppose
that pk and pl are points. We define the order “≺b” for points with respect to b in
the following way: pk ≺ pl if k < l. So, pk is smaller that pl if pk comes before pl in
b. We omit the index b from “≺b” to simplify the notation. b

π = [bπ
1 , · · · , bπ

n] is the
image of b under π. Define

L = {bπ, π ∈ Sn}. (14)

Now let extend the order “≺” to the elements of L. Let L1 and L2 be in L. L1 ≺ L2

if

L1[1] ≺ L2[1] or (L1[1] = L2[1] and L1[2..n] ≺ L2[2..n]), (15)

where L[i] means the i-th element of L and L[2..n] means {L[2], L[3], · · · , L[n]}. If
π1 and π2 are in Sn then

π1 ≺ π2 ⇔ b
π1 ≺ b

π2 . (16)

Now we extend the order “≺” to group S:

(ǫπ1 , π1) ≺ (ǫπ2 , π2) ⇔ π1 ≺ π2. (17)

Recall that (+1, π) and (−1, π) cannot be at the same time in S. So we simply
disregard the sign as stated in (17). “≺” is a well-order (total order with a minimal
element) in Sn, S, and in any coset of S in H ⊗Sn. ¿From now on, “minimal point”
refers to the order “≺” with respect to some b.

A canonical right transversal for G in Sn (S in H ⊗ Sn) is a complete right
transversal for G in Sn (S in H ⊗Sn) such that each coset representative is minimal.
The set (13) is the canonical right transversal in tensor notation for group G in S4

with respect to b = [1, 3, 2, 4], where G is generated by {(1, 2), (1, 3)(2, 4)}. Note
that the order “≺” allows to sort a canonical right transversal for G in Sn. This is
important for addressing the simplification problem when there are side relations,
such as the cyclic symmetry. This kind of symmetry is not addressed in this paper.

3 Algorithm to canonicalize tensors with free in-

dices

Now we address the following problem. Suppose one gives a totally contravariant
tensor with the symmetries described by a set of tensor equations, and a free index

6

configuration that is not the standard one. Find the canonical index configuration
with respect to the order “≺”. For example, suppose that rank-4 tensor T has the
symmetries (7), and one gives the following index configuration: T bcad. What is the
canonical configuration with respect to b = [1, 3, 2, 4]?

Using the representation theory, the problem above can be solved if one knows
the solution of the following problem. Given a generating set K for the group S

and an element (ǫπ, π) in H ⊗Sn, find the canonical coset representative of the coset
S × (ǫπ, π) with respect to the order defined by (17).

The answer to this problem is an algorithm that can be used to put a tensor with
free indices into the canonical form. Before describing the algorithm, we extend some
well known definitions for permutations groups, in order to use them in connection
with S, which is a direct product of groups. The extensions are straightforward.

Definition 2 Let p be a point in the set {1, · · · , n}. The stabilizer of p in S is the
subgroup Sp defined by

Sp = {s ∈ S | ps = p}, (18)

where ps = pπ and s = (ǫπ, π).

In other words, Sp consists of all elements of S that fix the point p. Sp is a subgroup
of S. If s = (ǫπ, π) ∈ S, “s fixes p” means “π fixes p”.

Definition 3 Let Q be a subset of the set of points {1, · · · , n}. The pointwise

stabilizer of Q in S is the subgroup SQ defined by

SQ = {s ∈ S | ∀q ∈ Q, qs = q}. (19)

In other words, SQ fixes all points of the subset Q.

Definition 4 A ordered subset b = [b1, · · · , bm] of the set of points {1, · · · , n} is a
base for S if Sb1,··· ,bm

= (1, id).

This means that the only element of S that fixes all points of b is the identity. A
useful property of a base is that an element of S is uniquely determined by the base
image. We can order the points {1, · · · , n} such that the base points are the first
m points. Let us name the remaining points l1, · · · , ln−m. They simply follow the
usual increasing order. From now on, the order “≺” defined in the previous section
is based on the set [b1, · · · , bm, l1, · · · , ln−m].

Definition 5 A strong generating set K for S relative to the base b = [b1, · · · , bm]
is a generating set for S with the following property: K ∩Sb1,··· ,bj

is a generating set
for the pointwise stabilizer Sb1,··· ,bj

, for 1 ≤ j ≤ m − 1.

7

In other words, a generating set K for S is strong if, after selecting the permutations
of K that fix the points b1, · · · , bj, one has a set that generates the group Sb1,··· ,bj

.
This must be valid for j from 1 to m − 1.

The input of the algorithm is
(a) an index configuration T j1j2···jn ; and
(b) a base and a strong generating set for S.
The output is the canonical index configuration, which is obtained by the action
of the canonical coset representative on the standard configuration T i1i2···in . If S is
described by a generating set that is not strong, the first step is to obtain a strong
generating set and a corresponding base. Refs. [9] and [10] present algorithms that
perform this task. These algorithms must be extended in order to work within
H ⊗ Sn.

The algorithm Canonical described below uses the general structure of chain

of stabilizers developed by Sims [11] and is an straightforward modification of the
algorithm presented by Butler [12]. Following Sim’s notation, let S(i) be the group
that stabilizes the points {b1, · · · , bi−1}, i.e. S(i) = Sb1,··· ,bi−1

. Then S(1) = S and

S(m) = (1, id). Let ∆(i) be the orbit of S(i) that contains the point bi, i.e. ∆(i) = bS(i)

i .
Suppose that K is a strong generating set for S and define K(i) = K ∩ S(i). K(i)

is a strong generating set for S(i), for 1 ≤ i ≤ m. Let ν(i) be the Schreier vector of
∆(i) with respect to generators K(i). Here, the components of the Schreier vectors
are elements of S. Following Butler [10], if q ∈ ∆(i), let trace(q, ν(i)) be the element
(ǫω, ω) of S(i) such that pω = q, where p is the minimal point of the subsets of ∆(i)

that contains q.
The algorithm consists of m loops. Suppose that [q1, · · · , qm] is the base image of

the canonical representative. The i-th loop finds permutation (ǫλ, λ) that determines
qi, i.e. bλ

i = qi. The permutation (ǫλ, λ) obeys the constraint

[(b1)
λ, · · · , (bi−1)

λ] = [q1, · · · , qi−1]. (20)

The set of all elements of S that obey (20) is given by S(i) × (ǫλ, λ), then b
S(i)

×(ǫλ,λ)
i

yields all possible images of bi in the coset S(i) × (ǫλ, λ). qi is the minimal point of
these images. At the last loop, (ǫλ, λ) gives the complete base image [q1, · · · , qm].

Algorithm Canonical (free indices)

Input: T j1···jn = ǫπT
i1π i2π ··· inπ , where (ǫπ, π) ∈ S;

b = [b1, · · · , bm] base for S; and
KS strong generating set for S with respect to b.

K(i).

8

Output: ǫλT
i
1λ i

2λ ··· inλ , where (ǫλ, λ) is the canonical representative of the
coset of S in H ⊗ Sn that contains the permutation (ǫπ, π).

begin
(∗ initialization of (ǫλ, λ) and K ∗)
(ǫλ, λ) := (ǫπ, π);
K := KS;

for i from 1 to m do
(∗∆ is the basic orbit ∆(i) ∗)
∆ := b<K>

i ;
k := position of the minimal point of ∆λ;
p := k-th point of ∆;
(ǫω, ω) := trace(p, ν), where ν is the Schreier vector of ∆ with respect to K;
(ǫλ, λ) := (ǫω, ω) × (ǫλ, λ);
K := remove permutations of K that have point bi;

end for;

return ǫλT
i
1λ i

2λ ··· inλ ;
end

Let us see an example. If one gives the index configuration T bcad, where T has
the symmetries (7), the element (ǫπ, π) is +(1, 2, 3). A base for S is [1, 3], so the
order “≺” is based on the list b = [1, 3, 2, 4]. A strong generating set with respect to
base [1, 3] is

K = {−(1, 2), −(3, 4), +(1, 3)(2, 4)}. (21)

First loop yields: ∆ := {1, 2, 3, 4}; ∆(1,2,3) := {2, 3, 1, 4}; k := 3; p := 3; (ǫω, ω) :=
+(1, 3)(2, 4), since bω

1 = p; (ǫλ, λ) := +(2, 4, 3); K := {−(3, 4)}. (ǫλ, λ) applied on
T abcd gives T adbc. Second loop yields: ∆ := {3, 4}; ∆(2,4,3) := {2, 3}; k := 2, since
3 ≺ 2; p := 4; (ǫω, ω) := −(3, 4); (ǫλ, λ) := −(2, 4); K := { }. The algorithm finishes
and the canonical configuration is ǫλ T i

1λ i
2λ i

3λ i
4λ = −T adcb.

The algorithms to find strong generating set, basic orbit, Schreier vector, and
trace for permutation groups are described in refs. [9] and [10]. The extension of
these algorithms to work within the direct product H ⊗ Sn is straightforward if one
uses the fact that a image of a point p under the action of (ǫπ, π) is pπ. The product
of permutations in Sn is naturally extended to the product of elements of H ⊗ Sn.

The analysis of the complexity of the algorithm Canonical is the following. Al-
gorithms to find basic orbit, Schreier vector and trace have an O(n2) bound. Since
the algorithm Canonical performs n loops in the worst case, it is bounded by O(n3).
A strong generating set for symmetry S is required. It is known that Schreier-Sims
algorithm has an O(n5) bound. So, if the generating set of S is not strong, the overall

9

bound for the algorithm to find the canonical form of tensors is O(n5), where n is
the number of indices.

Acknowledgments

We thank Drs. S. Watt and J. Jaén for stimulating discussions on this subject and
Dr. M. Rybowicz for providing useful references.

References

[1] H. Weyl, The Classical Groups, Princeton University Press, Princeton, 1946.

[2] D. E. Littlewood, Invariant Theory, Tensors and Group Characters, Phil. Trans.
R. Soc. A 239 (1944) 305-365.

[3] S. A. Fulling, R. C. King, B. G. Wybourne and C. J. Cummins, Normal forms

for tensor polynomials: I. The Riemann tensor, Class. Quantum Grav. 9 (1992)
1151-1197.

[4] V. A. Ilyin and A. P. Kryukov, ATENSOR - REDUCE program for tensor

simplification, Computer Physics Communications 96 (1996) 36-52.

[5] A. Dresse, PhD thesis, Université Libre de Bruxelles, 1993.

[6] R. Portugal, Algorithmic Simplification of Tensor Expressions, Journal of
Physics A: Mathematical and General, 32 (1999) 7779-7789.

[7] R. Penrose and W. Rindler, Spinors and Space-time: Volume 1, Two-spinor

Calculus and Relativistic Fields, Cambridge University Press, Cambridge, 1992.

[8] D. Lovelock and H. Rund, Tensors, Differential Forms and Variational Princi-

ples, John Wiley & Sons, New York, 1975.

[9] J. S. Leon, On an Algorithm for Finding a Base and a Strong Generating Set for

a Group Given by Generating Permutations, Math. Comp. 35 (1980) 941-974.

[10] G. Butler, Fundamental Algorithms for Permutation Groups, Lecture Notes in
Computer Science, vol. 559, Springer-Verlag (1991).

[11] C. C. Sims, Computation with Permutation Groups, Proceedings of the Second
Symposium on Symbolic and Algebraic Manipulation (Los Angeles 1971), ed.
S.R. Petrick, ACM, New York (1971).

[12] G. Butler, Effective Computation with Group Homomorphisms, J. Symbolic
Comp. 1 (1985) 143-157.

10

