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Let Af(x) := 1
x

∫ x

0
f(t) dt be the one-dimensional Hardy averaging operator. It is well-known that A is

bounded on Lp whenever 1 < p ≤ ∞. We improve this result in the following sense: we introduce a pair of
new function spaces, the ‘source’ space Sp, which is strictly larger than Lp, and the ‘target’ space Tp, which
is strictly smaller than Lp, and prove that A is bounded from Sp into Tp. Moreover, we show that this result
cannot be improved within the environment of solid Banach spaces. We present applications of this result to
variable-exponent Lebesgue spaces Lp(x).
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1 Introduction

Let f ∈ L1
loc[0, 1). We consider the Hardy averaging operator A, defined by

Af(x) =
1
x

∫ x

0

f(t) dt, x ∈ (0, 1),

and the Hardy–Littlewood maximal operator M , defined by

Mf(x) = sup
a<x<b

1
b − a

∫ b

a

|f(t)| dt, x ∈ (0, 1).

We note that we can extend a function which is defined on (0, 1) by zero outside (0, 1), and obtain thereby Af
and Mf defined on the entire R.

It is well-known that both the operators M and A are bounded on Lp whenever 1 < p ≤ ∞. Of course,
this result cannot be improved in an essential way within the Lebesgue spaces. However, it turns out that an
improvement is possible when we consider other, more general function spaces and classes.

In this paper we focus on the question of how far we can improve this result within the framework of solid
Banach spaces. The environment of solid Banach spaces is fairly general as it, for example, covers all the Banach
function spaces. Our main aim can be described as follows: given p ∈ (1,∞), we construct a pair of new function
spaces, namely the ‘source’ space Sp and the ‘target’ space Tp such that

(i) the Hardy averaging operator A satisfies

A : Sp −→ Tp;
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(ii) this result improves the classical estimate

A : Lp −→ Lp

in the sense that

Tp ↪→ Lp ↪→ Sp

and both the inclusions are strict;
(iii) this result cannot be improved any further, at least not within the environment of solid Banach spaces, in

the sense that whenever Y is a solid Banach space strictly larger than Sp, then

A : Y �−→ Tp

and, likewise, when Z is a solid Banach space strictly smaller than Tp, then

A : Sp �−→ Z.

It turns out that the space Tp is one of the function spaces considered in connection with different matters by
K.-G. Grosse–Erdmann [3]. The space Sp is, as far as we know, new.

We finally consider a closely related question of the action of the averaging operator on the so-called variable-
exponent Lebesgue spaces

(
or Lp(x) spaces

)
, which have recently attracted a lot of attention. Therefore, naturally,

we treat analogous questions for the variable-exponent Lebesgue spaces and obtain thereby several results of
independent interest. The key ingredient here is a certain logarithmic control of the variation of the generating
function p(x), a notion which we call a weak-Lipschitz property and which is sometimes in the recent literature
called also a log-Hölder continuity.

The paper is structured as follows. In Section 2 we collect some background material. In Section 3 we present
a key equivalence between two variable-exponent Lebesgue spaces whose generating functions are ‘close’ in
a certain sense. In Section 4 we introduce the spaces Sp and Tp. In Section 5 we present the first main result
of this paper, namely, we show that A is bounded from Lp(x) into Tp. A comparison of the new spaces to the
classical ones is carried out in Section 6. The results obtained so far are then used in Section 7 to obtain sharp
estimates for the action of A, and their optimality is proved in Section 8.

2 Preliminaries

We denote by B the set of all measurable functions p(·) defined on (0, 1) such that 1 ≤ ess inf p(x) ≤
ess sup p(x) < ∞ and by B+ the set of all functions p(·) defined on (0, 1) such that 1 < ess inf p(x) ≤
ess sup p(x) < ∞. By M(0, 1) we define the set of all Lebesgue-measurable functions on (0, 1).

Definition 2.1 Given a function p(·) ∈ B, we define the functional

mp(·)(f) =
∫ 1

0

|f(x)|p(x) dx, f ∈ M(0, 1),

the corresponding Luxemburg norm

‖f‖Lp(·) = inf
{

λ > 0; mp(·)

(
f(x)

λ

)
≤ 1
}

, f ∈ M(0, 1),

and the corresponding function space

Lp(x) = {f ∈ M(0, 1); ‖f‖Lp(·) < ∞} .
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Remark 2.2 Under our assumptions on p(·), mp(·) is a convex modular (see for example [8] for details),
and Lp(·) is a Banach space under the Luxemburg norm. We will make use of the following simple but useful
property of modulars ([7, Lemma 1.2]): whenever h is a positive function on [0,∞) which is bounded in some
right neighborhood of zero, T is a linear operator, m1, m2 are two convex modulars on M(0, 1) and ‖ · ‖1, ‖ · ‖2

are the corresponding Luxemburg norms, then the modular inequality

m2(Tf) ≤ h(m1(f)), f ∈ M(0, 1),

implies

‖Tf‖2 ≤ C‖f‖1, f ∈ M(0, 1).

We shall now introduce a key notion of the weak-Lipschitz property.

Definition 2.3 Let p(·) : [0, 1] → R. We say that p(·) is weak-Lipschitz if there is a C > 0 such that

|p(x) − p(y)| ≤ C

ln e2
|x−y|

for all x, y ∈ [0, 1], 0 < |x − y| ≤ 1. (2.1)

Moreover, given a p ∈ (1,∞), we say that p(·) is weak-Lipschitz at zero with respect to p if there exists
a δ ∈ (0, 1) such that

|p(x) − p| ≤ C

ln e2
x

for all x ∈ (0, δ). (2.2)

We note that the constant e2 is used just for convenience. In particular, the function x �→ ln e2

|x−y| is concave
on the entire (0, 1), which will be used in the proof of Lemma 5.3 below.

Remark 2.4 We emphasize that, in the preceding definition, the function p(·) can attain negative values.
However, if p(·) is weak-Lipschitz at zero with respect to some p ∈ (1,∞) and, at the same time, p(·) ∈ B, then
we can take δ = 1 in (2.2). Indeed, this is a simple consequence of the fact that p is bounded on (0, 1) and that
ln e2

x is bounded away from zero on (δ, 1) for every δ > 0.

It has been known that the condition (2.1) plays a crucial role for the action of integral operators on Lp(·). In
particular, Diening ([1]) showed that M : Lp(x) → Lp(x) whenever p(·) ∈ B+ is weak-Lipschitz.

3 A key lemma

We shall now observe that if functions p(·) and q(·) in B are in some sense close to each other, then the action of
the corresponding variable-exponent Lebesgue norms on a non-increasing function is equivalent.

Lemma 3.1 Let p(·), q(·) ∈ B. Assume that there are 0 < δ < 1 and C > 0 such that

|p(x) − q(x)| ≤ C

ln e2
x

for all x ∈ (0, δ). (3.1)

Let f be a nonnegative and nonincreasing function on (0, 1). Then

∫ 1

0

f(x)p(x) dx < ∞ if and only if
∫ 1

0

f(x)q(x) dx < ∞.

Moreover, there is an A > 1 such that

A−1‖f‖q(·) ≤ ‖f‖p(·) ≤ A‖f‖q(·).
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P r o o f. By symmetry, it suffices to prove just the ‘only if’ part. To this end, suppose that
∫ 1

0 f(x)p(x) dx <

∞. Since p(x) ≥ 1 on (0, 1), we have Lp(x) ↪→ L1 (see e.g. [6]). Thus,
∫ 1

0
f(x) dx < ∞. Since f is non-

increasing, we have xf(x) ≤ ∫ 1

0 f(y) dy =: K , which gives

f(x) ≤ K

x
, x ∈ (0, 1).

Moreover, since both p(·) and q(·) are bounded on (0, 1), (3.1) holds in fact for every x ∈ (0, 1). We thus have,
for x ∈ (0, 1),

f(x)
C

ln e2
x ≤

(
K

e2

) C

ln e2
x

(
e2

x

) C

ln e2
x ≤

(
max

{
1,

K

e2

})C
2

eC =: L.

Then, ∫ 1

0

f(x)q(x) dx =
∫
{x; f(x)≤1}

f(x)q(x) dx +
∫
{x; f(x)>1}

f(x)p(x)+q(x)−p(x) dx

≤ 1 +
∫
{x; f(x)>1}

f(x)p(x)+|q(x)−p(x)| dx

= 1 +
∫
{x; f(x)>1}

f(x)p(x)f(x)
C

ln e2
x dx

≤ 1 + L

∫ 1

0

f(x)p(x) dx.

This shows the modular inequality

mq(·)(f) ≤ h(mp(·)), where h(t) = Lt + 1.

By Remark 2.2, we get the desired norm inequality.

4 Spaces Sp and Tp and their elementary properties

We will now introduce two new function spaces.

Definition 4.1 Let f be a measurable function on (0, 1). We then define for p > 1 two functionals

‖f‖Sp =

(∫ 1

0

ess sup
t∈(x,1)

(
1
t

∫ t

0

|f(s)| ds

)p

dx

) 1
p

and

‖f‖Tp =

(∫ 1

0

ess sup
t∈(x,1)

|f(t)|p dx

) 1
p

,

and the corresponding spaces

Sp = {f ; ‖f‖Sp < ∞}
and

Tp = {f ; ‖f‖Tp < ∞}.
It is a routine matter to verify that Sp and Tp are Banach spaces.
We will now find certain useful equivalent norms on Tp.
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Definition 4.2 Let p(·) ∈ B be given. For a function f , we define the functional

mTp(·)(f) =
∫ 1

0

(
ess sup
t∈(x,1)

|f(t)|
)p(x)

dx,

the norm

‖f‖Tp(·) = inf
{

λ > 0; mTp(·)

(
f

λ

)
≤ 1
}

,

and the corresponding space

Tp(·) = {f ; ‖f‖Tp(·) < ∞}.

Then, again, mTp(·) is a convex modular and Tp(·) is a Banach space with respect to the norm ‖ · ‖Tp(·) .

Theorem 4.3 Let p ∈ (1,∞) and let p(·) ∈ B+ be weak-Lipschitz at zero with respect to p. Then the norms
in Tp(·) and Tp are equivalent.

P r o o f. This is an immediate consequence of Lemma 3.1.

5 Boundedness of A from Lp(·) into Tp

Our aim in this section is to prove that the average operator A is bounded from Lp(·) to Tp whenever p ∈ (1,∞)
and the function p(·) ∈ B+ is weak-Lipschitz at zero with respect to p. Our proof of this rather deep result will
use three auxiliary lemmas, which we shall formulate and prove first, and also the following well-known Riesz’s
rising sun lemma, whose proof can be found for instance in [9].

Lemma 5.1 Assume that h(·) is a continuous function on an interval (a, b). Set

U = {x ∈ (a, b); there exists ξ ∈ (x, b) such that h(ξ) > h(x)}.

Then there is finite or infinite sequence of open pairwise disjoint intervals (aj , bj), j = 1, 2, . . . , such that

U =
⋃
j

(aj , bj) and h(aj) ≤ h(bj) for each j = 1, 2, . . . .

Lemma 5.2 Let p(·) ∈ B+ be weak-Lipschitz. Then A : Lp(·) → Tp(·).

P r o o f. Let 0 ≤ f ∈ L1
loc[0, 1). We consider f extended by zero outside (0, 1). Fix x ∈ (0, 1] and let

x ≤ t ≤ 2x. Then

Af(t) =
1
t

∫ t

0

f(s) ds ≥ 1
2x

∫ x

0

f(s) ds =
1
2
Af(x).

Thus, for 0 < y ≤ x,

M(Af)(y) ≥ 1
2x − y

∫ 2x

y

Af(t) dt ≥ 1
2x

∫ 2x

x

Af(t) dt ≥ 1
4
Af(x).

So,

Af(x) ≤ 4M(Af)(y) for y ≤ x. (5.1)

Set g(x) = ess supy∈(x,1) Af(y). Let

U = {t; g(t) > Af(t)}, t ∈ (0, 1).
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The function Af is continuous. Therefore, by Lemma 5.1, there exists a finite or countable sequence of pairwise
disjoint intervals of the form (xn, xn + εn), where xn ∈ (0, 1) and εn > 0 such that

U =
∞⋃

n=1

(xn − εn, xn).

Moreover,

gn(xn − εn) = g(xn) = Af(xn − εn) = Af(xn).

It thus follows from the monotonicity of g that g(x) = Af(xn) for every x ∈ (xn − εn, xn). Hence, by (5.1), for
such x, g(x) ≤ 4M(Af)(x). As g(x) = Af(x) outside U , we get, altogether,

g(x) ≤ 4M(Af)(x), x ∈ [0, 1].

By the result of Diening [1], mentioned at the end of Section 2, M is bounded on Lp(·) and, since Af(x) ≤
Mf(x), so is A. Thus, finally,

‖Af‖Tp(·) = ‖g‖p(·) ≤ 4‖M(Af)‖p(·) ≤ C‖f‖p(·).

Lemma 5.3 Let C > 0 and p ∈ (1,∞). Then the function q(x) := p − C

ln e2
x

is weak Lipschitz.

P r o o f. Note first that every increasing concave function g defined on [0, 1] with g(0) = 0 satisfies

g(x) − g(y) ≤ g(x − y)

for 0 ≤ y ≤ x ≤ 1. Now, choose 0 < y < x < 1. Since the function x �→ 1

ln e2
x

is an increasing concave function

on [0, 1] vanishing at zero, we obtain

|q(x) − q(y)| =

∣∣∣∣∣− C

ln e2
x

+
C

ln e2
y

∣∣∣∣∣ ≤ C

ln e2
x−y

,

as desired.

Lemma 5.4 Let p(·), q(·) be weak-Lipschitz with constants C1 and C2, respectively. Then the function h(x) =
max(p(x), q(x)) is weak-Lipschitz with the constant max{C1, C2}.

P r o o f. It is easy to see that h(·) ∈ B+. Next, for x ∈ [0, 1], 0 < |x − y| ≤ 1, we have

|h(x) − h(y)| ≤ max{|p(x) − p(y)|; |q(x) − q(y)|} ≤ max{C1; C2} 1
ln e2

x−y

.

Now we are in a position to state and prove the main result of this section.

Theorem 5.5 Let p ∈ (1,∞) and let p(·) ∈ B+ be weak-Lipschitz at zero with respect to p. Then

A : Lp(·) −→ Tp.

P r o o f. By Remark 2.4, we can assume that (2.2) holds with δ = 1. Thus,

|p(x) − p| ≤ C

ln e2
x

, x ∈ (0, 1).

We now set d := ess inf p(x) and

q(x) := max

{
d, p − C

ln e2
x

}
. (5.2)

Then q(x) ≤ p(x) for almost every x ∈ (0, 1). Moreover, q(·) ∈ B+, whence Lp(·) ↪→ Lq(·) (see e.g. [6]). Next,
by Lemmas 5.3 and 5.4, q is weak-Lipschitz. Thus, by Lemma 5.2, A : Lq(·) → Tq(·). Finally, by Lemma 3.1,
Tq(·) ↪→ Tp. Altogether,

‖Af‖Tp ≤ C‖Af‖Tq(·) ≤ C‖f‖q(·) ≤ C‖f‖p(·).
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6 Further functional properties of Sp and Tp

In this section we shall collect some basic functional properties of the function spaces Sp and Tp. We focus on
embeddings between these spaces and other familiar function spaces.

We will use without further reference the fact that, given a measurable function f on (0, 1) such that 0 ≤
f(x) < ∞ almost everywhere, then, for almost every x ∈ (0, 1),

f(x) ≤ ess sup
y∈(x,1)

f(y).

Theorem 6.1 Let p ∈ (1,∞) and let p(·) ∈ B+ be weak Lipschitz at zero with respect to p. Then

Tp ↪→ Lp(·).

P r o o f. Let f ∈ Tp. By Theorem 4.3, we have f ∈ Tp(·), i.e.

∫ 1

0

(
ess sup
y∈(x,1)

|f(y)|
)p(x)

dx < ∞.

Then

∫ 1

0

|f(x)|p(x) dx ≤
∫ 1

0

(
ess sup
y∈(x,1)

|f(y)|
)p(x)

dx,

which finishes the proof.

Theorem 6.2 Let p ∈ (1,∞) and let p(·) ∈ B+ be weak-Lipschitz at zero with respect to p. Then

Lp(·) ↪→ Sp ↪→ L1.

P r o o f. Let us first show that Lp(·) ↪→ Sp. Let 0 ≤ f ∈ Lp(·). By Theorem 5.5, we have Af ∈ Tp, i.e.

∫ 1

0

(
ess sup
y∈(x,1)

1
y

∫ y

0

f(t) dt

)p

dx < ∞,

whence f ∈ Sp.
Now, we will prove Sp ↪→ L1. We have

‖f‖p
Sp

=
∫ 1

0

ess sup
t∈(x,1)

(
1
t

∫ t

0

|f(s)| ds

)p

dx

≥
∫ 1

0

lim
t→1−

(
1
t

∫ t

0

|f(s)| ds

)p

dx

=
∫ 1

0

(∫ 1

0

|f(s)| ds

)p

dx

=
(∫ 1

0

|f(s)| ds

)p

= ‖f‖p
1.

Remark 6.3 (i) Let us note that both the embeddings Lp(·) ↪→ Sp and Tp ↪→ Lp(·) are strict. Indeed, given
p(·), take q(·) from (5.2). Lemmas 5.4 and 5.3 imply that q(·) is weak-Lipschitz and, consequently, using that
limx→0+ q(x) = p, q(·) is also weak-Lipschitz at zero with respect to p. Set

r(x) = max

(
q(x) − C

ln e2
x

, ess inf
x∈(0,1)

q(x)

)
.
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Clearly, r(x) ≤ q(x) almost everywhere in (0, 1). Moreover, r(x) < q(x) on an interval (0, η) for some η > 0.
Hence,

Lp(·) ↪→ Lq(·)↪→�=Lr(·) ↪→ Sp.

The sharpness of the embedding Tp ↪→ Lp(·) can be shown in an analogous manner.
(ii) For every p ∈ (1,∞), we have

Tp ↪→ Sp.

Indeed, by Theorems 6.1 and 6.2 we have

Tp ↪→ Lp ↪→ Sp.

Clearly, both the embeddings are strict.

7 Boundedness of A

As mentioned above, the operator A is bounded on Lp as long as p ∈ (1,∞]. We shall now improve this result,
at least for p ∈ (1,∞) in the sense that we will find a better (larger) source space than Lp, and likewise a better
(smaller) range space than Lp that will still render the boundedness of A true.

Theorem 7.1 Let p ∈ (1,∞). Then

A : Sp −→ Tp.

P r o o f. Assume f ∈ Sp. By the definition of the spaces Tp and Sp, we have

‖Af‖p
Tp

=
∫ 1

0

ess sup
t∈(x,1)

∣∣∣∣1t
∫ t

0

f(s) ds

∣∣∣∣
p

dx ≤
∫ 1

0

ess sup
t∈(x,1)

(
1
t

∫ t

0

|f(s)| ds

)p

dx = ‖f‖p
Sp

.

It is worth to mention some consequences of Theorem 7.1. All the assertions of the following corollary follow
immediately from Theorems 7.1, 6.1, 6.2 and 6.3.

Corollary 7.2 Let p ∈ (1,∞). Then
(i)

A : Sp −→ Sp

and
(ii)

A : Tp −→ Tp.

Let moreover r(·), s(·) ∈ B+ be weak-Lipschitz at zero with respect to p. Then
(iii)

A : Lr(·) −→ Ls(·).

It should be mentioned that the statements of Corollary 7.2 generalize some of the earlier results. Namely,
in [5] it was shown that A is bounded on Lp(·) when p is weak-Lipschitz at zero and p(x) ≥ 0. In [4], the
authors were able to drop the assumption p(x) ≥ 0. Finally, in [2], the sufficient condition was reduced to the
weak-Lipschitz property at zero.
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8 Optimality of Sp and Tp

In this section we shall prove that the spaces Sp and Tp that appear in Corollary 7.2 (i) and (ii) are sharp in a fairly
general sense. We first need the notion of a solid Banach space of integrable functions.

Definition 8.1 A linear subset X of all Lebesgue measurable functions on (0, 1) equipped with the norm ‖.‖X

is called a solid Banach space of integrable functions if the following three conditions hold:

1. (X, ‖.‖X) is a Banach space,

2. X ↪→ L1,

3. if g ∈ X and |f | ≤ |g|, then f ∈ X .

Theorem 8.2 Let p ∈ (1,∞). Let Z � Tp be a solid Banach space of integrable functions. Then

A : Tp �−→ Z.

P r o o f. Take g ∈ (Tp \ Z) and set h(x) = ess supt∈(x,1) |g(t)|. Then h is non-increasing, h ≥ |g| and
h ∈ Tp. Since Z is a solid Banach space of integrable functions, we have h /∈ Z . So, h ∈ (Tp \ Z). Since h is
non-increasing we have Ah ≥ h and so, Ah /∈ Z . Consequently, A : Tp �→ Z .

Now we turn our attention to the optimality of Sp in Corollary 7.2 (i).

Theorem 8.3 Let p ∈ (1,∞). Let Z be a solid Banach space of integrable functions such that Sp � Z . Then

A : Z �−→ Sp.

P r o o f. Take 0 ≤ f ∈ (Z \ Sp). Since Z ↪→ L1, one has

K := ess sup
z∈(1/e,1)

(
1
z

∫ z

0

f

)p

≤
(

e
∫ 1

0

f

)p

< ∞.

We estimate

‖Af‖p
Sp

=
∫ 1

0

ess sup
y∈(x,1)

(
1
y

∫ y

0

Af(t) dt

)p

dx

=
∫ 1

0

ess sup
y∈(x,1)

(
1
y

∫ y

0

1
t

∫ t

0

f(s) ds dt

)p

dx

=
∫ 1

0

ess sup
y∈(x,1)

(
1
y

∫ y

0

f(s)
∫ y

s

dt

t
ds

)p

dx

=
∫ 1

0

ess sup
y∈(x,1)

(
1
y

∫ y

0

f(s) ln
y

s
ds

)p

dx

≥
∫ 1

0

ess sup
y∈(x,1)

(
1
y

∫ y/e

0

f(s) ln
y

s
ds

)p

dx

≥
∫ 1

0

ess sup
y∈(x,1)

(
1
y

∫ y/e

0

f(s)ds

)p

dx

= e−p

∫ 1

0

ess sup
y∈(x,1)

(
1

y/e

∫ y/e

0

f(s)ds

)p

dx

= e−p

∫ 1

0

ess sup
z∈(x/e,1/e)

(
1
z

∫ z

0

f(s) ds

)p

dx.
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Fix x ∈ (0, 1). Denote a := ess supz∈(x/e,1/e)

(
1
z

∫ z

0 f(s) ds
)p

. Due to the trivial inequality a ≥ max(a, K)−K

we have

ess sup
z∈(x/e,1/e)

(
1
z

∫ z

0

f(s) ds

)p

≥ max

(
ess sup

z∈(x/e,1/e)

(
1
z

∫ z

0

f(s) ds

)p

, ess sup
z∈(1/e,1)

(
1
z

∫ z

0

f

)p
)

− K

= ess sup
z∈(x/e,1)

(
1
z

∫ z

0

f(s) ds

)p

− K

≥ ess sup
z∈(x,1)

(
1
z

∫ z

0

f(s) ds

)p

− K

and so, due to the fact f /∈ Sp

‖Af‖p
Sp

≥ e−p

∫ 1

0

ess sup
z∈(x,1)

(1
z

∫ z

0

f(s)ds
)p

dx − e−pK = ∞.

This gives Af /∈ Sp which finishes the proof.

Remark 8.4 It follows from Theorems 8.2 and 8.3 that the action of the operator A : Sp → Tp is optimal in
the sense that neither the source space nor the target one can be essentially improved.
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Math. (Szeged) 5, 208–221 (1930–1932).

www.mn-journal.com c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


