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3 Morrey-Sobolev Spaces on Metric Measure Spaces

Yufeng Lu, Dachun Yang∗ and Wen Yuan

Abstract In this article, the authors introduce the Newton-Morrey-Sobolev space

on a metric measure space (X , d, µ). The embedding of the Newton-Morrey-Sobolev

space into the Hölder space is obtained if X supports a weak Poincaré inequality

and the measure µ is doubling and satisfies a lower bounded condition. Moreover,

in the Ahlfors Q-regular case, a Rellich-Kondrachov type embedding theorem is also

obtained. Using the Haj lasz gradient, the authors also introduce the Haj lasz-Morrey-

Sobolev spaces, and prove that the Newton-Morrey-Sobolev space is a subspace of the

Haj lasz-Morrey-Sobolev space when µ is doubling and X supports a weak Poincaré

inequality. In particular, on the Euclidean space Rn, the authors obtain the coinci-

dence among the Newton-Morrey-Sobolev space, the Haj lasz-Morrey-Sobolev space

and the classical Morrey-Sobolev space, and also the coincidence between the Haj lasz-

Morrey-Sobolev space and the Hardy-Morrey-Sobolev space. In the case when X is a

metric space of homogeneous type, a characterization of the Haj lasz-Morrey-Sobolev

space via the grand maximal function is also established. Finally, when µ is doubling

and satisfies some measure decay property, the authors obtain the boundedness of

some fractional maximal operators on Morrey spaces, Newton-Morrey-Sobolev spaces

and Haj lasz-Morrey-Sobolev spaces.

1 Introduction

In 1996, via introducing the notion of Haj lasz gradients, Haj lasz [18] obtained an equiva-
lent characterization of the classical Sobolev space on Rn, which becomes an effective way
to define Sobolev spaces on metric spaces. From then on, several different approaches
to introduce Sobolev spaces on metric measure spaces were developed; see, for example,
[32, 15, 47, 21, 19, 28, 52, 33].

Throughout the paper, (X , d, µ) denotes a metric measure space with a nontrivial Borel
regular measure µ, which is finite on bounded sets and positive on open sets. Let f be a
measurable function on X . Recall that a non-negative function g on X is called a Haj lasz
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gradient of f if there exists a set E ⊂ X such that µ(E) = 0 and, for all x, y ∈ X \E,

|f(x) − f(y)| ≤ d(x, y)[g(x) + g(y)].

The Haj lasz-Sobolev space M1,p(X ) with p ∈ [1,∞] is then defined to be the space of all
measurable functions f ∈ Lp(X ) which have Haj lasz gradients g ∈ Lp(X ). The norm
of this space is defined by ‖f‖M1,p(X ) := ‖f‖Lp(X ) + infg ‖g‖Lp(X ), where the infimum
is taken over all Haj lasz gradients g of f . It was proved in [18] that when X = Rn and
p ∈ (1,∞], M1,p(Rn) coincides with the classical Sobolev space W 1,p(Rn).

Over a decade ago, based on the notions of upper gradients and weak upper gradients,
Shanmugalingam [47, 48] introduced another type of Sobolev spaces on metric measure
spaces, which are called Newtonian spaces or Newton-Sobolev spaces. These spaces were
also proved to coincide with the Haj lasz-Sobolev spaces if X supports some Poincaré
inequality and the measure is doubling. Now we recall their definitions.

Recall that we call γ a curve if it is a continuous mapping from an interval into X .
A curve γ is rectifiable if its length is finite. All rectifiable curve can be arc-length pa-
rameterized. Without loss of generality, we may assume that all curves appearing in this
article are always treated as parameterized.

Let p ∈ [1,∞) and Γ be a family of non-constant rectifiable curves on X . The p-
modulus of Γ is defined as Modp(Γ) := infρ ‖ρ‖

p
Lp(X ), where the infimum is taken over all

functions ρ in the admissible class F (Γ) for Γ and

(1.1) F (Γ) :=

{
ρ ∈ [0,∞] : ρ is measurable and

∫

γ
ρ(s) ds ≥ 1 for all γ ∈ Γ

}
.

If Γ contains a constant curve, then F (Γ) = ∅. We let the infimum over the empty set
always be infinity.

Let f be a measurable function on X . A non-negative function g is called an upper
gradient of f if, for any curve γ ∈ Γrect ,

(1.2) |f ◦ γ(0) − f ◦ γ(l(γ))| ≤

∫

γ
g(s) ds,

where Γrect is the class of all non-constant rectifiable curves in X . Moreover, if the
inequality (1.2) holds for all the curves except for a family of curves of p-modulus zero,
then we call g a p-weak upper gradient of f . The notion of p-weak upper gradient was
introduced by Heinonen and Koskela in [20]; see also [25] and [47, 48].

For all p ∈ [1,∞), denote by the symbol Ñ1,p(X ) the space of all measurable functions
f ∈ Lp(X ) which have p-weak upper gradients g ∈ Lp(X ) and, for all f ∈ Ñ1,p(X ), let

‖f‖Ñ1,p(X ) := ‖f‖Lp(X ) + inf
g
‖g‖Lp(X ),

where the infimum is taken over all p-weak upper gradients g of f . The Newton-Sobolev
space N1,p(X ) is then defined to be the quotient space N1,p(X ) := Ñ1,p(X )/ ∼ with the
norm ‖ · ‖N1,p(X ) := ‖ · ‖Ñ1,p(X ), where ∼ is an equivalence relation defined by setting, for
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all f1, f2 ∈ Ñ1,p(X ), f1 ∼ f2 if ‖f1 − f2‖Ñ1,p(X ) = 0. It was proved in [47, Theorem 4.9]

that the Newton-Sobolev space coincides with the Haj lasz-Sobolev space if (X,µ) supports
some Poincaré inequality and the measure µ is doubling. We refer to [47, 25, 7, 17, 6] for
more properties about these spaces.

Recently, there are some attempts to study Newtonian type spaces in more general
settings. Durand-Cartagena in [14] introduced and studied the Newtonian space N1,∞(X )
in the limit case that p = ∞. Tuominen [51] considered Newtonian type spaces associated
with Orlicz spaces by replacing the Lebesgue norm in the definition of N1,p(X ) with
Orlicz norms. Using Lorentz spaces instead of Lebesgue spaces, Costea and Miranda [12]
introduced Newtonian type spaces related to Lorentz spaces. Malý [37, 38] studied the
Newtonian type spaces associated with a general quasi-Banach function lattice X, namely,
a quasi-Banach function space X satisfying that, if f ∈ X and |g| ≤ |f | almost everywhere,
then g ∈ X and ‖g‖X ≤ ‖f‖X .

Let 0 < p ≤ q ≤ ∞. Recall that the Morrey space Mq
p(X ) (see [42]) is defined to be

the space of all measurable functions f on X such that

(1.3) ‖f‖Mq
p(X ) := sup

B⊂X

[µ(B)]1/q−1/p

[∫

B
|f(x)|p dµ(x)

]1/p
<∞,

where the supremum is taken over all balls in X . In recent years, Morrey spaces and the
Morrey version of many classical function spaces such as Hardy spaces and Besov spaces,
namely, the spaces defined via replacing Lebesgue norms by Morrey norms in their norms,
attract more and more attentions and have been proved to be useful in the study of partial
differential equations and harmonic analysis; see, for example, [1, 2, 3, 4, 43, 41, 35, 39, 56]
and their references.

The main purpose of this article is to develop a theory of Newtonian type spaces based
on Morrey spaces, namely, Newton-Sobolev-Morrey spaces, as well as the Haj lasz-Sobolev-
Morrey spaces on metric measure spaces.

We begin with the following generalized modulus based on Morrey spaces.

Definition 1.1. Let 1 ≤ p ≤ q < ∞ and Γ be a collection of rectifiable curves. The
Morrey-modulus of Γ is defined by

Modqp(Γ) := inf
ρ∈F (Γ)

‖ρ‖p
Mq

p(X )
,

where F (Γ) is defined as in (1.1).

Definition 1.2. Let f be a measurable function and g a non-negative Borel measurable
function. If the inequality (1.2) holds for all non-constant rectifiable curves in X except
a family of curves of Morrey-modulus zero, then g is called a Modqp-weak upper gradient
of f .

Via these Modqp-weak upper gradients, the Newton-Morrey-Sobolev space is introduced
as follows.
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Definition 1.3. Let 1 ≤ p ≤ q < ∞. The space ÑM q
p (X ) is defined to be the set of all

µ-measurable functions f such that ‖f‖
ÑMq

p (X )
<∞, where

‖f‖
ÑMq

p (X )
:= ‖f‖Mq

p(X ) + inf
g
‖g‖Mq

p(X )

with the infimum being taken over all Modqp-weak upper gradients g of f . The Newton-
Morrey-Sobolev space NM q

p (X ) is then defined as the quotient space

ÑM q
p (X )

/{
f ∈ ÑM q

p (X ) : ‖f‖
ÑMq

p (X )
= 0

}

with

‖f‖NMq
p (X ) := ‖f‖

ÑMq
p (X )

.

It is easy to see that ‖ ·‖NMq
p (X ) is a norm. Moreover, when p = q, the space NM q

p (X )

is just the Newton-Sobolev space N1,p(X ) introduced by Shanmugalingam [47]. We also
remark that, since Morrey spaces are Banach function lattices, these Newton-Sobolev-
Morrey spaces are special cases of the Newtonian type spaces associated with quasi-Banach
function lattices considered by Malý [37, 38].

This article is organized as follows. In Section 2, we show that the Newton-Morrey-
Sobolev space is non-trivial by proving that the set of Lipschitz functions with bounded
support is contained in the Newton-Morrey-Sobolev space (see Theorem 2.4 below), but
not dense (see Remark 2.5 below), which is different from the Newton-Sobolev space.

In Section 3, the embedding of the Newton-Morrey-Sobolev space into the Hölder space
is obtained when X supports a weak Poincaré inequality, the measure µ is doubling and
satisfies a lower bounded condition (see Theorem 3.1 below). Moreover, if the space X is
Ahlfors Q-regular and supports a weak Poincaré inequality, via proving the boundedness
of some fractional integrals on Morrey spaces, we also obtain a Rellich-Kondrachov type
embedding theorem of the Newton-Morrey-Sobolev space (see Theorem 3.6 below). Both
embedding properties on Newton-Morrey-Sobolev spaces generalize the corresponding re-
sults for Newton-Sobolev spaces obtained by Shanmugalingam in [47, Theorems 5.1 and
5.2].

In Section 4, using the Haj lasz gradient, we introduce the Haj lasz-Morrey-Sobolev space
on metric measure spaces and show that, when X supports a weak Poincaré inequality and
the measure µ is doubling, the Newton-Morrey-Sobolev space is a subspace of the Haj lasz-
Morrey-Sobolev space (see Theorem 4.3 below). We also prove that the intersection of
the Haj lasz-Morrey-Sobolev space and C(X ), the set of all functions which are almost
everywhere continuous with respect to the Morrey modulus, is continuously embedded into
the Newton-Morrey-Sobolev space (see Theorem 4.6 below). This generalizes the result
on the relation between Newton-Sobolev spaces and Haj lasz-Sobolev spaces obtained by
Shanmugalingam in [47, Theorem 4.9]. In particular, when X = Rn, both the Newton-
Morrey-Sobolev space NM q

p (Rn) when 1 < p ≤ q <∞ and n < q and the Haj lasz-Morrey-
Sobolev space HM q

p (Rn) when 1 < p ≤ q < ∞ are proved to coincide with the classical
Morrey-Sobolev space on Rn (see Theorem 4.8 and Corollary 4.11 below). We point out
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that, in the proof of Theorem 4.8, we use two key tools: the predual space of the Morrey
space, which was found by Adams and Xiao in [1, Theorem 2.3] and [4, Theorem 7], and
the density of C∞

c (Rn) in the predual space (see Lemma 4.10 below).

In Section 5, invoking the maximal function characterization of Hardy-Morrey-Sobolev
spaces from Jia and Wang [30], and the coincidence between Hardy-Morrey spaces and
some special cases of Triebel-Lizorkin-type spaces in [54, 46, 56], together with the lift-
ing and the mapping properties of Fourier multipliers and pseudo-differential operators
on Triebel-Lizorkin-type spaces, we first prove that, on the Euclidean space Rn, when
n
n+1 < p ≤ q ≤ ∞, the Haj lasz-Morrey-Sobolev space HM q

p (Rn) (see Definition 5.3 below)
coincides with the Hardy-Morrey-Sobolev space H M q

1,p(R
n) (see Theorem 5.5 below),

which generalizes the known result for Hardy-Sobolev spaces obtained by Koskela and
Saksman [33, Theorem 1]. In a more general case when X is a metric measure space
of homogeneous type in the sense of Coifman and Weiss [10, 11], namely, a metric mea-
sure space satisfying the doubling measure condition, we give a characterization of the
Haj lasz-Morrey-Sobolev space via grand maximal functions (see Theorem 5.11 below),
which generalizes the case when s = 1 of [34, Theorem 5.2]. It should be pointed out that,
differently from the proof of [34, Theorem 5.2], the proof of Theorem 5.11 involves several
localized arguments via a partition of unity on homogeneous type spaces.

Finally, Section 6 is devoted to the the boundedness of some fractional maximal op-
erators on Morrey and Morrey-Sobolev spaces. We first show, in Subsection 6.1, the
boundedness of some certain modified maximal operators on modified Morrey spaces over
geometrically doubling metric spaces (see Theorem 6.5 below). As an application, the
boundedness of related fractional maximal operators on modified Morrey spaces is ob-
tained (see Proposition 6.6 below). As further applications, in Subsection 6.2, we show
the boundedness of fractional maximal operators on Haj lasz-Morrey-Sobolev spaces when
X is a doubling metric measure space satisfying the relative 1-annular decay property
and the measure lower bound condition (see Theorem 6.9 below). If X supports a weak
Poincaré-inequality, and the measure is doubling and satisfies the measure lower bound
condition, then the boundedness of discrete fractional maximal operators on Newton-
Morrey-Sobolev spaces is also obtained (see Theorem 6.10 below). All these conclusions
generalize the corresponding known results on Newton-Sobolev spaces and Haj lasz-Sobolev
spaces by Heikkinen et al. in [23, 24].

At the end of this section, we make some conventions on notation. Throughout the
paper, we denote by C a positive constant which is independent of the main parameters,
but it may vary from line to line. The symbol A . B means A ≤ CB, where C is a
positive constant independent of A and B. If A . B and B . A, then we write A ≈ B.
If E is a subset of Rn, we denote by χE its characteristic function.

2 Some basic properties

In this section, we consider some basic properties of Newton-Morrey-Sobolev spaces
including their completeness and non-triviality. Throughout this section, we only assume
that µ is a nontrivial Borel regular measure.
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Recall that the Newton-Morrey-Sobolev space is a special case of the Newtonian spaces
based on quasi-Banach function lattice X introduced in [37]. The following result is a
special case of [37, Theorem 7.1].

Theorem 2.1. For all 1 ≤ p ≤ q <∞, the space NM q
p (X ) is a Banach space.

The next lemma is usually called the truncation lemma, which shows how a Modqp-weak
upper gradient behaves when multiplying a characteristic function. Its proof is similar to
those of [12, Lemmas 4.6 and 4.7] and we omit the details.

Lemma 2.2. Let f ∈ NM q
p (X ) and g1, g2 ∈ Mq

p(X ) be two Modqp-weak upper gradients
of f .

(i) If f is a constant on a closed set E, then g := g1χX \E is also a Modqp-weak upper
gradient of f .

(ii) If E is closed in X , then h := g1χE + g2χX \E is also a Modqp-weak upper gradient
of f .

We also need the following conclusion.

Proposition 2.3. Let 1 ≤ p ≤ q < ∞. For any set E ⊂ X with finite measure,
‖E‖Mq

p(X ) is bounded by a multiple of µ(E)1/q .

Proof. Notice that

‖χE‖Mq
p(X ) = sup

B⊂X

[µ(B)]1/q
[
µ(B ∩ E)

µ(B)

]1/p
.

If µ(B) ≥ µ(E)/2, then by p ≤ q, we have

[µ(B)]1/q
[
µ(B ∩E)

µ(B)

]1/p
. [µ(E)]1/q−1/p[µ(B ∩E)]1/p . [µ(E)]1/q .

If µ(B) ≤ µ(E)/2, then

[µ(B)]1/q
[
µ(B ∩ E)

µ(B)

]1/p
. [µ(E)]1/q .

This finishes the proof of Proposition 2.3.

Recall that NMp
p (X ) = N1,p(X ), which is a non-trivial space. The following con-

clusion shows that even when q > p ≥ 1, NM q
p (X ) is also not a trivial space. In what

follows, Lipb(X ) denotes the set of all Lipschitz functions on X with bounded support.

Theorem 2.4. Let 1 ≤ p ≤ q <∞. Then Lipb(X ) ⊂ NM q
p (X ).

Proof. Let B be a ball in X . By Proposition 2.3, we know that χB ∈ Mq
p(X ) and

‖χB‖Mq
p(X ) . [µ(B)]1/q <∞.
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Now let f ∈ Lipb(X ) with supp (f) ⊂ B and L be the Lipschitz constant of f . Since
f ∈ Lipb(X ), we know that there exists a positive constant M0 such that |f | ≤ M0χB .
Hence, by (1.3), we see that f ∈ Mq

p(X ) and ‖f‖Mq
p(X ) .M0[µ(B)]1/q.

On the other hand, notice that, for all recitable curves γ, it holds that

|f ◦ γ(ℓ(0)) − f ◦ γ(ℓ(γ))| ≤ Ld(γ(ℓ(0)), γ(ℓ(γ))) ≤

∫

γ
Lds.

Hence L is an upper gradient of f . Then by Lemma 2.2, Lχ2B is a Modqp-weak upper
gradient of f , which further implies that f ∈ NM q

p (X ) and

‖f‖NMq
p (X ) . (M0 + L)[µ(B)]1/q.

Thus, Lipb(X ) ⊂ NM q
p (X ), which completes the proof of Theorem 2.4.

Remark 2.5. We point out that the set Lipb(X ) might not be dense in NM q
p (X ) when

1 ≤ p < q < ∞, which is different from the Newton-Sobolev space N1,p(X ) (see [47,
Theorem 4.1]). We give a counterexample in the case X = R as follows. For N ∈ N and
j ∈ Z, let INj := [2N + jN, 2N + jN + 1],

ψNj (x) :=





4x− 4cNj + 2, x ∈ [cNj − 1
2 , c

N
j − 1

4),

1, x ∈ [cNj − 1
4 , c

N
j + 1

4),

−4x+ 4cNj + 2, x ∈ [cNj + 1
4 , c

N
j + 1

2 ],

0, x ∈ (−∞, cNj − 1
2 ) ∪ (cNj + 1

2 , ∞),

and

φNj (x) :=

{
4, x ∈ [cNj − 1

2 , c
N
j + 1

2 ],

0, x ∈ (−∞, cNj − 1
2) ∪ (cNj + 1

2 , ∞),

where cNj is the middle point of the interval INj . Let f :=
∑

N>N0

∑N−1
j=0 ψNj and g :=∑

N>N0

∑N−1
j=0 φNj , where N0 ∈ N such that, for every N ≥ N0, it holds that 2N+1 >

2N +N2 −N + 1. Then, {INj : N > N0, j ∈ {0, . . . , N − 1}} are disjoint with each other.
By this and (1.3) with X = R, we see that, when p = q,

‖f‖Lp(R) ≥
∑

N>N0

N−1∑

j=0

∣∣∣∣
[
cNj −

1

4
, cNj +

1

4

)∣∣∣∣ =
∑

N>N0

N

2
= ∞,

which implies that f /∈ Lp(R). When p < q, by this and (1.3) with X = R, together with
some computations same as in [8, Lemma 2], we know that f ∈ Mq

p(R) and g ∈ Mq
p(R).

Furthermore, by noticing that curves in R are intervals and {INj : N > N0, j ∈ {0, . . . , N−

1}} are disjoint with each other, we see that φNj is an upper gradient of ψNj and hence
g is an upper gradient of f . Now for any g ∈ Lipb(R), let supp g ⊂ [A,B], N1 ∈ N and
j1 ∈ {0, . . . , N1 − 1} such that N1 > N0 and 2N1 + j1N1 > B. Then, we have

‖f − g‖Mq
p(R) ≥

∥∥∥∥χ[c
N1
j1

− 1
4
, c

N1
j1

+ 1
4
]

∥∥∥∥
Mq

p(R)

≥

(
1

2

)1/q

.
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Thus, f can not be approximating by any sequence of functions in Lipb(R) in the norm of
NM q

p (R) and hence the above claim holds true.

3 Sobolev embeddings

Let α ∈ (0, 1] and C0,α(X ) denote the α-Hölder space on X , namely, the space of all
functions f satisfying that, for all x, y ∈ X , |f(x) − f(y)| ≤ C[d(x, y)]α, where C is a
positive constant independent of x and y.

It is well known that, when X = Rn, the following Sobolev embeddings hold true:

W 1,p(Rn) →֒ Lnp/(n−p)(Rn) if p < n,(3.1)

and

W 1,p(Rn) →֒ C0,1−n/p(Rn) if p > n,(3.2)

where the symbol →֒ means continuous embedding. The generalizations of (3.1) and (3.2)
to the Newton-Sobolev space and the Haj lasz-Sobolev space on metric measure spaces
were obtained in [47] and [20, 21]. This section is devoted to the corresponding Sobolev
embedding theorems for Newton-Morrey-Sobolev spaces.

Recall that a space X is said to support a weak (1, p)-Poincaré inequality if there exist
positive constants C and τ ≥ 1 such that, for all open balls B in X and all pairs of
functions f and ρ defined on τB, whenever ρ is an upper gradient of f in τB and f is
integrable on B, then

(3.3)
1

µ(B)

∫

B
|f(x) − fB| dµ(x) ≤ C diam(B)

{
1

µ(B)

∫

τB
[ρ(x)]p dµ(x)

}1/p

,

where above and in what follows, fB denotes the integral mean of f on B, namely,

(3.4) fB =
1

µ(B)

∫

B
f(y) dµ(y),

diam(B) the diameter of B and τB the ball with the same center as B but τ times the
radius of B. In particular, if τ = 1, then we say that X supports a (1, p)-Poincaré
inequality.

It is well known that the Euclidean space supports a (1, p)-Poincaré inequality. For
more information on Poincaré inequalities, we refer to [26, 27, 21] and their references.

A measure µ on X is said to be doubling if there exists a positive constant C such
that, for all balls B in X , it holds that µ(2B) ≤ Cµ(B). As a generalization of (3.2) to
Newton-Morrey-Sobolev spaces, we have the following conclusion.

Theorem 3.1. Let 1 ≤ p ≤ q < ∞ and Q ∈ (0, q). Assume that (X , d, µ) is a metric
measure space with doubling measure µ, supports a weak (1, p)-Poincaré inequality and
satisfies that there exists a positive constant C such that, for all x ∈ X and 0 < r <
2diam(X ), it holds that µ(B(x, r)) ≥ CrQ. Then NM q

p (X ) →֒ C0,1−Q/q(X ).
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Proof. By the same reason as that stated in the proof of [47, Theorem 5.1], we only need
to show that if f ∈ NM q

p (X ) and x, y are Lebesgue points of f , then

|f(x) − f(y)| . [d(x, y)]1−Q/q‖f‖NMq
p (X ).

To this end, let B1 := B(x, d(x, y)), B−1 := B(y, d(x, y)) and, for all i > 1,

Bi =
1

2
Bi−1 and B−i =

1

2
B−i+1.

Let B0 be a ball contained in B1 ∩ B−1 with radius rB0 := d(x, y)/4. Since x, y are
Lebesgue points, it follows that

|f(x) − f(y)| ≤
∑

i∈Z

|fBi − fBi+1 |.

Let ρ be an upper gradient of f such that

‖f‖Mq
p(X ) + ‖ρ‖Mq

p(X ) . ‖f‖NMq
p (X ).

Then, by this, (1.3), the doubling condition of µ and the weak (1, p)-Poincaré inequality,
together with µ(τBi) & rQi , we see that, when i ∈ N,

|fBi − fBi+1 | .
1

µ(Bi)

∫

Bi

|fBi − f(x)| dµ(x)(3.5)

. diam(Bi)

{
1

µ(τBi)

∫

τBi

[ρ(x)]p dµ(x)

}1/p

. ri[µ(τBi)]
−1/q‖ρ‖Mq

p(X ) . r
1−Q/q
i ‖ρ‖Mq

p(X )

. 2−i(1−Q/q)[d(x, y)]1−Q/q‖f‖NMq
p (X ),

where we denote by ri the radius of Bi. Similarly, for all i ≤ −2, we also have

|fBi − fBi+1 | . 2i(1−Q/q)[d(x, y)]1−Q/q‖f‖NMq
p (X ).

On the other hand, by the Hölder inequality and the doubling condition of µ, we see
that

|fB−1 − fB0 | ≤
1

µ(B0)

∫

B0

∣∣fB−1 − f(x)
∣∣ dµ(x) .

1

µ(6B0)

∫

B−1

|fB−1 − f(x)| dµ(x)

.
1

µ(B−1)

∫

B−1

|fB−1 − f(x)| dµ(x)

and then, similar to (3.5), we further conclude that

|fB−1 − fB0 | . [d(x, y)]1−Q/q‖f‖NMq
p (X ).

Meanwhile, by the same method as this, we also find that

|fB0 − fB1 | . [d(x, y)]1−Q/q‖f‖NMq
p (X ).
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Thus, combining the above estimates, by Q ∈ (0, q), we see that

|f(x) − f(y)| . [d(x, y)]1−Q/q

[
∑

i∈Z

2−|i|(1−Q/q)

]
‖f‖NMq

p (X )

. [d(x, y)]1−Q/q‖f‖NMq
p (X ),

which completes the proof of Theorem 3.1.

Remark 3.2. Theorem 3.1 generalizes [47, Theorem 5.1] by taking p = q.

Next we give a Rellich-Kondrachov type embedding theorem for NM q
p (X ) when p is

small, which can be seen as a generalization of (3.1). We begin with the following notion
of the Ahlfors Q-regular; see, for example, [47, Definition 5.1].

Definition 3.3. Let Q ∈ (0,∞). A metric measure space X is said to be Ahlfors Q-
regular (or Q-regular), if there exists a constant C ≥ 1 such that, for any x ∈ X and any
r ∈ (0, 2diam(X )),

1

C
rQ ≤ µ(B(x, r)) ≤ CrQ.

Let M be the Hardy-Littlewood maximal operator defined by setting, for all f ∈
L1

loc (X ), the set of all functions which are integrable on all balls, and x ∈ X ,

(3.6) Mf(x) := sup
B∋x

1

µ(B)

∫

B
|f(y)| dµ(y),

where the supremum is taken over all balls B in X containing x. The following statement
shows that the operator M is bounded on Morrey spaces. For its proof, we refer to [5] for
example.

Lemma 3.4. Let (X , d, µ) be a metric space with doubling measure and 1 < p ≤ q ≤ ∞.
Then there exists a positive constant C such that, for all f ∈ Mq

p(X ),

‖Mf‖Mq
p(X ) ≤ C‖f‖Mq

p(X ).

We also need the following boundedness of fractional integral operators on Morrey
spaces.

Proposition 3.5. Let X be Ahlfors Q-regular with Q ∈ (0,∞), α ∈ (0, Q) and 1 < p ≤

q < Q/α. Then the following fractional integral Iα is bounded from Mq
p(X ) to Mq∗

p∗(X ),

where p∗ := Qp
Q−qα , q∗ := Qq

Q−qα and Iα is defined by setting, for all f ∈ Mq
p(X ) and

x ∈ X ,

Iα(f)(x) :=

∫

X

f(y)

[d(x, y)]Q−α
dµ(y).
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Proof. Without loss of generality, we may assume that f ∈ Mq
p(X ) is non-negative. For

any x ∈ X , fix δ > 0 and write

Iα(f)(x) ≤

∫

B(x,δ)

f(y)

[d(x, y)]Q−α
dµ(y) +

∫

X \B(x,δ)

f(y)

[d(x, y)]Q−α
dµ(y)

=: b
(α)
δ (x) + g

(α)
δ (x).

By the Hölder inequality, (1.3) and the Ahlfors Q-regular property of X , together with
q < Q/α, we see that

g
(α)
δ (x) =

∞∑

j=0

∫

B(x,2j+1δ)\B(x,2jδ)

f(y)

[d(x, y)]Q−α
dµ(y)(3.7)

.

∞∑

j=0

(2jδ)α−Q[µ(B(x, 2j+1δ))]1−1/p

[∫

B(x,2j+1δ)
[f(y)]p dµ(y)

]1/p

.

∞∑

j=0

(2jδ)α−Q[µ(B(x, 2j+1δ))]1−1/q‖f‖Mq
p(X )

≈
∞∑

j=0

(2jδ)α−Q(2jδ)(1−1/q)Q‖f‖Mq
p(X ) . δα−Q/q‖f‖Mq

p(X ).

For bδ, let Aj := Bj \ Bj+1 := B(x, 2−jδ) \ B(x, 2−j−1δ) for all j ∈ N ∪ {0} =: Z+.
Then, by the Ahlfors Q-regular property of X , together with α > 0, we see that, for all
x ∈ X ,

b
(α)
δ (x) =

∑

j∈Z+

∫

Aj

f(y)

[d(x, y)]Q−α
dµ(y) ≈

∑

j∈Z+

(2−jδ)α−Q
∫

Bj

f(y) dµ(y)(3.8)

. δα
∑

j∈Z+

2−jα
1

µ(Bj)

∫

Bj

f(y)µ(y) . δαM(f)(x).

Combining (3.7) and (3.8), we have

Iα(f)(x) . δαM(f)(x) + δα−Q/q‖f‖Mu
p (X ).

Now let δ := ‖f‖
q/Q

Mq
p(X )

[M(f)(x)]−q/Q. Then for any x ∈ X ,

Iα(f)(x) . ‖f‖
αq/Q

Mq
p(X )

[M(f)(x)]1−αq/Q,

which, together with Lemma 3.4, further implies that

‖Iα(f)‖
Mq∗

p∗
(X )

. ‖f‖
qα/Q

Mq
p(X )

‖[M(f)]1−qα/Q‖
Mq∗

p∗
(X )

≈‖f‖
qα/Q

Mq
p(X )

‖M(f)‖
1−qα/Q

Mq
p(X )

. ‖f‖Mq
p(X ).

This finishes the proof of Proposition 3.5.
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Now we have the following Rellich-Kondrachov type embedding result, which generalizes
[47, Theorem 5.2] by taking p = q, α = 1 and X being bounded.

Theorem 3.6. Let 1 ≤ r < p ≤ q < ∞. Let 1 < p/r ≤ q/r < Q/α < ∞, α ∈
(0, r)∩(0, Q) and X be an Ahlfors Q-regular metric measure space supporting a weak (1, r)-
Poincaré inequality. Then there exists a positive constant C such that, for all functions
f ∈ NM q

p (X ), upper gradients ρ of f and R ∈ (0,∞),

‖f − fB(·,R)‖
M

Qrq
Qr−qα
Qrp

Qr−qα

(X )

≤ CR1−α/r‖ρ‖Mq
p(X ).

Proof. Let f ∈ NM q
p (X ) and ρ be an upper gradient of f . For any Lebesgue point x for

f , we write B0 := B(x,R) and Bi := B(x, 2−iR) for all i ∈ N. Since an Ahlfors Q-regular
space is doubling, by the weak (1, r)-Poincaré inequality and r > α, we see that

|f(x) − fB(x,R)| ≤
∞∑

i=0

|fBi − fBi+1 | .
∞∑

i=0

1

µ(Bi)

∫

Bi

|f(z) − fBi | dµ(z)

.

∞∑

i=0

diam(Bi)

[µ(τBi)]1/r

{∫

τBi

[ρ(z)]r dµ(z)

}1/r

≈
∞∑

i=0

diam(Bi)

(2−iτR)Q/r

{∫

τBi

[ρ(z)]r dµ(z)

}1/r

.

∞∑

i=0

2−iR

(2−iτR)α/r

{∫

τBi

[ρ(z)]r

[d(x, z)]Q−α
dµ(z)

}1/r

.R1−α/r

{∫

X

[ρ(z)]r

[d(x, z)]Q−α
dµ(z)

}1/r

≈ R1−α/r[Iα(ρr)(x)]1/r,

where τ is the same as in (3.3). Applying Proposition 3.5, together with 1 < p/r ≤ q/r <
Q/α, we conclude that

‖f − fB(·,R)‖
M

Qqr
Qr−qα
Qpr

Qr−qα

(X )

.R1−α/r‖[Iα(ρr)]1/r‖
M

Qrq
Qr−qα
Qpr

Qr−qα

(X )

≈ R1−α/r‖Iα(ρr)‖
1/r

M

Qq
Qr−qα

Qp
Qr−qα

(X )

.R1−α/r‖ρr‖
1/r

M
q/r
p/r

(X )
≈ R1−α/r‖ρ‖Mq

p(X ),

which completes the proof of Theorem 3.6.

Remark 3.7. (i) Let 1 < r < p <∞, 1 < p/r < Q <∞, and X be an Ahlfors Q-regular
metric measure space supporting a weak (1, r)-Poincaré inequality. Then, by Theorem 3.6,
we see that there exists a positive constant C such that, for all functions f ∈ N1,p(X ),
upper gradients ρ of f and R ∈ (0,∞),

‖f − fB(·,R)‖
L

Qpr
Qr−p (X )

≤ CR1−1/r‖ρ‖Lp(X ),
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which has its own interest.
(ii) We also remark that Theorem 3.6 generalizes the classical result for Newton spaces

in [47, Theorem 5.2]. Indeed, if we further assume that X is bounded, then we know
that fX = fB(x,diam(X )) for almost all x ∈ X . Thus, it follows from (i) that, under the
same assumptions on Q, r, p as in (i), there exists a positive constant C such that, for all
functions f ∈ N1,p(X ) and upper gradients ρ of f ,

‖f − fX ‖
L

Qpr
Qr−p (X )

≤ C[diam(X )]1−1/r‖ρ‖Lp(X ),

which is just [47, Theorem 5.2].

4 Haj lasz-Morrey-Sobolev spaces

In this section, we introduce Morrey-Sobolev spaces associated with Haj lasz gradients
and consider the relation between the Haj lasz-Morrey-Sobolev space and the Newton-
Morrey-Sobolev space.

Definition 4.1. Let 0 < p ≤ q ≤ ∞. The inhomogeneous Haj lasz-Morrey-Sobolev space
HM q

p (X ) is defined to be the space of all measurable functions f having Haj lasz gradients
h ∈ Mq

p(X ). The norm of f ∈ HM q
p (X ) is defined as

‖f‖HMq
p (X ) := ‖f‖Mq

p(X ) + inf ‖h‖Mq
p(X ),

where the infimum is taken over all Haj lasz gradients h of f .

We remark that HM q
p (X ) when p = q is just the Haj lasz-Sobolev space M1,p(X ) in

[18]. Moreover, ‖f‖HMq
p (X ) = 0 if and only if f = 0 almost everywhere.

Next we consider the relationship between the Haj lasz-Morrey-Sobolev space and the
Newton-Morrey-Sobolev space. We first need the following lemma, which is a special case
of [37, Lemma 5.6].

Lemma 4.2. Let 1 ≤ p ≤ q < ∞ and g be a Modqp-weak upper gradient of f . Then
for any ε ∈ (0,∞), there exists a function gε, which is an upper gradient of f , such that
‖gε − g‖Mq

p(X ) ≤ ε and gε ≥ g everywhere on X .

Applying Lemma 4.2, we obtain the following result.

Theorem 4.3. Let 1 ≤ p ≤ q < ∞. If X supports a weak (1, p)-Poincaré inequality and
the measure µ is doubling, then NM q

p (X ) →֒ HM q
p (X ).

Proof. Let f ∈ NM q
p (X ). By [31, Theorem 1.0.1], we see that X supports a weak (1, r)-

Poincaré inequality for some r ∈ (0, p). By Lemma 4.2, there exists an upper gradient g
of u such that

‖f‖Mq
p(X ) + ‖g‖Mq

p(X ) . ‖f‖NMq
p (X ).

Since X supports a weak (1, r)-Poincaré inequality for some r ∈ (0, p), by [21, Theorem
3.2], we know that there exists a set E ⊂ X with µ(E) = 0 such that, for all x, y ∈ X \E,

|f(x) − f(y)| . d(x, y)
{

[M(gr)(x)]1/r + [M(gr)(y)]1/r
}
.
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Hence a constant multiple of h := [M(gr)]1/r is a Haj lasz gradient of f . Then, by Lemma
3.4, we know that

‖f‖HMq
p (X ) . ‖f‖Mq

p(X ) + ‖h‖Mq
p(X ) . ‖f‖Mq

p(X ) + ‖g‖Mq
p(X ) . ‖f‖NMq

p (X ),

which completes the proof of Theorem 4.3.

Remark 4.4. When p = q, under the same assumptions as in Theorem 4.3, it was proved
in [47, Theorem 4.9] that NMp

p (X ) = HMp
p (X ).

Next we turn to consider the inverse embedding of Theorem 4.3. The following property
of the Morrey modulus is needed, which is a special case of [37, Proposition 4.7].

Lemma 4.5. Let 1 ≤ p ≤ q < ∞ and Γ be a collection of rectifiable curves. Then the
following two statements are equivalent:

(i) Modqp(Γ) = 0;
(ii) there exists a non-negative Borel measurable function ρ ∈ Mq

p(X ) such that, for
any γ ∈ Γ,

∫
γ ρ(s) ds = ∞.

Recall that a function f on X is said to be almost everywhere continuous with respect
to Modqp if there exists a set E ⊂ X , with Modqp(ΓE) = 0, such that f is continuous on
X \ E. Let C(X ) be the set of all such functions f on X . Then we have the following
conclusion.

Theorem 4.6. Let 1 ≤ p ≤ q <∞. Then C(X ) ∩HM q
p (X ) →֒ NM q

p (X ).

Proof. Let f ∈ C(X ) ∩ HM q
p (X ). Then, by f ∈ C(X ), we know that there exists a

set E1 ⊂ X , with Modqp(ΓE1) = 0, such that f is continuous on X \ E1. Also, by
f ∈ HM q

p (X ), we see that there exists a Haj lasz gradient h of f such that h ∈ Mq
p(X ),

which further implies that there exists a set E2 ⊂ X , with µ(E2) = 0, such that, for all
x, y ∈ X \ E2,

(4.1) |f(x) − f(y)| ≤ d(x, y)[h(x) + h(y)].

Since µ(E2) = 0, similar to [47, Lemma 4.6], we may redefine the values of f and h on
a set containing E2 of measure 0 such that (4.1) holds for all x, y ∈ X and with the
same Mq

p(X ) norm. Let Γ be the collection of non-constant rectifiable curves such that∫
γ h(s) ds = ∞. By Lemma 4.5, we have Modqp(Γ) = 0 and hence Modqp(Γ ∪ ΓE1) = 0.

Let γ /∈ Γ∪ΓE1 . Fix n ∈ N and divide γ into n subcurves γi, i ∈ {1, . . . , n}, with equal
length. Since γ is continuous, we know that Ii := γ−1(γi) is an interval and [0, ℓ(γ)] =
∪ni=1Ii. By

∫
γ h(s) ds < ∞, we know that

∫
γi
h(s) ds < ∞ for any i ∈ {1, . . . , n}. Then,

by the argument as in [47, Lemma 4.7], we see that, for any i ∈ {1, . . . , n}, there exists
ti ∈ Ii such that h(γ(ti)) ≤ 1

l(γi)

∫
γi
h(s) ds, where l(γi) denotes the length of γi. Write

γ(tj) =: zj . Then, by this and (4.1), together with l(γi) = 1
n l(γ) and ∪ni=1γi = γ, we

conclude that

|f(z1) − f(zn)| ≤
n−1∑

i=1

|f(zi) − f(zi+1)| ≤
n−1∑

i=1

d(zi, zi+1)[h(zi) + h(zi+1)]
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≤
n−1∑

i=1

[l(γi) + l(γi+1)]

[
1

l(γi)

∫

γi

h(s) ds +
1

l(γi+1)

∫

γi+1

h(s) ds

]

≤ 2

n−1∑

i=1

[∫

γi

h(s) ds +

∫

γi+1

h(s) ds

]
≤ 4

∫

γ
h(s) ds.

Since γ ⊂ X \ E1 and f is continuous on X \ E1, by the fact that z1 → γ(0) and
zn → γ(ℓ(γ)) as n→ ∞, we further find that

|f(γ(0)) − f(γ(ℓ(γ)))| ≤

∫

γ
4h(s) ds,

that is, 4h is a Modqp-weak upper gradient of f . Thus, f ∈ NM q
p (X ) and ‖f‖NMq

p (X ) .

‖f‖HMq
p (X ). This finishes the proof of Theorem 4.6.

Remark 4.7. (i) We point out that, in the proof of Theorem 4.6, the condition f ∈ C(X )
is used to exclude those “bad curves” on which the function f may not be continuous.

(ii) From Theorem 4.6, we deduce that the closure of C(X ) ∩HM q
p (X ) in HM q

p (X )
continuously embeds into NM q

p (X ).
(iii) When p = q, then HM q

p (X ) = M1,p(X ) and NM q
p (X ) = N1,p(X ). Since the set

of all Lipschitz functions is dense in M1,p(X ) (see [18, Theorem 5]), Theorems 4.3 and 4.6
go back to the known result: under the assumptions of Theorem 4.3, N1,p(X ) = M1,p(X )
for p ∈ [1,∞), which is just [47, Theorem 4.9].

(iv) Let X be as in Theorem 3.1 with the weak (1, p)-Poincaré inequality replaced
by the weak (1, t)-Poincaré inequality for some t ∈ (1, p). Observe that if X supports
a weak (1, t)-Poincaré inequality for some t ∈ (1, p), then it also supports a weak (1, p)-
Poincaré inequality, via the Hölder inequality. Then, by Theorem 3.1, we know that, when
Q ∈ (0, q) and 1 ≤ p ≤ q < ∞, NM q

p (X ) ⊂ C(X ), which, together with Theorems 4.3
and 4.6, further implies that

(4.2) C(X ) ∩HM q
p (X ) = NM q

p (X ).

(v) It is still unknown whether HM q
p (X ) →֒ NM q

p (X ) for 1 ≤ p < q < ∞ also holds
true or not since we do not know whether HM q

p (X ) is contained in C(X ) or not. Observe
that, from (4.2) and [47, Theorem 4.9], it follows that HMp

p (X ) ⊂ C(X ).

We now consider the relation between the Haj lasz-Morrey-Sobolev space and the clas-
sical Morrey-Sobolev space on Rn. Let 1 ≤ p ≤ q < ∞. Recall that the classical Morrey-
Sobolev space WM q

p (Rn) is defined as

WM q
p (Rn) :=

{
f ∈ Mq

p(R
n) : ∇f ∈ Mq

p(R
n)
}
,

where ∇f denotes the weak derivative of f . The norm of f ∈WM q
p (Rn) is given by

‖f‖WMq
p (Rn) := ‖f‖Mq

p(Rn) + ‖∇f‖Mq
p(Rn).

Observe that WMp
p (Rn) is just the Sobolev space W 1,p(Rn).

We have the following conclusion.
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Theorem 4.8. Let 1 < p ≤ q <∞. Then WM q
p (Rn) = HM q

p (Rn) with equivalent norms.

Before we prove Theorem 4.8, we need some key facts on the predual space of Mq
p(Rn)

when 1 < p < q <∞ from Adams and Xiao [1, 4]. To state them, we begin with recalling
some notions.

Let p ∈ (1,∞). A non-negative function w on Rn is called an Ap(R
n) weight, denote by

w ∈ Ap(R
n), if there exists a positive constant C, depending only on p and n, such that,

for all balls B,

(4.3)
1

|B|

∫

B
w(y) dy

{
1

|B|

∫

B
[w(y)]1/(1−p) dy

}p−1

≤ C.

A non-negative function w is called an A1(R
n) weight, denoted by w ∈ A1(Rn), if there

exists a positive constant C such that, for almost every x ∈ Rn, Mw(x) ≤ Cw(x).
For α ∈ (0, n), the α-th order Hausdorff capacity at the level ε ∈ (0,∞] of E ⊂ Rn is

defined by

Λ(ε)
α (E) := inf





∞∑

j=1

rαj : E ⊂
∞⋃

j=1

B(xj , rj) and rj ≤ ε, j ∈ N



 .

Recall that Λ
(∞)
α is finite on all bounded sets and is only a capacity in the sense of Meyers

(see also [4]).

Definition 4.9. Let 1 ≤ p ≤ q < ∞ and n ∈ N. The space Hq
p(Rn) is defined to be the

space of all as f ∈ Lploc (Rn) such that

‖f‖Hq
p(Rn) := inf

w

{∫

Rn

|f(y)|p[w(y)]1−p dy

}1/p

<∞,

where Lploc (Rn) denotes the class of all p-locally integrable functions on Rn and the infirm
is taken over all non-negative weights w ∈ A1(Rn) satisfying that

∫

Rn

w dΛ
(∞)
n− pn

q
:=

∫ ∞

0
Λ
(∞)
n− pn

q
({x ∈ Rn : w(x) > t}) dt ≤ 1.

Let 1 < p < q < ∞ and λ := pn/q. Observe that the space Hq
p(Rn) is just the

space Hp,λ defined by Adams and Xiao in [4], where they also proved that Hp′,λ, which

is H
q/(p−1)
p′ (Rn) by our notation, is the predual space of Lp,λ, which is the same space as

Mq
p(Rn) in this paper; see [1, Theorem 2.3] and [4, Theorems 6 and 7]. Using this, we

have the following useful and key lemma.

Lemma 4.10. (i) If 1 < p < q <∞, then C∞
c (Rn) is dense in Hq

p(Rn).
(ii) If 1 < p < q <∞, then for any f ∈ Mq

p(Rn),

‖f‖Mq
p(Rn) = sup

{∣∣∣∣
∫

Rn

f(x)g(x) dx

∣∣∣∣ : g ∈ C∞
c (Rn), ‖g‖

H
q/(p−1)

p′
(Rn)

≤ 1

}
,

where 1
p + 1

p′ = 1.
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Proof. Notice that (ii) is an immediate corollary of (i) and the fact that (H
q/(p−1)
p′ (Rn))∗ =

Mq
p(Rn) when 1 < p < q <∞ (see [1, Theorem 2.3] and [4, Theorems 6 and 7]), together

with a density argument. Thus, we only need to prove (i). To this end, let f ∈ Hq
p(Rn).

By Definition 4.9, we see that, for any ε ∈ (0,∞), there exists a weight w ∈ A1(Rn) such

that
∫
Rn w dΛ

(∞)
n−np/q ≤ 1 and

‖f‖Hq
p(Rn) ≤

{∫

Rn

|f(x)|p[w(x)]1−p dx

}1/p

< ‖f‖Hq
p(Rn) + ε.

Thus, f ∈ Lp
w1−p(Rn), where

Lp
w1−p(Rn) :=

{
h is measurable : ‖h‖Lp

w1−p (R
n) :=

∫

Rn

|h(x)|p[w(x)]1−p dx <∞

}
.

We now claim that if w ∈ A1(Rn), then C∞
c (Rn) is dense in Lp

w1−p(Rn). Let v := w1−p

and h ∈ Lpv(Rn). By the weighted boundedness of the Hardy-Littlewood maximal function
M on Lpv(Rn) (see, for example, [49, p. 201]), and v ∈ Ap(R

n), which is deduced from
w ∈ A1(Rn) (see [13, Proposition 7.2]), we see that

(4.4)

∫

Rn

[Mh(x)]p v(x) dx .

∫

Rn

|h(x)|p v(x) dx ≈ ‖h‖p
Lp
v(Rn)

.

Let φ ∈ C∞
c (Rn) and

∫
Rn φ(x) dx = 1. For all t ∈ (0,∞) and x ∈ Rn, let φt(x) := 1

tnφ(xt ).
From h ∈ Lpv(Rn), we deduce that

(4.5) lim
R→∞

∫

Rn

|h(x) − (hχB(0,R))(x)|p v(x) dx = 0.

Moreover, by the Hölder inequality, h ∈ Lpv(Rn) and v ∈ Ap(R
n), we conclude that, for

any ball B ⊂ Rn,
∫

B
|h(x)| dx=

∫

B
|h(x)|[v(x)]1/p[v(x)]−1/p dx

≤

[∫

B
|h(x)|pv(x) dx

]1/p [∫

B
[v(x)]−p

′/p dx

]1/p′
<∞.

Thus, h ∈ L1
loc (Rn), which implies that, for any R ∈ (0,∞), hχB(0,R) ∈ L1(Rn). By this

and [50, Theorem 1.25], we see that, for any R ∈ (0,∞) and almost every x ∈ Rn,

(4.6) lim
t→0

(hχB(0,R) ∗ φt)(x) = hχB(0,R)(x).

Observe that both h and (hχB(0,R)) ∗ φt for any R ∈ (0,∞) and t > 0 are controlled by
Mh. By this, (4.4), the Lebesgue dominated convergence theorem, (4.5) and (4.6), we
conclude that

lim
R→∞

lim
t→0

∫

Rn

|h(x) − (hχB(0,R)) ∗ φt(x)|pv(x) dx
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. lim
R→∞

∫

Rn

|h(x) − (hχB(0,R))(x)|pv(x) dx

+ lim
R→∞

∫

Rn

lim
t→0

|(hχB(0,R)(x) − (hχB(0,R)) ∗ φt(x)|pv(x) dx = 0

which, together with the fact that (hχB(0,R)) ∗ φt ∈ C∞
c (Rn) for all t, R ∈ (0,∞), further

implies that h is approximated by functions in C∞
c (Rn). This finishes the proof of the

claim.
Moreover, by this claim and f ∈ Lp

w1−p(Rn), we see that there exists g ∈ C∞
c (Rn) such

that ∫

Rn

|f(x) − g(x)|p[w(x)]1−p dx < ε,

which, by Definition 4.9, further implies that

‖f − g‖Hq
p(Rn) ≤

∫

Rn

|f(x) − g(x)|p[w(x)]1−p dx < ε.

This finishes the proof of (i) and hence Lemma 4.10.

Now we are ready to present the proof of Theorem 4.8.

Proof of Theorem 4.8. Observe that the conclusion of Theorem 4.8 when 1 < p = q < ∞
is just [18, Theorem 1]. Thus, in what follows of this proof, we always assume that 1 <
p < q <∞.

We first show that WM q
p (Rn) ⊂ HM q

p (Rn). Let f ∈ WM q
p (Rn). By the definition

of WM q
p (Rn), we see that ∇f ∈ Lp(Q) for all cubes Q in Rn and then, following the

argument as in [18, p. 404], we know that, for all Lebesgue points x, y ∈ Rn of f ,

|f(x) − f(y)| . |x− y| [M(|∇f |)(x) +M(|∇f |)(y)] .

Hence a constant multiple of M(|∇f |) is a Haj lasz gradient of f . Moreover, by Definition
4.1 and Lemma 3.4, we further see that

‖f‖HMq
p (Rn) ≤ ‖f‖Mq

p(Rn)+‖M(|∇f |)‖Mq
p(Rn) . ‖f‖Mq

p(Rn)+‖∇f‖Mq
p(Rn) ≈ ‖f‖WMq

p (Rn).

This shows that WM q
p (Rn) ⊂ HM q

p (Rn).
Next we prove HM q

p (Rn) ⊂ WM q
p (Rn). Let f ∈ HM q

p (Rn). Then, by Definition 4.1,
we see that there exists a nonnegative function h ∈ Mq

p(Rn) such that, for almost every
x, y ∈ Rn,

(4.7) |f(x) − f(y)| ≤ |x− y|[h(x) + h(y)]

and
‖f‖Mq

p(Rn) + ‖h‖Mq
p(Rn) . ‖f‖HMq

p (Rn).

To complete the proof, it suffices to show that there exists a sequence of functions
{ηε}ε∈(0,∞) ⊂ Mq

p(Rn) such that, for all ϕ ∈ C∞
c (Rn) and i ∈ {1, . . . , n},

(4.8)

∣∣∣∣
〈
∂f

∂xi
, ϕ

〉∣∣∣∣ ≤ sup
ε∈(0,∞)

∣∣∣∣
∫

Rn

ϕ(x)ηε(x) dx

∣∣∣∣
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and

(4.9) sup
ε∈(0,∞)

‖ηε‖Mq
p(Rn) . ‖h‖Mq

p(Rn).

Assume that the sequence {ηε}ε∈(0,∞) satisfying (4.8) and (4.9) exists for a moment. To
complete the proof, by Lemma 4.10(ii), (4.8) and (4.9) for any i ∈ {1, . . . , n}, we conclude
that
∥∥∥∥
∂f

∂xi

∥∥∥∥
Mq

p(Rn)

= sup
ϕ∈C∞

c (Rn)
‖ϕ‖

H
q/(p−1)

p′
(Rn)

≤1

∣∣∣∣
〈
∂f

∂xi
, ϕ

〉∣∣∣∣ ≤ sup
ϕ∈C∞

c (Rn)
‖ϕ‖

H
q/(p−1)

p′
(Rn)

≤1

sup
ε∈(0,∞)

∣∣∣∣
∫

Rn

ϕ(x)ηε(x) dx

∣∣∣∣

= sup
ε∈(0,∞)

sup
ϕ∈C∞

c (Rn)
‖ϕ‖

H
q/(p−1)

p′
(Rn)

≤1

∣∣∣∣
∫

Rn

ϕ(x)ηε(x) dx

∣∣∣∣

= sup
ε∈(0,∞)

‖ηε‖Mq
p(Rn) . ‖h‖Mq

p(Rn).

From this, the definition of WM q
p (Rn) and the choice of h, we deduce that

‖f‖WMq
p (Rn) . ‖f‖Mq

p(Rn) + ‖h‖Mq
p(Rn) . ‖f‖HMq

p (Rn),

which implies that f ∈ WM q
p (Rn) and ‖f‖WMq

p (Rn) . ‖f‖HMq
p (Rn). Thus, HM q

p (Rn) ⊂

WM q
p (Rn), which is desired.

We now turn to the proof of the existence of {ηε}ε∈(0,∞). Fix z ∈ Rn and let ε ∈ (0,∞).
Integrating (4.7) twice on B(z, ε), we see that

∫

B(z,ε)

∫

B(z,ε)
|f(x) − f(y)| dxdy ≤ 2ε

∫

B(z,ε)

∫

B(z,ε)
[h(x) + h(y)] dxdy

= 2ε|B(z, ε)|2
1

|B(z, ε)|

∫

B(z,ε)
h(x) dx,

which further implies that

1

|B(z, ε)|

∫

B(z,ε)
|f(x) − fB(z,ε)| dx≤

1

|B(z, ε)|2

∫

B(z,ε)

∫

B(z,ε)
|f(x) − f(y)| dxdy(4.10)

≤ 2ε
1

|B(z, ε)|

∫

B(z,ε)
h(x) dx.

Choose ψ ∈ C∞
c (B(0, 1)) such that

∫
Rn ψ(x) dx = 1 and let ψλ(·) := λ−nψ(·/λ) for all

λ ∈ (0,∞). Notice that
∫
Rn

∂ψλ
∂xi

(x) dx = 0. Then

f ∗
∂ψλ
∂xi

= (f − fB(z,ε)) ∗
∂ψλ
∂xi

and hence, for all x ∈ Rn,
∣∣∣∣f ∗

∂ψλ
∂xi

(x)

∣∣∣∣=
∣∣∣∣(f − fB(z,ε)) ∗

∂ψλ
∂xi

(x)

∣∣∣∣
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≤ λ−n−1

∫

B(x,λ)
|f(t) − fB(z,ε)|

∣∣∣∣
∂ψ

∂xi

(
x− t

λ

)∣∣∣∣ dt

. λ−1‖∇ψ‖L∞(Rn)
1

|B(x, λ)|

∫

B(x,λ)
|f(t) − fB(z,ε)| dt.

Let x = z and λ = ε. Then by (4.10), we conclude that

(4.11)

∣∣∣∣f ∗
∂ψε
∂xi

(z)

∣∣∣∣ .
1

|B(z, ε)|

∫

B(z,ε)
h(x) dx .M(h)(z).

On the other hand, since f ∈ L1
loc (Rn) and ϕ ∈ C∞

c (Rn), it follows that

∫

Rn

∂ϕ

∂xi
(x)f(x) dx = lim

ε→0

∫

Rn

∂ϕ

∂xi
(x)(ψε ∗ f)(x) dx = − lim

ε→0

∫

Rn

ϕ(x)

(
∂ψε
∂xi

∗ f

)
(x) dx.

For any ε ∈ (0,∞), let ηε := ∂ψε

∂xi
∗ f . Then we see that, for any ε ∈ (0,∞),

∣∣∣∣
∫

Rn

f(x)
∂ϕ

∂xi
(x) dx

∣∣∣∣ ≤ lim
ε→0

∣∣∣∣
∫

Rn

ϕ(x)ηε(x)(x) dx

∣∣∣∣ ≤ sup
ε∈(0,∞)

∣∣∣∣
∫

Rn

ϕ(x)ηε(x) dx

∣∣∣∣ .

Moreover, by (4.11), we have |ηε| .M(h), which, together with Lemma 3.4 again, implies
that, for all ε ∈ (0,∞),

‖ηε‖Mq
p(Rn) . ‖M(h)‖Mq

p(Rn) . ‖h‖Mq
p(Rn).

This finishes the proof of Theorem 4.8.

We remark that Theorem 4.8 when p = q goes back to the equivalence between Sobolev
spaces and Haj lasz Sobolev spaces on Rn obtained in [18].

From Theorems 4.3, 4.6 and 4.8, we deduce the following corollary.

Corollary 4.11. Let 1 < p ≤ q < ∞ and n < q. Then WM q
p (Rn) = NM q

p (Rn) with
equivalent norms.

Proof. We first observe that, when p = q, the conclusion is proved by [47, Theorem 4.5].
Now, we assume that 1 < p < q < ∞. By Theorems 4.3, 4.6 and 4.8, it suffices to show
that WM q

p (Rn) ⊂ C(Rn). Notice that, if f ∈ WM q
p (Rn), then ∇f ∈ Lploc (Rn). Then,

following the argument in [18, p. 404], by [16, Lemma 7.16], we know that, for almost every
x ∈ Rn and any ball B,

(4.12) |f(x) − fB| .

∫

B

|∇f(y)|

|x− y|n−1
dy.

Therefore, from (4.12), the Hölder inequality and (1.3), together with q > n, it follows
that, for almost every x ∈ Rn and all R ∈ (0,∞),

|f(x) − fB(x,R)|.

∫

B(x,R)

|∇f(y)|

|x− y|n−1
dy(4.13)
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≈
∞∑

k=0

∫

B(x, R
2k

)\B(x, R

2k+1 )

|∇f(y)|

|x− y|n−1
dy

.R

∞∑

k=0

2−k

[
1

|B(x, R
2k

)|

∫

B(x, R
2k

)
|∇f(y)|p dy

]1/p

.R1−n/q
∞∑

k=0

2−k(1−n/q)‖∇f‖Mq
p(Rn) . R1−n/q‖∇f‖Mq

p(Rn).

Thus, for almost every x, y ∈ Rn, letting R := 2|x− y|, by (4.13) and B(x,R) ⊂ B(y, 3R2 ),
we then conclude that

|f(x) − f(y)| ≤ |f(x) − fB(x,R)| + |f(y) − fB(x,R)|

.

∫

B(x,R)

|∇f(z)|

|x− z|n−1
dz +

∫

B(x,R)

|∇f(z)|

|y − z|n−1
dz

. |x− y|1−n/q‖∇f‖Mq
p(Rn) +

∫

B(y, 3R2 )

|∇f(x)|

|y − z|n−1
dz

. |x− y|1−n/q‖∇f‖Mq
p(Rn).

Then, by [40, Corollary 1], there exists a (1−n/q)-Hölder continuous function f̃ such that
f = f̃ almost everywhere, and hence in WM q

p (Rn). Further, we could treat f and f̃ as
the same function in WM q

p (Rn). In this sense, f ∈ C(Rn), which completes the proof of
Corollary 4.11.

Thus, by Theorem 4.8 and Corollary 4.11, we know that both Newton-Morrey-Sobolev
spaces and Haj lasz-Morrey-Sobolev spaces coincide with classical Morrey-Sobolev spaces
on Rn.

5 Pointwise characterization of Hardy-Morrey-Sobolev

spaces

In this section, following some ideas used in [33], we consider the coincidence between the
Haj lasz-Morrey-Sobolev space and the Hardy-Morrey-Sobolev space on Rn (see Definition
5.3 below). When X is a space of homogeneous type in the sense of Coifman and Weiss,
a characterization of the Haj lasz-Morrey-Sobolev space via the grand maximal function is
also established.

Let S(Rn) denote the set of all Schwartz functions on Rn, and S ′(Rn) its topological dual,
namely, the class of all tempered distributions. Let S∞(Rn) be the set of all φ ∈ S(Rn)
such that

∫
Rn φ(x)xγ dx = 0 for all multi-indices γ ∈ Zn+, and S ′

∞(Rn) its topological dual.
We first recall that the definition of Hardy-Morrey space, which was originally introduced
by Jia and Wang [30].

Definition 5.1. Let 0 < p ≤ q ≤ ∞, ψ ∈ S(Rn) with
∫
Rn ψ(x) dx = 1 and supp ψ ⊂ {x ∈

Rn : |x| ≤ 1}. The Hardy-Morrey space H M q
p (Rn) is defined to be the set of all f ∈ S ′(Rn),
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which denotes the , such that Mψf ∈ Mq
p(Rn), where Mψf(x) := supt>0 |f ∗ ψt(x)| for

all x ∈ Rn, and ψt(·) := t−nψ(·/t). Moreover, ‖f‖H Mq
p (Rn) := ‖Mψf‖Mq

p(Rn).

Remark 5.2. (i) From [49, p. 57] and the boundedness of the Hardy-Littlewood maximal
function on Mq

p(Rn) (see Lemma 3.4), it follows that, when 1 < p ≤ q ≤ ∞, Mq
p(Rn) =

H M q
p (Rn) with equivalent norms.

(ii) By the results in [30, Section 2], we know that H M q
p (Rn) is independent of the

choice of ψ as in Definition 5.1.

The Hardy-Morrey-Sobolev space is then defined as follows.

Definition 5.3. Let 0 < p ≤ q ≤ ∞. The homogeneous Hardy-Morrey-Sobolev space
H Ṁ q

1,p(R
n) is defined to be the set of distributions f ∈ S ′

∞(Rn) such that Djf ∈
H M q

p (Rn) for all j ∈ {1, . . . , n}, where Djf denotes the jth distributional derivative
of f . Moreover,

‖f‖
H Ṁq

1,p(R
n) :=

n∑

j=1

‖Djf‖H Mq
p (Rn).

The homogeneous Haj lasz-Morrey-Sobolev space on Rn is defined as follows.

Definition 5.4. Let 0 < p ≤ q ≤ ∞. The homogeneous Haj lasz-Morrey-Sobolev space
HṀ q

p (X ) is defined to be the space of all measurable functions f who has a Haj lasz
gradient h ∈ Mq

p(X ). The norm of f ∈ HṀ q
p (X ) is then defined as

‖f‖HṀq
p (X ) := inf ‖h‖Mq

p(X ),

where the infimum is taken over all Haj lasz gradients h of f .

Then we have the following conclusion on the relation between these spaces.

Theorem 5.5. Let n
n+1 < p ≤ q ≤ ∞. Then H Ṁ q

1,p(R
n) = HṀ q

p (Rn) with equivalent
norms.

To prove this theorem, we need some knowledge on the Triebel-Lizorkin-type spaces on
Rn (see [54, 46, 56]). Let Q := {Qjk : j ∈ Z, k ∈ Zn} be the collection of all dyadic cubes
in Rn, where Qjk := 2−j([0, 1)n + k). For Q ∈ Q, we denote by ℓ(Q) its side length and
let jQ := − log2 ℓ(Q).

Recall that, for all s ∈ R, τ ∈ [0,∞), p ∈ (0,∞) and r ∈ (0,∞], the Triebel-Lizorkin-
type space Ḟ s,τp,r (Rn) is defined as the set of all f ∈ S ′

∞(Rn) such that

‖f‖Ḟ s,τ
p,r (Rn) := sup

P∈Q

|P |−τ





∫

P




∞∑

j=jP

2jsr|ϕj ∗ f(x)|r



p/r

dx





1/p

<∞,

where ϕ ∈ S(Rn) satisfies

supp ϕ̂ ⊂

{
ξ ∈ Rn :

1

2
≤ |ξ| ≤ 2

}
, |ϕ̂(ξ)| ≥ C > 0 if

3

5
≤ |ξ| ≤

5

3
.

It was proved in [46, Corollary 3.2] that, for all 0 < p ≤ q < ∞, the Hardy-Morrey space

H M q
p (Rn) = Ḟ

0,1/p−1/q
p,2 (Rn) with equivalent quasi-norms.
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Proposition 5.6. Let 0 < p ≤ q < ∞. Then H Ṁ q
1,p(R

n) = Ḟ
1,1/p−1/q
p,2 (Rn) with equiva-

lent quasi-norms.

Proof. We first show H Ṁ q
1,p(R

n) →֒ Ḟ
1,1/p−1/q
p,2 (Rn). Let f ∈ H Ṁ q

1,p(R
n). Then for all

i ∈ {1, . . . , n}, Dif ∈ H M q
p (Rn) and ‖Dif‖H Mq

p (Rn) . ‖f‖
H Ṁq

1,p(R
n). Recall that, by [46,

Corollary 3.2], H M q
p (Rn) = Ḟ

0,1/p−1/q
p,2 (Rn) with equivalent quasi-norms. We then know

that Dif ∈ Ḟ
0,1/p−1/q
p,2 (Rn) and

(5.1) ‖Dif‖Ḟ 0,1/p−1/q
p,2 (Rn)

. ‖f‖
H Ṁq

1,p(R
n).

For i ∈ {1, . . . , n}, let Ri be the Riesz transform defined by setting, for all g ∈ S ′
∞(Rn),

(Rig)
∧(ξ) := −ı

ξi
|ξ|
ĝ(ξ), ξ ∈ Rn \ {0},

where ı denotes the imaginary unit, and Iσ with σ ∈ R be the Riesz potential operator
defined by setting, for all g ∈ S ′

∞(Rn),

(Iσg)
∧(ξ) := |ξ|σ ĝ(ξ), ξ ∈ Rn \ {0}.

Then it is well known that

(5.2) Dif = −I1Rif in S ′
∞(Rn).

Recall that, by [54, Proposition 3.5], f ∈ Ḟ s+σ,τp,r (Rn) if and only if Iσf ∈ Ḟ s,τp,r (Rn), and

‖f‖Ḟ s+σ,τ
p,r (Rn) ≈ ‖Iσf‖Ḟ s,τ

p,r (Rn). Hence, by Dif ∈ Ḟ
0,1/p−1/q
p,2 (Rn) and (5.2), together with

(5.1), we know that Rif ∈ Ḟ
1,1/p−1/q
p,2 (Rn) and

‖Rif‖Ḟ 1,1/p−1/q
p,2 (Rn)

≈ ‖Dif‖Ḟ 0,1/p−1/q
p,2 (Rn)

. ‖f‖
H Ṁq

1,p(R
n)

for all i ∈ {1, . . . , n}.

On the other hand, by the mapping properties of Fourier multipliers on Triebel-Lizorkin-

type spaces in [55, Theorem 1.5], we know that Ri is a bounded operator on Ḟ
1,1/p−1/q
p,2 (Rn)

and hence RiRif ∈ Ḟ
1,1/p−1/q
p,2 (Rn), which, together with the fact that

f =
n∑

i=1

RiRif in S ′
∞(Rn),

further implies that f ∈ Ḟ
1,1/p−1/q
p,2 (Rn) and ‖f‖

Ḟ
1,1/p−1/q
p,2 (Rn)

. ‖f‖
H Ṁq

1,p(R
n). This fin-

ishes the proof for H Ṁ q
1,p(R

n) →֒ Ḟ
1,1/p−1/q
p,2 (Rn).

Now we prove Ḟ
1,1/p−1/q
p,2 (Rn) →֒ H Ṁ q

1,p(R
n). Let f ∈ Ḟ

1,1/p−1/q
p,2 (Rn). Then by the

mapping properties of pseudo-differential operators on Triebel-Lizorkin-type spaces in [46,
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Theorem 1.5], we know that, for all i ∈ {1, . . . , n}, Dif ∈ Ḟ
0,1/p−1/q
p,2 (Rn) = H M q

p (Rn)
and

‖Dif‖H Mq
p (Rn) ≈ ‖Dif‖Ḟ 0,1/p−1/q

p,2 (Rn)
. ‖f‖

Ḟ
1,1/p−1/q
p,2 (Rn)

.

This implies that Ḟ
1,1/p−1/q
p,2 (Rn) →֒ H Ṁ q

1,p(R
n) and hence finishes the proof of Proposi-

tion 5.6.

In particular, when p = q, Proposition 5.6 goes back to the known coincidence between
Hardy-Sobolev spaces and Triebel-Lizorkin spaces.

By [56, Proposition 8.2], we know that Ḟ
0,1/p−1/q
p,2 (Rn) ⊂ L1

loc (Rn) in the sense of
S ′
∞(Rn), which, together with Proposition 5.6, further implies the following conclusion,

the details being omitted.

Corollary 5.7. Let 0 < p ≤ q < ∞. Then H Ṁ q
1,p(R

n) ⊂ L1
loc (Rn) in the sense of

S ′
∞(Rn).

Next we turn to the proof of Theorem 5.5.

Proof of Theorem 5.5. The case q = ∞ is a special case of Haj lasz [18, Theorem 1], and
we only need to consider the case q < ∞. Assume first that f ∈ H Ṁ q

1,p(R
n). Then, by

Definition 5.3, we see that, for each j ∈ {1, . . . , n}, Djf ∈ H M q
p (Rn) . By Corollary 5.7

and [33, Theorem 7], we know that, for all balls B ⊂ Rn, there exists a set E ⊂ Rn of
measure 0 such that, for all x, y ∈ B \ E,

|f(x) − f(y)|. |x− y|[M1(Df)(x) +M1(Df)(y)],

where we used the notation in [33] that, for all x ∈ Rn,

(5.3) M1(Df)(x) := max
j∈{1,...,n}

M1(Djf)(x) := max
j∈{1,...,n}

sup |〈Djf, ϕ〉|,

in which the supremum is taken over all compactly supported smooth functions ϕ satisfying
that, for some r ∈ (0,∞) and all j ∈ {1, . . . , n},

(5.4) supp ϕ ⊂ B(x, r), ‖ϕ‖L∞(Rn) ≤ r−n and ‖Djϕ‖L∞(Rn) ≤ r−n−1.

Therefore, by the definition of Haj lasz gradients, we see that g := M1(Df) is a positive
constant multiple of a Haj lasz gradient of f .

We now choose that ψ satisfies (5.4) with ϕ replaced by ψ, and
∫
Rn ψ(x) dx = 1. Using

Remark 5.2(ii) and repeating the proofs of Lemma 2.1 and Lemma 2.4 in [30], we find
that, if n

n+1 < 1 ≤ q <∞, then it holds that

‖g‖Mq
p(Rn) ≈

n∑

j=1

‖Mψ(Djf)‖Mq
p(Rn),

which, together with Definitions 5.1 and 5.3, further implies that

‖g‖Mq
p(Rn) ≈

n∑

j=1

‖Mψ(Djf)‖Mq
p(Rn) ≈

n∑

j=1

‖Djf‖H Mq
p (Rn) ≈ ‖f‖

H Ṁq
1,p(R

n).
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Thus, f ∈ HṀ q
p (Rn) and ‖f‖HṀq

p (Rn) . ‖f‖
H Ṁq

1,p(R
n). This implies that H Ṁ q

1,p(R
n) ⊂

HṀ q
p (Rn).

Now we suppose f ∈ HṀ q
p (Rn). Then, by Definition 5.4, there exists a Haj lasz gradient

g ∈ Mq
p(Rn) of f such that ‖g‖Mq

p(Rn) ≤ 2‖f‖HṀq
p (Rn). Notice that, for any ball B(a, r) ⊂

Rn with the center a ∈ Rn and the radius r ∈ (0,∞), by the Hölder inequality, we have

g ∈ Lploc (B(a, 2r)) ⊂ L
n

n+1

loc (B(a, 2r)), since p > n
n+1 . From this and [33, Proposition 5], it

follows that

(5.5) inf
c∈R

1

|B(a, r)|

∫

B(a,r)
|f(x) − c| dx . r

{
1

|B(a, 2r)|

∫

B(a,2r)
[g(x)]n/(n+1) dx

}(n+1)/n

.

This inequality implies that f ∈ L1
loc (Rn). Moreover, from (5.5), we further deduce that

(5.6)
1

|B(a, r)|

∫

B(a,r)
|f(x)− fB(a,r)| dx . r

{
1

|B(a, 2r)|

∫

B(a,2r)
[g(x)]n/(n+1) dx

}(n+1)/n

.

By (5.6), (1.3) and Definition 5.4, we conclude that, for all φ ∈ S∞(Rn),
∣∣∣∣
∫

Rn

f(x)φ(x) dx

∣∣∣∣

=

∣∣∣∣
∫

Rn

[f(x) − fB(0,1)]φ(x) dx

∣∣∣∣

.

∫

B(0,1)

|f(x) − fB(0,1)|

(1 + |x|)N
dx+

∞∑

i=1

∫

B(0,2i)\B(0,2i−1)

|f(x) − fB(0,1)|

(1 + |x|)N
dx

.

{∫

B(0,2)
[g(x)]n/(n+1) dx

}(n+1)/n

+

∞∑

i=1

2−iN
∫

B(0,2i)
|f(x) − fB(0,2i)| dx

+

∞∑

i=1

2−iN
∫

B(0,1)
|f(x) − fB(0,1)| dx

.

{∫

B(0,2)
[g(x)]n/(n+1) dx

}(n+1)/n

+

∞∑

i=1

2−i(N−n)

|B(0, 2i)|

∫

B(0,2i)
|f(x) − fB(0,2i)| dx

.

∞∑

i=0

2−i(N−n−1)

{
1

|B(0, 2i+1)|

∫

B(0,2i+1)
[g(x)]p dx

}1/p

.

∞∑

i=0

2−i(N−n−1+n/q)‖g‖Mq
p(Rn) . ‖f‖HṀq

p (Rn),

where we chose N ∈ N and N > n+ 1 − n/q. Thus, f ∈ S ′
∞(Rn).

Moreover, similar to the proof of [33, Theorem 1], by (5.6), we conclude that, for all
x ∈ Rn,

Mψ(Djf)(x) .
[
M(gn/(n+1))(x)

](n+1)/n
.(5.7)
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Applying Lemma 3.4, together with 1 < n+1
n p ≤ n+1

n q ≤ ∞, we know that M(gn/(n+1)) ∈

M
n+1
n
q

n+1
n
p
(Rn), which, together with (5.7) and (1.3), implies that Mψ(Djf) ∈ Mq

p(Rn) and

‖Mψ(Djf)‖Mq
p(Rn) . ‖g‖Mq

p(Rn). Therefore, by Definition 5.3 and the choice of g, we

know that f ∈ H Ṁ q
1,p(R

n) and

‖f‖
H Ṁq

1,p(R
n) . ‖g‖Mq

p(Rn) . ‖f‖HṀq
p (Rn),

which completes the proof of Theorem 5.5.

Remark 5.8. Observe that Theorem 5.5 generalizes [33, Theorem 1] by taking p = q.

Next we consider the corresponding result of Theorem 5.5 on spaces of homogeneous
type, which were introduced by Coifman and Weiss in [10, 11]. Recall that a metric
measure space (X , d, µ) is called a space of homogeneous type, if there exists a constant
C0 ∈ [1,∞) such that, for all x ∈ X and r > 0,

(5.8) µ(B(x, 2r)) ≤ C0µ(B(x, r)) (doubling property).

We now recall the notions of test functions and the approximation of the identity on
spaces of homogeneous type (see, for example, [22, 34]). In what follows, for any x, y ∈ X

and r ∈ (0,∞), let V (x, y) := µ(B(x, d(x, y))) and Vr(x) := µ(B(x, r)). It is easy to see
that V (x, y) ≈ V (y, x) for all x, y ∈ X .

Definition 5.9. Let x1 ∈ X , r ∈ (0,∞), β ∈ (0, 1] and γ ∈ (0,∞). A function ϕ on X

is said to be in the space G(x1, r, β, γ), if there exists a nonnegative constant C such that

(i) |ϕ(x)| ≤ C 1
Vr(x1)+V (x1,x)

[ r
r+d(x1,x)

]γ for all x ∈ X ;

(ii) |ϕ(x)−ϕ(y)| ≤ C[ d(x,y)
r+d(x1,x)

]β 1
Vr(x1)+V (x1,x)

[ r
r+d(x1,x)

]γ for all x, y ∈ X satisfying that

d(x, y) ≤ [r + d(x1, x)]/2.

Moreover, for any ϕ ∈ G(x1, r, β, γ), its norm is defined by

‖ϕ‖G(x1,r,β,γ) := inf{C : (i) and (ii) hold}.

Fix x1 ∈ X , let G(β, γ) := G(x1, 1, β, γ) and G̊(β, γ) := {f ∈ G(β, γ) :
∫
X
f(x) dµ(x) =

0}. Denote by (G(β, γ))′ and (G̊(β, γ))′, respectively, the dual spaces of G(β, γ) and G̊(β, γ).
Obviously, by the Definition of G̊(β, γ), we see that (G̊(β, γ))′ = (G(β, γ))′/C. Let A :=
{Ak(x)}x∈X ,k∈Z with

(5.9) Ak(x) := {φ ∈ G̊(1, 2) : ‖φ‖G̊(x,2−k,1,2) ≤ 1}

for all x ∈ X (see [34, Definition 5.2]).

Definition 5.10. A sequence {Sk}k∈Z of bounded linear integral operators is called an
approximation of the identity of order 1 (for short, 1 -AOTI) with bounded support, if
there exist positive constants C3, C4 such that, for all k ∈ Z and x, x′, y, y′ ∈ X , Sk(x, y),
the integral kernel of Sk is a measurable function from X × X into C satisfying that
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(i) Sk(x, y) = 0 if d(x, y) > C42
−k and |Sk(x, y)| ≤ C3

1
V
2−k (x)+V2−k (y)

;

(ii) |Sk(x, y) − Sk(x
′, y)| ≤ C32

kd(x, x′) 1
V
2−k (x)+V2−k (y)

if d(x, x′) ≤ max{C4, 1}21−k;

(iii) |Sk(y, x) − Sk(y, x
′)| ≤ C32

kd(x, x′) 1
V
2−k (x)+V2−k (y)

if d(x, x′) ≤ max{C4, 1}21−k;

(iv) |[Sk(x, y) − Sk(x, y
′)] − [Sk(x

′, y) − Sk(x′, y′)]| ≤ C32
2k d(x,x′)d(y,y′)
V
2−k (x)+V2−k (y)

for d(x, x′) ≤

max{C4, 1}21−k and d(y, y′) ≤ max{C4, 1}21−k ;

(v)
∫
X
Sk(x, y) dµ(y) = 1 =

∫
X
Sk(x, y) dµ(x).

It is known that there always exists an 1-AOTI with bounded support on a space of
homogeneous type; see [22, Theorem 2.6].

Let X be a space of homogeneous type, s ∈ (0, 1], p ∈ (0,∞), q ∈ [p,∞] and r ∈ (0,∞].
The homogeneous grand Triebel-Lizorkin-Morrey space AḞ sp,q,r(X ) is defined to be the set
of all f ∈ (G(1, 2))′ such that

‖f‖AḞ s
p,q,r(X ) :=

∥∥∥∥∥∥

{
∑

k∈Z

2ksr sup
φ∈Ak(·)

|〈f, φ〉|r

}1/r
∥∥∥∥∥∥
Mq

p(X )

<∞

with the usual modification made when r = ∞.

Theorem 5.11. Let X be a space of homogeneous type. If p ∈ ( n
n+1 ,∞) and q ∈ [p,∞],

then AḞ 1
p,q,∞(X ) = HṀ q

p (X ) with equivalent norms.

To prove this theorem, we need the following partition of unity for X , which is an
immediate consequence of Christ’s dyadic cube decomposition for spaces of homogeneous
type in [9, Theorem 11], and the partition of unity for open sets with finite measure
constructed by Maćıas and Segovia in [36, Lemmas (2.9) and (2.16)].

Lemma 5.12. Let X be a space of homogeneous type. Then there exist a sequence {Bj}j
of open balls with the finite intersection property and a sequence {φj}j of non-negative
functions in G(1, 2) such that µ(X \(∪jBj)) = 0, supp φj ⊂ Bj for all j and

∑
j φj(x) = 1

for almost every x ∈ X .

Proof. By Christ’s dyadic cube decomposition in [9, Theorem 11], there exists a sequence
{Qi}i∈N of open sets such that µ(X \ (∪iQi)) = 0 and Qi ∩Qk = ∅ if i 6= k.

For each Qi, applying Maćıas-Segovia’s partition of unity for open sets with finite
measure (see [36, Lemmas (2.9) and (2.16)]), we know that there exist a sequence {Bi

j}j
of open balls with the finite intersection property and a sequence {φij}j of functions in

G(1, 2) such that ∪jB
i
j = Qi for all i, supp φij ⊂ Bi

j for all i, j, and
∑

j φ
i
j = χQi for all i.

Then µ(X \ (∪i,jB
i
j)) = 0, supp φij ⊂ Bi

j for all i, j, and
∑

i,j φ
i
j(x) = 1 for almost every

x ∈ X . This finishes the proof of Lemma 5.12.

We also need the following two technical lemmas.
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Lemma 5.13. Let X be a space of homogeneous type, x, y ∈ X and k0 ∈ Z such that
2−k0−1 < d(x, y) ≤ 2−k0. Assume that k ≤ k0. Then there exists a positive constant C̃,
independent of k0, k, x and y, such that

C̃2−k[d(x, y)]−1[Sk(x, ·) − Sk(y, ·)] ∈ Ak(x),

where Ak(x) is as in (5.9).

Proof. For x, y ∈ X and k ∈ Z as in Lemma 5.13, let

φ
(x,y)
k (z) := 2−k[d(x, y)]−1[Sk(x, z) − Sk(y, z)] for all z ∈ X .

By Definition 5.10(v), it is easy to see that
∫

X

φ
(x,y)
k (z) dµ(z) = 0.

We now prove that φ
(x,y)
k satisfies Definition 5.9(i) with γ = 2 and r = 2−k, namely, for

all z ∈ X ,

(5.10)
∣∣∣φ(x,y)k (z)

∣∣∣ . 1

V2−k(x) + V (x, z)

[
2−k

2−k + d(x, z)

]2
.

We establish this estimate by considering the following two cases.
Case 1) d(x, z) > C42−k and d(y, z) > C42−k. In this case, (5.10) automatically holds

true by Definition 5.10(i).
Case 2) d(x, z) ≤ C42

−k or d(y, z) ≤ C42
−k. In this case, by k ≤ k0 and hence

(5.11) d(x, y) ≤ 2−k0 ≤ 2−k < max{C4, 1}21−k,

together with Definition 5.10(ii), we see that

(5.12) |Sk(x, z) − Sk(y, z)| . 2kd(x, y)
1

V2−k (x) + V2−k(z)
.

When d(x, z) ≤ C42
−k, we see that

(5.13)
2−k

2−k + d(x, z)
≈ 1, and V2−k(x) + V2−k(z) ≈ V2−k(x) + V (x, z) (by (5.8)).

When d(y, z) ≤ C42
−k, by k ≤ k0, we know that

d(x, z) ≤ d(x, y) + d(y, z) ≤ 2−k0 + C42
−k ≤ (1 + C4)2

−k.

Thus, in this case, (5.13) also holds true. By (5.13) and (5.12), we then obtain (5.10).

We turn to proving that φ
(x,y)
k satisfies Definition 5.9(ii) with β = 1, γ = 2 and r = 2−k,

that is, for all z, w ∈ X with d(z, w) ≤ 2−k+d(x,z)
2 ,

(5.14) |φ
(x,y)
k (z) − φ

(x,y)
k (w)| .

d(z, w)

2−k + d(x, z)

1

V2−k(x) + V (x, z)

[
2−k

2−k + d(x, z)

]2
.
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Write

I := |φ
(x,y)
k (z) − φ

(x,y)
k (w)| = 2−k[d(x, y)]−1|[Sk(x, z) − Sk(x,w)] − [Sk(y, z) − Sk(y,w)]|.

We establish the estimate by considering the following three cases.
Case a) d(x, z) ≤ max{C4, 1}21−k . In this case, we see that (5.13) holds true and

d(z, w) ≤ 2−k+d(x,z)
2 ≤ max{C4, 1}21−k . Thus, by the last estimate, (5.11) and Definition

5.10(iv), we see that

(5.15) I .
2kd(z, w)

V2−k(x) + V2−k(z)
.

From this and (5.13), we further deduce (5.14) in this case.
Case b) d(x, z) > max{C4, 1}22−k . In this case, by Definition 5.10(i), we know that

Sk(x, z) = 0. Observing that

d(y, z) ≥ d(x, z) − d(x, y) > max{C4, 1}22−k − 2−k > C42−k,

by Definition 5.10(i) again, we also have Sk(y, z) = 0.
If d(z, w) ≤ 1

4d(x, z), then

(5.16) d(x,w) ≥ d(x, z) − d(z, w) ≥
3

4
d(x, z) > C42−k

and

(5.17) d(y,w) ≥ d(x, z) − d(x, y) − d(z, w) ≥
3

4
d(x, z) − d(x, y) > C42

−k.

Thus, Sk(x,w) = Sk(y,w) = 0, and hence I = 0 in this case.
Recall that, since d(x, y) ≤ 2−k0 ≤ 2−k, we have 2−k + d(y,w) ≈ 2−k + d(x,w) and

V2−k(y)+V (y,w) ≈ V2−k(x)+V (x,w). By this, together with Sk(y, z) = Sk(x, z) = 0 and
Definition 5.10(i), we see that, if d(z, w) > 1

4d(x, z), then

(5.18) I = 2−k[d(x, y)]−1|Sk(x,w) − Sk(y,w)| .
1

V2−k(x) + V (x,w)

[
2−k

2−k + d(x,w)

]2
.

Observing that, in the present case, it holds true that 1
4d(x, z) < d(z, w) ≤ 2−k+d(x,z)

2 and
d(x, z) ≥ 2−k, which implies that

(5.19) 2−k + d(x,w) ≈ 2−k + d(x, z).

From these estimates, we further deduce that

(5.20) V2−k(x) + V (x,w) ≈ V2−k(x) + V (x, z)

and

(5.21) 1 .
d(z, w)

d(x, z)
.

d(z, w)

2−k + d(x, z)
.
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Combining (5.18), (5.19), (5.20) and (5.21), we then obtain (5.14).
Case c) max{C4, 1}21−k < d(x, z) ≤ max{C4, 1}22−k . In this case, we further conclude

that Sk(x, z) = 0 and

(5.22) d(z, w) ≤
2−k + d(x, z)

2
< max{C4, 1}22−k .

If d(z, w) ≤ max{C4, 1}21−k , the proof is same as that in Case a). If max{C4, 1}21−k <
d(z, w) ≤ max{C4, 1}22−k , then d(z, w) ≈ d(x, z) ≈ 2−k and d(y, z) ≥ d(x, z) − d(x, y) >
max{C4, 1}21−k − 2−k0 > C42

−k. By this and Definition 5.10(i), we see that Sk(y, z) = 0
and, in this case, I = 2−k[d(x, y)]−1|Sk(x,w) − Sk(y,w)|. Then, repeating the proof of
Case b), we also obtain (5.14). This finishes the proof of Lemma 5.13.

Lemma 5.14. Let X be a space of homogeneous type, x ∈ X and k ∈ Z. Then, there
exists a positive constant C̃, independent of k and x, such that C̃[Sk+1(x, ·) − Sk(x, ·)] ∈
Ak(x).

Proof. For any x ∈ X and k ∈ Z, let φxk(y) := |Sk+1(x, y)−Sk(x, y)| for all y ∈ X . Then,
by Definition 5.10(v), we know that

∫
X
φxk(y) dµ(y) = 0. Write

I1 := |Sk+1(x, y) − Sk(x, y)|

and
I2 := |[Sk+1(x, y) − Sk(x, y)] − [Sk+1(x, z) − Sk(x, z)]|.

It suffices to show that

(5.23) I1 [V2−k(x) + V (x, y)]

[
d(x, y) + 2−k

2−k

]2
. 1

and, for any d(y, z) ≤ 2−k+d(x,y)
2 ,

(5.24) I2

[
2−k + d(x, y)

]3
[V2−k(x) + V (x, y)]

2−2kd(y, z)
. 1.

To prove (5.23), we consider the following two cases.
Case 1) d(x, y) > C42

−k. In this case, from Definition 5.10(i), we deduce that I1 = 0
and hence (5.23) holds true.

Case 2) d(x, y) ≤ C42−k. In this case, by Definition 5.10(i), we know that

I1 [V2−k(x) + V (x, y)]

[
d(x, y) + 2−k

2−k

]2
(5.25)

.
V2−k(x) + V (x, y)

V2−k−1(x) + V2−k−1(y)
+
V2−k(x) + V (x, y)

V2−k(x) + V2−k(y)
.

From (5.8), it follows that

(5.26) V (x, y) . V2−k(y), V2−k(x) . V2−k−1(x) and V2−k(y) . V2−k−1(y).
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Combining (5.25) and (5.26), we then obtain (5.23).

To prove (5.24), we let d(y, z) ≤ 2−k+d(x,y)
2 and consider the following three cases.

Case a) d(y, z) ≤ max{C4, 1}2−k. In this case, by (5.26) and Definition 5.10(iii), we
see that

I2 ≤ |Sk+1(x, y) − Sk+1(x, z)| + |Sk(x, y) − Sk(x, z)| .
2kd(y, z)

V2−k(x) + V2−k(y)
.(5.27)

If d(x, y) ≤ C42−k, then (5.27) implies (5.24). If d(x, y) > C42−k and d(x, z) > C42−k,
then (5.24) is trivially true, since, by Definition 5.10(i), I2 = 0 in this subcase. If d(x, y) >

C42
−k and d(x, z) ≤ C42

−k, then d(x, y) . 2−k since d(y, z) ≤ 2−k+d(x,y)
2 and d(x, y) ≤

d(x, z) + d(y, z); thus, in this subcase, (5.24) also holds true.
Case b) max{C4, 1}2−k < d(y, z) ≤ max{C4, 1}2−k+1. In this case, by (5.8), we see

that

V2−k−1(x) + V (x, y) ≈ V2−k−1(x) + V (x, z) ≈ V2−k(x) + V (x, y) ≈ V2−k(x) + V (x, z).

From this and Definition 5.10(i), we further deduce that

(5.28) I2 .
1

V2−k(x) + V (x, y)
.

If d(x, y) ≤ C42−k or d(x, z) ≤ C42
−k, then, by d(y, z) . 2−k, we always have d(x, y) .

2−k, which further implies that 2−k + d(x, y) ≈ 1; by this and (5.28), we conclude that
(5.24) holds true. If d(x, y) > C42

−k and d(x, z) > C42
−k, then, in this subcase, I2 = 0

and (5.24) is trivially true. Thus, (5.24) always holds true in Case b).

Case c) d(y, z) > max{C4, 1}2−k+1. From this assumption and d(y, z) ≤ 2−k+d(x,y)
2 , We

further deduce that

(5.29) d(x, y) ≥ 2d(y, z) − 2−k > max{C4, 1}2−k+2 − 2−k > C42
−k+1.

If d(x, z) > C42
−k, then, in this subcase, I2 = 0 and (5.24) is trivially true. If d(x, z) ≤

C42
−k, then d(x, y) ≤ d(x, z) + d(y, z) ≤ C42

−k + 2−k+d(x,y)
2 and hence d(x, y) . 2−k,

which, together with (5.29), (5.8) and d(y, z) ≤ 2−k+d(x,y)
2 , implies that d(x, y) ≈ 2−k,

V (x, y) . V2−k(x), d(y, z) . 2−k and hence d(y, z) ≈ 2−k; from these estimates and
Definition 5.10(i), we finally deduce that

I2 .
1

V2−k(x) + V2−k(z)
.

1

V2−k(x) + V (x, y)
.

2−2kd(y, z)

[2−k + d(x, y)]
3

[V2−k(x) + V (x, y)]
.

This finishes the proof of (5.24) and hence Lemma 5.14.

Proof of Theorem 5.11. The proof of HṀ q
p (X ) ⊂ AḞ 1

p,q,∞(X ) is similar to that of [34,
Theorem 1.1], the details being omitted.

We now prove the converse inequality, namely, AḞ 1
p,q,∞(X ) ⊂ HṀ q

p (X ). Let f ∈

AḞ 1
p,q,∞(X ) and {Sk}k∈Z be a 1-AOTI with bounded support. We first assume that f is
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a locally integrable function. In this case, applying [22, Proposition 2.7], we know that,
for almost every x ∈ X ,

lim
k→∞

Sk(f)(x) = f(x),

from which we further deduce that, for almost every x, y ∈ X ,

|f(x) − f(y)| ≤ |Sk0(f)(x) − Sk0(f)(y)|(5.30)

+
∑

k≥k0

[|Sk+1(f)(x) − Sk(f)(x)| + |Sk+1(f)(y) − Sk(f)(y)|] ,

where k0 ∈ Z such that 2−k0 < d(x, y) ≤ 2−k0 . Let φ
(x,y)
k0

(z) := Sk0(x, z) − Sk0(y, z) and
φxk(y) := Sk+1(x, y) − Sk(x, y). Then, by Lemmas 5.13 and 5.14, there exists a positive

constant C̃ such that C̃φ
(x,y)
k0

∈ Ak0(x) and C̃φxk ∈ Ak(x). For every x ∈ X , let

(5.31) g(x) := sup
k∈Z

sup
φ∈Ak(x)

2k|〈f, φ〉|,

where Ak(x) is as in (5.9). Then, by f ∈ AḞ 1
p,q,∞(X ), we know that g ∈ Mq

p(X ) and, by
(5.30), (5.31) and the choice of k0, we conclude that

|f(x) − f(y)| . sup
φ∈Ak0

(x)
|〈f, φ〉| +

∑

k≥k0

[
sup

φ∈Ak(x)
|〈f, φ〉| + sup

φ∈Ak(y)
|〈f, φ〉|

]
(5.32)

.
∑

k≥k0

2−k [g(x) + g(y)] . d(x, y)[g(x) + g(y)].

Therefore, from Definition 5.4 and g ∈ Mq
p(X ), we deduce that f ∈ HṀ q

p (X ) and

‖f‖HṀq
p (X ) . ‖g‖Mq

p(X ) ≈ ‖f‖AḞ 1
p,q,∞(X ).

To complete the proof, we only need to show that, for every f ∈ AḞ 1
p,q,∞(X ), there

exists a locally integrable function f̃ which coincides with f in (G(1, 2))′. In the case that
p ∈ (1,∞), the proof is similar to that of [34, Theorem 1.1], the details being omitted.
We now assume that p ∈ (n/(n + 1), 1]. Let x, y ∈ X . We pick k0 ∈ Z such that
2−k0−1 < d(x, y) ≤ 2−k0 . If k > k0, then, by the same reason as that used in the proof of
(5.32), we see that

|Sk(f)(x) − Sk(f)(y)|(5.33)

.

k−1∑

j=k0

[|Sj+1(f)(x) − Sj(f)(x)| + |Sj+1(f)(y) − Sj(f)(y)|]

+|Sk0(f)(x) − Sk0(f)(y)|

.

∞∑

j=k0

2−j[g(x) + g(y)] + 2−k0g(x) . 2−k0 [g(x) + g(y)]
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≈ d(x, y)[g(x) + g(y)].

If k ≤ k0, then by Lemma 5.13 again, we know that there exists a positive constant C̃
such that

C̃2−k[d(x, y)]−1[Sk(x, ·) − Sk(y, ·)] ∈ Ak(x).

From this, we deduce that

2−k[d(x, y)]−1

∫

X

[Sk(x, z) − Sk(y, z)]f(z) dµ(z) . 2−kg(x)

and hence

|Sk(f)(x) − Sk(f)(y)|(5.34)

= 2kd(x, y)

{
2−k[d(x, y)]−1

∣∣∣∣
∫

X

[Sk(x, z) − Sk(y, z)]f(z) dµ(z)

∣∣∣∣
}

. d(x, y)g(x) . d(x, y)[g(x) + g(y)].

Thus, by (5.33) and (5.34), we find that g is a Haj lasz gradient of Sk(f) for all k ∈ Z.
Fix a bounded set B ⊂ X . By [34, Lemma 4.1], we know that, for any k ∈ Z, there

exists Ck ∈ R such that Sk(f) − Ck ∈ Lp∗(B) with

(5.35)

[
1

µ(B)

∫

B
|Sk(f)(x) − Ck|

p∗ dµ(x)

]1/p∗
. rB

{
1

µ(2B)

∫

2B
[g(x)]p dµ(x)

}1/p

,

where p∗ := np
n−p > 1, since p > n

n+1 . From the weak compactness of Lp∗(B), it follows
that {Sk(f) −Ck}k∈Z has a subsequence, denoted by {Sk(f) −Ck}k∈Z again without loss
of generality, which converges weakly in Lp∗(B) and hence almost everywhere in B to a
certain function f̃B ∈ Lp∗(B). Moreover, notice that, for all x ∈ X , k ∈ Z and i ∈ N,

(5.36) |Sk(f)(x) − Sk+i(f)(x)| ≤
i−1∑

j=0

|Sk+j(f)(x) − Sk+j+1(f)(x)| . 2−kg(x).

Thus, by g ∈ Mq
p(X ), we see that, for all k, k′ ∈ Z, Sk(f) − Sk′(f) ∈ Mq

p(X ). Since
B is a bounded subset of X , by p∗ > p and the Hölder inequality, we further know that
Sk(f) − Sk′(f) ∈ Lp(B). On the other hand, by the Hölder inequality, (5.36) and (5.35),
we deduce that, for all k, k′ ∈ Z+,

|Ck − Ck′ | =
1

µ(B)

∫

B
|Ck − Ck′ | dµ(x)

≤
1

µ(B)

∫

B
|Sk(f)(x) − Ck − Sk′(f)(x) + Ck′ | dµ(x)

+
1

µ(B)

∫

B
|Sk(f)(x) − Sk′(f)(x)| dµ(x)

≤
1

[µ(B)]1/p∗

[
‖Sk(f) − Ck‖Lp∗(B) + ‖Sk′(f) − Ck′‖Lp∗ (B)

]
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+
1

[µ(B)]1/p
‖Sk(f) − Sk′(f)‖Lp(B)

≤ rB

{
1

µ(2B)

∫

2B
[g(x)]p dµ(x)

}1/p

+ 2−min(k,k′) 1

[µ(B)]1/p
‖g‖Lp(B)

. (rB + 1)[µ(B)]1/q‖g‖Mq
p(X ).

Thus, |Ck−Ck′ | is dominated by a positive number depending on B but not on k, k′ ∈ Z+.
This observation implies that we can choose a subsequence {Ckj}j∈N which converges to

a positive constant C̃B, which depends on B. Since {Skj (f) − Ckj}j∈N converges almost

everywhere in B to f̃B, and Sk(f) converges to f almost everywhere, it follows that f
coincides with f̃B + C̃B almost everywhere in B, and hence in (G(1, 2) ∩ Φ(B))′, where
Φ(B) is the set of all functions on X with supports in B. Write fB := f̃B + C̃B. Then
f = fB in (G(1, 2) ∩Φ(B))′ and, by f̃B ∈ Lp∗(B), fB is also a locally integrable function.

We still need to show that there exists f̃ ∈ L1
loc (X ) such that 〈f, ψ〉 = 〈f̃ , ψ〉 for all

ψ ∈ G(1, 2). To this end, by Lemma 5.12, choose a partition of unity, {φj}j ⊂ G(1, 2),
on X and a sequence {Bj}j of open balls, with the finite intersection property, such that
µ(X \ (∪jBj)) = 0, supp φj ⊂ Bj , φj is non-negative and

∑
j φj(x) = 1 for almost every

x ∈ X .
Let fBj be the locally integrable representation of f in (G(1, 2) ∩ Φ(Bj))

′ and define

f̃ := fBj pointwise on Bj for all j. Notice that, by the construction of fBj , for almost

every x ∈ Bi ∩ Bj , f
Bi(x) = f(x) = fBj (x). Thus, f̃ is well defined. Moreover, it is

easy to see that, for all ψ ∈ G(1, 2),
∑

j ψφj converges in G(1, 2). Indeed, we may assume
that the cardinality of {φj}j is infinite and indicated by N; otherwise, it is trivially true.
For any ε ∈ (0,∞), by the construction of {Bj}j∈N and φj ∈ G(1, 2), especially, the finite
intersection property, we know that there exists L ∈ N such that Bj ∩ B(x1, 1/ε) = ∅ for
all j ≥ L. For x ∈ B(x1, 1/ε),

∑
j∈Z |ψ(x)φj(x)| = 0; for x /∈ B(x1, 1/ε), by

∑
j≥L φj ≤ 1

and ψ ∈ G(1, 2), we see that

∑

j≥L

|ψ(x)φj(x)| .
1

[V1(x1) + V (x1, x)]2

(
1

1 + d(x1, x)

)4

.
1

V1(x1)

1

V1(x1) + V (x1, x)

(
1

1 + 1
ε

)2 [
1

1 + d(x1, x)

]2

. ε2
1

V1(x1) + V (x1, x)

[
1

1 + d(x1, x)

]2
.

Therefore, for all x ∈ X , we have

∑

j≥L

|ψ(x)φj(x)| . ε2
1

V1(x1) + V (x1, x)

[
1

1 + d(x1, x)

]2
.

Moreover, for all x, y ∈ X satisfying that d(x, y) ≤ (1 + d(x1, x))/2, it holds true that

∑

j≥L

|ψ(x)φj(x) − ψ(y)φj(y)| . ε2
[

d(x, y)

1 + d(x1, x)

]
1

V1(x1) + V (x1, x)

[
1

1 + d(x1, x)

]2
.
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Indeed, if x, y ∈ B(x1, 1/ε), then
∑

j≥L |ψ(x)φj(x) − ψ(y)φj(y)| = 0; if y ∈ B(x1, 1/ε)
but x /∈ B(x1, 1/ε), then φj(y) = 0 for all j ≥ L, and hence

∑

j≥L

|ψ(x)φj(x) − ψ(y)φj(y)| =
∑

j≥L

|ψ(x)φj(x) − ψ(x)φj(y)| =
∑

j≥L

|ψ(x)||φj(x) − φj(y)|

.
d(x, y)

1 + d(x1, x)

1

[V1(x1) + V (x1, x)]2

[
1

1 + d(x1, x)

]4

. ε2
d(x, y)

1 + d(x1, x)

1

V1(x1) + V (x1, x)

(
1

1 + d(x1, x)

)2

;

if x, y /∈ B(x1, 1/ε), by the finite intersection property of {Bj}j∈N and an argument similar
to that used in the above, we also have the desired inequality. Thus,

∑
j∈N ψφj converges

in G(1, 2), and hence

〈f, ψ〉=

〈
f, ψ

∑

j∈N

φj

〉
=
∑

j∈N

〈f, ψφj〉 =
∑

j∈N

〈fBj , ψφj〉 =

〈
f̃ ,

∞∑

j=1

ψφj

〉
= 〈f̃ , ψ〉.

This finishes the proof of Theorem 5.11.

We remark that, Theorem 5.11, when p = q, goes back to [34, Theorem 5.2] in the case
s = 1 therein. Moreover, the proof of Theorem 5.11 is different from that of [34, Theorem
5.2]. Indeed, comparing with the proof of [34, Theorem 5.2], the proof of Theorem 5.11
needs several localized arguments, in which a partition of unity on spaces of homogeneous
type plays a key role (see Lemma 5.12).

To end this section, we consider the case of inhomogeneous spaces.

Definition 5.15. Let 0 < p ≤ q ≤ ∞. The inhomogeneous Hardy-Morrey-Sobolev space
H M q

1,p(R
n) is defined to be the set of functions f ∈ Mq

p(Rn) such that Djf ∈ H M q
p (Rn)

for all j ∈ {1, . . . , n}, where Djf denotes the jth distributional derivative of f . Moreover,

‖f‖H Mq
1,p(R

n) := ‖f‖Mq
p(Rn) +

n∑

j=1

‖Djf‖H Mq
p (Rn).

The inhomogeneous grand Triebel-Lizorkin Morrey space is defined as follows.

Definition 5.16. Let X be a space of homogeneous type, s ∈ (0, 1], p ∈ (0,∞), q ∈ [p,∞]
and r ∈ (0,∞]. The inhomogeneous grand Triebel-Lizorkin-Morrey space AF sp,q,r(X ) is
defined to be the set of all f ∈ (G(1, 2))′ such that

‖f‖AF s
p,q,r(X ) :=

∥∥∥∥∥∥∥




∑

k∈Z+

2ksr sup
φ∈Ak(·)

|〈f, φ〉|r





1/r
∥∥∥∥∥∥∥
Mq

p(X )

<∞

with the usual modification made when r = ∞.
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Similar to the proofs of Theorems 5.5 and 5.11, respectively, we have the following
results, the details being omitted.

Theorem 5.17. Let p ∈ ( n
n+1 ,∞] and q ∈ [p,∞]. Then, H M q

1,p(R
n) = HM q

p (Rn) with
equivalent norms.

We remark that, when p ∈ (1,∞] and q ∈ [p,∞], Theorem 5.17 goes back to Theorem
4.8, since, in this case, H M q

1,p(R
n) = WM q

p (Rn) (see Remark 5.2). Also, Theorem 5.17
completely covers [33, Corollary 10] by taking p = q.

Theorem 5.18. Let X be a space of homogeneous type, p ∈ ( n
n+1 ,∞) and q ∈ [p,∞].

Then, AF 1
p,q,∞(X ) = HM q

p (X ) with equivalent norms.

Observe that, when p = q, Theorem 5.18 coincide with [34, Theorem 5.2].

6 Boundedness of (fractional) maximal operators

This section is devoted to the boundedness of (fractional) maximal operators on Morrey
type spaces over metric measure spaces.

In Subsection 6.1, for a geometrically doubling metric measure space (X , d, µ) in the
sense of Hytönen [29], we show, in Theorem 6.5 below, that the modified maximal operator

M
(β)
0 (see (6.1) below) is bounded on the modified Morrey space M

q,(k)
p (X ), which, when

(X , d, µ) := (Rn, | · |, µ) with µ being a Radon measure satisfying the polynomial growth
condition (also called the non-doubling measure), was introduced by Sawano and Tanaka

[45]. As an application, the boundedness of the fractional maximal operator M
(β)
α on this

space is also obtained in Proposition 6.6 below.

In Subsection 6.2, if µ is a doubling measure, as applications of Theorem 6.5 and
Proposition 6.6, we show the boundedness of the fractional maximal operator M̃α on
Morrey spaces (see Corollary 6.7 below), from which, we further deduce, in Corollary 6.8

below, the boundedness of the fractional maximal operator M̃α on Morrey spaces when
µ further satisfies the measure lower bound condition (see (6.3) below). If µ is doubling,
satisfies (6.3) and has the relative 1-annular decay property (see (6.6) below), we then

obtain the boundedness of M̃α on HM q
p (X ) (see Theorem 6.9 below). Finally, we prove

that, if µ is doubling and satisfies (6.3), and X supports a weak (1, p)-Poincaré inequality,
then the discrete fractional maximal function M∗

α is bounded on NM q
p (X ) (see Theorem

6.10 below).

6.1 Maximal operators on M
q,(k)
p (X )

In 2010, Hytönen [29] introduced the notion of geometrically doubling metric mea-
sures which include both spaces of homogeneous type and the Euclidean spaces with non-
doubling measures satisfying the polynomial growth condition; see also the monograph
[53] for some recent developments of this subject.

A key notion appeared in [29] is the following geometrically doubling.



Morrey-Sobolev Spaces on Metric Measure Spaces 37

Definition 6.1. A metric measure space (X , d, µ) is said to be geometrically doubling, if
there exists N0 ∈ N such that any given ball contains no more than N0 points at distance
exceeding half its radius.

From the geometrically doubling property, we deduce the following conclusion, which
is used later on.

Proposition 6.2. Let (X , d, µ) be a geometrically doubling metric measure. Then, for
any ball B(x, r) ⊂ X , with x ∈ X and r ∈ (0,∞), and any n1 ≥ n2 > 1, there exist
r0 ∈ (0,∞), a constant Ñ ∈ N, depending only on n1, n2 and the constant N0 in Definition

6.1, and Ñ balls {B(xi, r0)}Ñi=1 such that n1B(xi, r0) ⊂ n2B(x, r) for all i ∈ {1, . . . , Ñ}

and B(x, r) ⊂ ∪Ñi=1B(xi, r0).

Proof. Let n1 and n2 be as in Proposition 6.2, and k := ⌊log2(
n1+1
n2−1)⌋ + 1, where ⌊t⌋

denotes the maximal integer not more than t ∈ R. We claim that, for any y ∈ X

and ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞), if B(y, r
2k

) ∩ B(x, r) 6= ∅, then
n1B(y, r

2k
) ⊂ n2B(x, r). Indeed, by choosing z ∈ B(y, r

2k
) ∩ B(x, r) and observing that

k > log2(
n1+1
n2−1), we have

d(x, y) ≤ d(x, z) + d(z, y) <

(
1 +

1

2k

)
r <

(
n2 −

n1
2k

)
r.

Thus, for all w ∈ n1B(y, r
2k

),

d(w, x) ≤ d(w, y) + d(y, x) <
n1r

2k
+
(
n2 −

n1
2k

)
r = n2r,

which shows the above claim. Then, by repeating the proof of (1) ⇒ (2) in [29, Lemma
2.3], we obtain the desired conclusion, which completes the proof of Proposition 6.2.

Now we recall the definition of the modified Morrey space, which, when (X , d, µ) :=
(Rn, | · |, µ) with µ being a Radon measure satisfying the polynomial growth condition,
was originally introduced by Sawano and Tanaka [45].

Definition 6.3. Let k ∈ (0,∞), 1 ≤ p ≤ q < ∞ and X be a metric measure space. The

modified Morrey space M
q,(k)
p (X ) is defined as

Mq,(k)
p (X ) :=

{
f ∈ Lploc (X ) : ‖f‖

M
q,(k)
p (X )

<∞
}
,

where

‖f‖
M

q,(k)
p (X )

:= sup
B(x,r)⊂X

[µ(B(x, kr))]1/q−1/p

[∫

B(x,r)
|f(y)|p dµ(y)

]1/p
,

where the supremum is taken over all balls B(x, r), with x ∈ X and r ∈ (0,∞), of X .

Proposition 6.4. Let (X , d, µ) be a geometrically doubling metric measure space and

1 ≤ p ≤ q <∞. Then, the space M
q,(k)
p (X ) is independent of the choice of k ∈ (1,∞).
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Proof. Let k1, k2 ∈ (1,∞). We need to show that M
q,(k1)
p (X ) and M

q,(k2)
p (X ) coincide

with equivalent norms. To this end, without loss of generality, we may assume that

k1 < k2. By Definition 6.3, we easily find that M
q,(k1)
p (X ) ⊂ M

q,(k2)
p (X ). Thus, we still

need to show the inverse embedding. Let B be a ball in X . By Proposition 6.2, there

exist Ñ balls {Bi}
Ñ
i=1 with the same radius such that, for all i ∈ {1, . . . , Ñ}, k2Bi ⊂ k1B

and B ⊂ ∪Ñi=1Bi, where Ñ depends only on k1, k2 and N0 in Definition 6.1. By these, we
see that

[µ(k1B)]1/q−1/p

[∫

B
|f(x)|p dµ(x)

]1/p
≤

Ñ∑

i=1

[µ(k1B)]1/q−1/p

[∫

Bi

|f(x)|p dµ(x)

]1/p

≤
Ñ∑

i=1

[µ(k2Bi)]
1/q−1/p

[∫

Bi

|f(x)|p dµ(x)

]1/p

≤ Ñ‖f‖
M

q,(k2)
p (X )

.

By the arbitrariness of B and Definition 6.3, we conclude that

‖f‖
M

q,(k1)
p (X )

≤ Ñ‖f‖
M

q,(k2)
p (X )

,

which further implies that M
q,(k2)
p (X ) ⊂ M

q,(k1)
p (X ) and hence completes the proof of

Proposition 6.4.

Recall that, for α ∈ [0, 1] and β ∈ [1,∞), the modified fractional maximal operator

M
(β)
α is defined by setting, for all f ∈ L1

loc (X ) and x ∈ X ,

(6.1) M (β)
α f(x) := sup

r>0
[µ(B(x, βr))]α−1

∫

B(x,r)
|f(y)| dµ(y).

In particular, we write Mα := M
(1)
α .

Then we have the following conclusion, which generalizes [45, Theorem 2.3], wherein
the corresponding result on the power bounded measure spaces on Rn was obtained. The
proof of Theorem 6.5 is similar to that of [45, Theorem 2.3], and one key tool used in
the proof is the Lp(µ)-boundedness of the central Hardy-Littlewood maximal operator
on geometrically doubling metric measure spaces (see [44]). For the convenience of the
readers, we give the details.

Theorem 6.5. Let X be a geometrically doubling metric measure space, 1 < p ≤ q <∞,
β ∈ (1,∞) and k ∈ (1,∞). Then, there exists a positive constant C such that, for all

f ∈ M
q,(k)
p (X ),

(6.2) ‖M
(β)
0 f‖

M
q,(k)
p (X )

≤ C‖f‖
M

q,(k)
p (X )

.
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Proof. By Proposition 6.4, it suffices to consider the case that k := 2β
β+1 > 1. Let f ∈

M
q,(k)
p (X ) and B0 ⊂ X be a ball. Define β̃ := β+7

β−1 > 1, f1 := fχ
β̃B0

and f2 := f − f1.
Then, by Definition 6.3, together with 1 < p ≤ q <∞, we have

1

[µ(kβ̃B0)]1/p−1/q

{∫

B0

[M
(β)
0 f1(y)]p dµ(y)

}1/p

≤
1

[µ(kβ̃B0)]1/p−1/q

{∫

X

[M
(β)
0 f1(y)]p dµ(y)

}1/p

.
1

[µ(kβ̃B0)]1/p−1/q

{∫

β̃B0

|f(y)|p dµ(y)

}1/p

. ‖f‖
M

q,(k)
p (X )

,

where we used the fact that M
(β)
0 is bounded on Lp(µ), which follows from the boundedness

on Lp(µ) with p ∈ (1,∞] of the central Hardy-Littlewood maximal operator M
(1)
0 in the

present setting (see [44]) and M
(β)
0 ≤M

(1)
0 .

To estimate f2, observe that, if B ⊂ X is a ball satisfying that B ∩ B0 6= ∅ and

B ∩ (X \ β̃B0) 6= ∅, then the radius rB > β̃−1
2 rB0 = 4

β−1rB0 , where rB and rB0 denote,

respectively, the radii of B and B0, and hence B0 ⊂ β+1
2 B. Therefore, we see that, for

any x ∈ B0,

M
(β)
0 f2(x) ≤ sup

x∈B

1

µ(βB)

∫

B
|f2(y)| dµ(y) ≤ sup

B0⊂
β+1
2
B

1

µ(βB)

∫

B
|f(y)| dµ(y)

≤ sup
B0⊂B

1

µ( 2β
β+1B)

∫

B
|f(y)| dµ(y) = sup

B0⊂B

1

µ(kB)

∫

B
|f(y)| dµ(y),

and hence, by this, the Hölder inequality and Definition 6.3, we further see that

1

[µ(kβ̃B0)]1/p−1/q

[∫

B0

[M
(β)
0 f2(y)]p dµ(y)

]1/p

≤
[µ(B0)]

1/p

[µ(kβ̃B0)]1/p−1/q
sup
B0⊂B

1

µ(kB)

∫

B
|f(y)| dµ(y)

≤
[µ(B0)]

1/p

[µ(kβ̃B0)]1/p−1/q
sup
B0⊂B

[µ(B)]1−1/p

µ(kB)

[∫

B
|f(y)|p dµ(y)

]1/p

≤ sup
B0⊂B

[µ(B0)]1/p

[µ(kβ̃B0)]1/p−1/q

[µ(B)]1−1/p

µ(kB)
[µ(kB)]1/p−1/q‖f‖

M
q,(k)
p (X )

≤ sup
B0⊂B

[µ(B)]1−1/p+1/q

[µ(kB)]1−1/p+1/q
‖f‖

M
q,(k)
p (X )

≤ ‖f‖
M

q,(k)
p (X )

,

where the last inequality follows from the fact that B0 ⊂ B and k, β̃ > 1. This estimate
for f2, together with the previous estimate for f1 and Proposition 6.4, further implies that

‖M
(β)
0 f‖

M
q,(k)
p (X )

≈ ‖M
(β)
0 f‖

M
q,(kβ̃)
p (X )

. ‖f‖
M

q,(k)
p (X )

,
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which completes the proof of Theorem 6.5.

Using Theorem 6.5, we have the following boundedness of the modified fractional max-

imal operator M
(β)
α on the modified Morrey space.

Proposition 6.6. Let X be a geometrically doubling metric measure space, 1 < p ≤ q <
∞, β ∈ (1,∞), α ∈ (0, 1/q) and k ∈ (1,∞). Then, there exists a positive constant C such

that, for all f ∈ M
q,(k)
p (X ),

‖M (β)
α f‖

M
q̃,(k)
p̃

(X )
. ‖f‖

M
q,(k)
p (X )

,

where p̃ := p
1−αq and q̃ := q

1−αq .

Proof. By Proposition 6.4, it suffices to consider the case that k = β ∈ (1,∞).

For any ball B(x, r) ⊂ X with x ∈ X and r > 0 and f ∈ M
q,(β)
p (X ), we know, by the

Hölder inequality, (1.3) and (3.6), that

[µ(B(x, βr))]α−1

∫

B(x,r)
|f(y)| dµ(y)

= [µ(B(x, βr))]α−1

[∫

B(x,r)
|f(y)| dµ(y)

]αq [∫

B(x,r)
|f(y)| dµ(y)

]1−αq

≤ [µ(B(x, βr))]
α−1+(1− 1

p
)αq

[∫

B(x,r)
|f(y)|p dµ(y)

]αq
p
[∫

B(x,r)
|f(y)| dµ(y)

]1−αq

=

{
1

[µ(B(x, βr))]1−
p
q

∫

B(x,r)
|f(y)|p dµ(y)

}αq
p
[

1

µ(B(x, βr))

∫

B(x,r)
|f(y)| dµ(y)

]1−αq

≤ ‖f‖αq
M

q,(β)
p (X )

[M
(β)
0 f(x)]1−αq,

which, together with (6.1), implies that, for all x ∈ X ,

M (β)
α f(x) ≤ ‖f‖αq

M
q,(β)
p (X )

[M
(β)
0 f(x)]1−αq.

Then, by Theorem 6.5, we see that

‖M (β)
α f‖

M
q̃,(β)
p̃

(X )
≤ ‖f‖αq

M
q,(β)
p (X )

‖[M
(β)
0 f ]1−αq‖

M
q̃,(β)
p̃

(X )
. ‖f‖

M
q,(β)
p (X )

,

which completes the proof of Proposition 6.6.

6.2 Fractional maximal operators on HM
q
p (X ) and NM

q
p (X )

Recently, Heikkinen et al. [23, 24] studied the boundedness of some fractional maximal
operators on the Newton-Sobolev space and the Haj lasz-Sobolev space over metric measure
spaces. In this section, we consider the corresponding problem for Newton-Morrey-Sobolev
spaces and Haj lasz-Morrey-Sobolev spaces.
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Throughout this section, we always assume that the measure µ is doubling (see (5.8)).
Recall that it is well known that any space of homogeneous type is also geometrically

doubling (see [10, pp. 66-67]). Moreover, since µ is doubling, we see that, for any β ∈ (1,∞)
and α ∈ [0, 1], there exists a positive constant C, depending on β and α, such that, for

all f ∈ L1
loc (X ) and x ∈ X , Mαf(x) ≤ CM

(β)
α f(x). From these facts, Theorem 6.5 and

Proposition 6.6, we immediately deduce the following conclusion.

Corollary 6.7. Let 1 < p ≤ q < ∞ and α ∈ [0, 1/q). Then, there exists a positive
constant C, depending on α, p and q, such that, for all f ∈ Mq

p(X ),

‖Mαf‖Mq̃
p̃
(X )

≤ C‖f‖Mq
p(X ),

where p̃ := p
1−αq and q̃ := q

1−αq .

As an application of Theorem 6.5, we obtain the following boundedness of fractional
maximal operators on modified Morrey spaces.

Recall that a measure µ is said to satisfy the measure lower bound condition, if there
exists a positive constant C such that, for any x ∈ X and r ∈ (0,∞),

(6.3) µ(B(x, r)) ≥ CrQ

for some Q ∈ (0,∞).
Recently, if µ satisfies (6.3), Heikkinen et al. [24] established the boundedness from

Lp(X ) to Ls(X ) for p ∈ (1, Q) and s := Qp
Q−αp of the following modified fractional

maximal function M̃α, defined by setting, for any α ∈ [0, 1], f ∈ L1
loc (X ) and x ∈ X ,

(6.4) M̃αf(x) := sup
r>0

rα

µ(B(x, r))

∫

B(x,r)
|f(y)| dµ(y).

It is easy to see that, in the present setting, there exists a positive constant C, depending
on α and Q, such that, for all f ∈ L1

loc (X ) and x ∈ X , M̃αf(x) ≤ CMαf(x) , which,
together with Corollary 6.7, implies the following conclusion.

Corollary 6.8. Let 1 < p ≤ q <∞ and α ∈ [0, 1/q). Assume that µ satisfies (6.3). Then,
there exists a positive constant C, depending on α, p and q, such that, for all f ∈ Mq

p(X ),

(6.5)
∥∥∥M̃αf

∥∥∥
Mq̃

p̃
(X )

≤ C‖f‖Mq
p(X ),

where p̃ := p
1−αq and q̃ := q

1−αq .

Recall that X is said to satisfy the relative 1-annular decay property, if there exists a
positive constant C such that, for all x ∈ X , R ∈ (0,∞) and h ∈ (0, R),

(6.6) µ (B ∩ [B(x,R) \B(x,R− h)]) ≤ C
h

rB
µ(B)

for all balls B with radius rB < 3R; see, for example, [24, (2.5)].

Now we turn to the boundedness of the fractional maximal operator M̃α on Haj lasz-
Morrey-Sobolev spaces.
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Theorem 6.9. Assume that µ satisfies (6.3) and X has the relative 1-annular decay
property (6.6). Let 1 < p ≤ q < ∞ and α ∈ (0, Q/q). Then, for any f ∈ HM q

p (X ),

M̃αf ∈ HM q∗

p∗ (X ), where p∗ := Qp
Q−αq and q∗ := Qq

Q−αq . Moreover, there exists a positive
constant C, depending only on the doubling constant, Q, p, q and α, such that, for all
f ∈ HM q

p (X ),

‖M̃αf‖HMq∗

p∗
(X )

≤ C‖f‖HMq
p (X ).

Proof. The proof is similar to that of [24, Theorem 4.5]. Let f ∈ HM q
p (X ) and g ∈

Mq
p(X ) be a Haj lasz gradient of f such that ‖g‖Mq

p(X ) . ‖f‖HMq
p (X ). It is easy to see

that g is also a Haj lasz gradient of |f |. Let r ∈ (1, p) and define

g̃ :=
[
M̃αr(g

r)
]1/r

.

By an argument similar to that used in the proof of [24, Theorem 4.5], we know that g̃

is a Haj lasz gradient of M̃α(|f |), as well as M̃αf , since M̃α(|f |) = M̃αf . Moreover, by
p/r > 1, (1.3) and (6.5), we see that

(6.7) ‖g̃‖
Mq∗

p∗
(X )

= ‖M̃αr(g
r)‖

1/r

M
q∗/r
p∗/r

(X )
. ‖gr‖

1/r

M
q/r
p/r

(X )
≈ ‖g‖Mq

p(X ).

Combining (6.7) and Definition 4.1, we obtain the desired conclusion and then complete
the proof of Theorem 6.9.

We point out that, Theorem 6.9 when p = q goes back to [24, Theorem 4.5].
Now we recall the discrete fractional maximal operator M∗

α introduced in [23, Section
5]. Let {B(xi, r)}i∈N be a ball covering of X such that {B(xi, r)}i∈N are of finite overlap.
Since X is doubling, the overlap number N depends only on the doubling constant and
is independent of r. Let {ϕi}i∈N be a partition of unity related to {B(xi, r)}i∈N such that
0 ≤ ϕi ≤ 1, ϕi = 0 on X \B(xi, 6r), ϕi ≥ v on B(xi, 3r) and ϕi is Lipschitz function with
Lipschitz constant L/r, where L ∈ (0,∞) and v ∈ (0, 1] are constants depending only on
the doubling constant, and

∑
i∈N ϕi ≡ 1. The discrete convolution of u ∈ L1

loc(X ) at the
scale 3r is defined by setting, for all x ∈ X ,

ur(x) :=
∑

i∈N

ϕi(x)uB(xi,3r),

where uB(xi,3r) denotes the integral mean of u on B(xi, 3r) (see (3.4)). Now, let {rj}j∈N
be a sequence of the positive rational numbers, and {B(xi,j, rj)}i∈N for each j is a ball
covering of X as above. Then, the discrete fractional maximal function M∗

αu of u is
defined as by setting, for all x ∈ X ,

M∗
αu(x) := sup

j∈N
rαj |u|rj (x).

Similar to the proof of [23, Theorem 6.3], we obtain the following result on the boundedness
of M∗

α on Newton-Morrey-Sobolev spaces.
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Theorem 6.10. Let µ satisfy (6.3), 1 < p ≤ q <∞ and α ∈ (0, Q/q). Assume that X is
complete and supports a weak (1, p)-Poincaré inequality. Then, for any f ∈ NM q

p (X ), it

holds that, M∗
αf ∈ NM q∗

p∗ (X ) with p∗ := Qp/(Q−αq) and q∗ := Qq/(Q−αq). Moreover,
there exists a positive constant C, independent of f , such that

‖M∗
αf‖NMq∗

p∗
(X )

≤ C‖f‖NMq
p (X ).

Proof. Let f ∈ NM q
p (X ) and g ∈ Mq

p(X ) be a Modqp-weak upper gradient of f such that

(6.8) ‖g‖Mq
p(X ) ≤ 2‖f‖NMq

p (X ).

By [23, Lemma 5.1] and (6.5), we have

(6.9) ‖M∗
αf‖Mq∗

p∗
(X )

. ‖f‖Mq
p(X ).

By the same reason as that used in the proof [23, Theorem 6.3], observing that the
pointwise Lipschitz constant of a function is also an upper gradient of that function, we
see that a positive constant multiple of (M∗

αθg
θ)1/θ is a Modqp-weak upper gradient of M∗

αf ,
where θ lies in (1, p) such that the weak (1, θ)-Poincaré inequality is supported by X . By

gθ ∈ M
q/θ
p/θ(X ) and p/θ > 1, together with [23, Lemma 5.1] and (6.5), we know that

(6.10) ‖[M∗
αθ(g

θ)]1/θ‖
Mq∗

p∗
(X )

. ‖g‖Mq
p(X ).

Combining (6.8), (6.9) and (6.10), we obtain

‖M∗
αf‖NMq∗

p∗
(X )

. ‖M∗
αf‖Mq∗

p∗
(X )

+ ‖[M∗
αθ(g

θ)]1/θ‖
Mq∗

p∗
(X )

. ‖f‖Mq
p(X ) + ‖g‖Mq

p(X ) . ‖f‖NMq
p (X ),

which completes the proof of Theorem 6.10.

We remark that Theorem 6.10 when p = q goes back to [23, Theorem 6.3].
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1211-1215.

[21] P. Haj lasz and P. Koskela, Sobolev Met Poincaré, Mem. Amer. Math. Soc. 145 (2000),
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[24] T. Heikkinen, J. Lehrbäck, J. Nuutinen and H. Tuominen, Fractional maximal func-
tions in metric measure spaces, Analysis and Geometry in Metric Spaces (to appear)
or arXiv:1301.7191.

[25] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York,
2001.

[26] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled
geometry, Acta Math. 181 (1998), 1-61.

[27] J. Heinonen and P. Koskela, A note on Lipschitz functions, upper gradients, and the
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