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Abstract The fusion of transitive fuzzy relations preserv-
ing the transitivity is linked to the domination of the in-
volved aggregation operator. The aim of this contribution
is to investigate the domination of OWA operators over
t-norms whereas the main emphasis is on the domination
over the Łukasiewicz t-norm. The domination of OWA
operators and related operators over continuous
Archimedean t-norms will also be discussed.
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1
Motivation
In several applications of fuzzy logics and fuzzy systems
the processing of data based on the strongest t-norm, i.e.,
the minimum TM suffers from the increase of uncertainty.
Recall only the addition of fuzzy numbers where the final
sum spreads equal to the sum of all incoming spreads. In
order to avoid this undesirable effect, alternative ap-
proaches have to be taken into account. One of the most
promising t-norms for reducing the enormous growth of
uncertainty is the Łukasiewicz t-norm TL. The addition of
triangular (trapezoidal) fuzzy numbers based on TL leads
to output spreads equal to the maximal (left and right)
incoming spreads – a property which is often required in
models dealing with uncertainty. Moreover, the Łukas-
iewicz t-norm TL is often applied when fuzzy rule based
systems are designed with the purpose to reduce redun-
dancy, and especially in clustering algorithms (likeness
relations of Bezdek and Harris [2]). Recall also the
approximate solutions of fuzzy relational equations [6] or

several relations possessing TL-transitivity as a genuine
counterpart of the classical triangle inequality of the
Euclidean metric on R. Furthermore, when solving com-
plex problems we sometimes need either to refine several
fuzzy relations or to introduce their Cartesian product.
However, we expect that the new fuzzy relation will be
again TL-transitive if the original fuzzy relations have also
been TL-transitive.

As it has been shown in [11], the preservation of
T-transitivity of fuzzy relations during an aggregation
process is guaranteed if the involved aggregation operator
dominates the corresponding t-norm T. Several special
operators dominating the Łukasiewicz t-norm are already
known, e.g. TL itself, the minimum and the arithmetic mean,
see [11]. The later two are special cases of so called OWA
operators, one of the most important family of aggregation
operators applied in many domains (see [14, 16]), which are
used for summarizing singular data into a single output
where inputs are ordered with respect to their value and are
assigned certain weights before being aggregated.

If we want to preserve the TL-transitivity of fuzzy
relations the domination of an OWA operator O over TL

should be checked before fusing the TL-transitive fuzzy
relations by means of this OWA operator O. Therefore the
characterization of OWA operators dominating the
Łukasiewicz t-norm TL seemed to be important. The
extension of the obtained results for some other t-norms
and other dominating aggregation operators will be the
final task of this contribution.

2
Preliminaries

2.1
Aggregation operators, t-norms, t-conorms

Definition 1 A function A :
S

n2N½0; 1�
n ! ½0; 1� is called

an aggregation operator if it fulfills the following properties
([3, 8]):

(AO1) Aðx1; . . . ; xnÞ � Aðy1; . . . ; ynÞ whenever xi � yi for
all i 2 f1; . . . ; ng,

(AO2) AðxÞ ¼ x for all x 2 ½0; 1�,
(AO3) Að0; . . . ; 0Þ ¼ 0 and Að1; . . . ; 1Þ ¼ 1.

Each aggregation operator A can be represented by a

family ðAðnÞÞn2N of n-ary operations, i.e.,

AðnÞ : ½0; 1�n ! ½0; 1� given by

AðnÞðx1; . . . ; xnÞ ¼ Aðx1; . . . ; xnÞ :
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In that case, Að1Þ ¼ id½0;1� and, for n � 2, each AðnÞ is
non-decreasing satisfying AðnÞð0; . . . ; 0Þ ¼ 0 and
AðnÞð1; . . . ; 1Þ ¼ 1. Usually, the aggregation operator A and
the corresponding family ðAðnÞÞn2N of n-ary operations are
identified with each other.

Note that, for n � 2, n-ary operations AðnÞ : ½0; 1�n !
½0; 1� which fulfill properties (AO1) and (AO3) are referred
to as n-ary aggregation operators.

In general, for n 6¼ m the operators AðnÞ and AðmÞ need
not be related. This observation does not hold in several
special cases, e.g. by quasi-arithmetic means [3] or in the
case of associative aggregation operators, where the binary
operator Að2Þ already contains all the information about A.

With only simple and obvious modifications, aggrega-
tion operators acting on any closed interval
I ¼ a; b½ � � �1;1½ � can be defined. While (AO1) and
(AO2) basically remain the same, only (AO3) has to be
modified accordingly

ðAO3’ÞAða; . . . ; aÞ ¼ a and Aðb; . . . ; bÞ ¼ b :

Consequently, we will speak of an aggregation operator
acting on I. Unless explicitly mentioned otherwise, we will
restrict our further considerations to aggregation opera-
tors acting on the unit interval (according to Definition 1).

Consider an aggregation operator A :
S

n2N a; b½ �n!
a; b½ � on a; b½ � and a monotone bijection u : c; d½ � ! a; b½ �.

The operator Au :
S

n2N c; d½ �n! c; d½ � defined by

Auðx1; . . . ; xnÞ ¼ u�1 Aðuðx1Þ; . . . ;uðxnÞÞð Þ
is an aggregation operator on ½c; d�, which is isomorphic to A.

The isomorphic transformation of an aggregation
operator A :

S
n2N½0; 1�

n ! ½0; 1� with respect to the spe-
cific decreasing bijection u : ½0; 1� ! ½0; 1�;uðxÞ ¼ 1� x is
called the dual of the aggregation operator A, Au ¼ Ad,
i.e.,

Adðx1; . . . ; xnÞ ¼ 1� Að1� x1; . . . ; 1� xnÞ :
Triangular norms were originally introduced in the con-
text of probabilistic metric spaces ([9, 12, 13]), but they are
in fact nothing else than associative, and symmetric
aggregation operators with 1 as neutral element. Due to
their associativity it is enough to discuss only their binary
form.

Definition 2 A triangular norm (t-norm for short) is a
binary operation T on the unit interval which is commu-
tative, associative, non-decreasing in each component, and
has 1 as a neutral element.

Example 1 The following are the four basic t-norms:

Minimum t � norm : TMðx; yÞ ¼ minðx; yÞ;

Product t � norm : TPðx; yÞ ¼ x � y;

Łukasiewicz t � norm : TLðx; yÞ ¼ maxðxþ y� 1; 0Þ;

Drastic product :

TDðx; yÞ ¼
0 if ðx; yÞ 2 ½0; 1½2;

minðx; yÞ otherwise.

(

Remark 1 A huge class of t-norms is closely linked to the
product t-norm TP by so called multiplicative generators.
Because of the isomorphism of the semigroups ð½0; 1�;TPÞ
and ð 0;1½ �;þÞ, also additive generators can be introduced.

Recall that any continuous strictly decreasing mapping
t : ½0; 1� ! 0;1½ �, tð1Þ ¼ 0 is called an additive generator
and the mapping T : ½0; 1�2 ! ½0; 1� given by

Tðx; yÞ ¼ t�1
�

minðtð0Þ; tðxÞ þ tðyÞÞ
�

is a continuous Archimedean t-norm [8]. Any continuous
Archimedean t-norm is either isomorphic to TP (strict
t-norms) and then its additive generator is unbounded,
whereas bounded additive generators are characteristic for
t-norms isomorphic to TL (nilpotent t-norms). Additive
generators assigned to a continuous Archimedean t-norm T
are unique up to a positive multiplicative constant [8].

Closely related to t-norms are t-conorms, defined by the
following properties.

Definition 3 A t-conorm is a binary operation S on the unit
interval which is commutative, associative, non-decreasing
in each component, and has 0 as a neutral element.

A t-norm T and a t-conorm S are said to be dual
(according to the duality of aggregation operators in
general), if the following relationship holds

Tðx; yÞ ¼ 1� Sð1� x; 1� yÞ :

Example 2 Corresponding to the four basic t-norms the
four basic t-conorms are

Maximum : SMðx; yÞ ¼ maxðx; yÞ;
Probabilistic sum : SPðx; yÞ ¼ xþ y� x � y;
Bounded sum : SLðx; yÞ ¼ minðxþ y; 1Þ;
Drastic sum :

SDðx; yÞ ¼
1 if ðx; yÞ 2 0; 1� �2;
maxðx; yÞ otherwise:

(

Observe that if a (continuous Archimedean) t-norm T is
generated by an additive generator t, then
s : ½0; 1� ! 0;1½ � given by sðxÞ ¼ tð1� xÞ is an additive
generator of the corresponding dual t-conorm S

Sðx; yÞ ¼ s�1
�

minðsð0Þ; sðxÞ þ sðyÞÞ
�
:

2.2 OWA operators
A special class of aggregation operators are the so called
OWA operators (ordered weighted averaging operators)
introduced in [14] and related to the Choquet integral [7].

Definition 4 The operator A :
S

n2N½0; 1�
n ! ½0; 1� given

by

Aðx1; . . . ; xnÞ ¼
Xn

i¼1

win � x0i

where ðx01; . . . ; x0nÞ is a non-decreasing permutation of the
input n-tuple ðx1; . . . ; xnÞ is called an OWA operator
associated with the weighting triangle 4 ¼ ðwinÞ.
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A weighting triangle 4 ¼ ðwin j n 2 N; i 2 f1; . . . ; ngÞ
such that all win 2 ½0; 1� and

Pn
i¼1 win ¼ 1 for all n 2 N,

collects all necessary weights for an OWA operator. For
n-ary operators, the weights w1; . . . ;wn form an n-
dimensional weighting vector w ¼ ðw1; . . . ;wnÞ 2 ½0; 1�n
with

Pn
i¼1 wi ¼ 1. For more details on weighting triangles

see also [4, 5, 15].
If4 is a weighting triangle and4r is the corresponding

reversed weighting triangle, then the corresponding
OWA operators form a couple of dual aggregation
operators. Therefore an OWA operator is self-dual if the
corresponding weighting triangle is symmetric. Starting
from a binary OWA operator, we cannot construct an n-ary
OWA operator, in general. Note also that the composition of
OWA operators need not be an OWA operator in general.

2.3
Domination
Definition 5 Consider an n-ary aggregation operator AðnÞ
and an m-ary aggregation operator BðmÞ. We say that AðnÞ
dominates BðmÞ, AðnÞ � BðmÞ, if for all xi;j 2 ½0; 1� with
i 2 f1; . . . ;mg and j 2 f1; . . . ; ng the following property
holds:

BðmÞ
�

AðnÞðx1;1; . . . ; x1;nÞ; . . . ;AðnÞðxm;1; . . . ; xm;nÞ
�

� AðnÞ
�

BðmÞðx1;1; . . . ; xm;1Þ; . . . ;BðmÞðx1;n; . . . ; xm;nÞ
�
:

ð1Þ
Note that if either n or m or both are equal to 1,
because of the boundary condition (AO2), AðnÞ � BðmÞ
is trivially fulfilled for any two aggregation
operators A;B.

Definition 6 Let A and B be aggregation operators. We say
that A dominates B, A� B, if AðnÞ dominates BðmÞ for all
n;m 2 N.

It has been shown in [11] that because of the associativity
of a t-norm T it is sufficient to show that an aggregation
operator AðnÞ dominates Tð2Þ for arbitrary n 2 N in order
to prove that it dominates T for all n 2 N, i.e., that the
following inequality holds for arbitrary x1; . . . ; xn 2 ½0; 1�,
y1; . . . ; yn 2 ½0; 1� and n 2 N

TðAðx1; . . . ; xnÞ;Aðy1; . . . ; ynÞÞ
� AðTðx1; y1Þ; . . . ;Tðxn; ynÞÞ : ð2Þ

Another result for dominating aggregation operators
which is necessary for our proofs and which is proven in
[11] is summarized in the following lemma.

Lemma 1 Let a; b½ � and c; d½ � be non-trivial subintervals of
�1;1½ � and consider two aggregation operators A and B

both acting on a; b½ �.
(i) A� B if and only if Au � Bu for all non-decreasing

bijections u : c; d½ � ! a; b½ � if and only if Au � Bu for
some non-decreasing bijection u : c; d½ � ! a; b½ �.

(ii) A� B if and only if Bu � Au for all non-
increasing bijections u : c; d½ � ! a; b½ � if and only if
Bu � Au for some non-increasing bijections
u : c; d½ � ! a; b½ �.

3
OWA operators and lLukasiewicz t-norm

3.1
General observations
It is well known that the minimum dominates any
t-norm (see [8]), i.e., also the Łukasiewicz t-norm
(TM � TL). On the other hand, the minimum can be
interpreted as an OWA operator with weights w1n ¼ 1
and win ¼ 0 for all i 6¼ 1 and n 2 N. So the minimum is
one of the OWA operators dominating Łukasiewicz
t-norm.

Secondly, the Łukasiewicz t-norm is dominated by the
arithmetic mean (for a proof see e.g. [11]), which is an
OWA operator with weights win ¼ 1

n.
These considerations about OWA operators and dom-

ination lead to the assumption that an OWA operator will
dominate Łukasiewicz t-norm if (and only if) the weights
for arbitrary n form a non-increasing sequence, i.e.,
w1n � w2n � � � � � wnn. Taking into account thatPn

i¼1 win ¼ 1, we see that the minimum and the arithmetic
mean would be the two extremal cases of OWA operators
dominating Łukasiewicz t-norm.

3.2
Transformation of the problem
In the sequel, we will restrict our considerations to n-ary
aggregation operators with arbitrary n 2 N. Subadditive
functions will play an important role in the following
considerations.

Definition 7 A function F : 0; c½ �n! 0; c½ � is subadditive on
0; c½ �, if the following inequality holds for all xi; yi 2 0; c½ �

with xi þ yi 2 0; c½ �:
Fðx1þy1;...;xnþynÞ �Fðx1;...;xnÞþFðy1;...;ynÞ :
Let A be an n-ary OWA operator with weights w1; . . . ;wn.
If we want to show that A� TL it is equivalent to prove
that SL � Ad because of the isomorphism property (see
Lemma 1), i.e., for arbitrary x1; . . . ; xn; y1; . . . ; yn 2 ½0; 1�,
the following inequality must hold

SLðAdðx1; . . . ; xnÞ; Adð y1; . . . ; ynÞÞ
� AdðSLðx1; y1Þ; . . . ; SLðxn; ynÞÞ

which is furthermore equivalent to

minðAdðx1; . . . ; xnÞ þ Adð y1; . . . ; ynÞ; 1Þ
� Adðminðx1 þ y1; 1Þ; . . . ;minðxn þ yn; 1ÞÞ :

Since the OWA operator A and its dual Ad are acting on
½0; 1� and have therefore always values smaller or equal to
1, the last inequality can be rewritten in the following
form

Adðx1; . . . ; xnÞ þ Adð y1; . . . ; ynÞ
� Adðminðx1 þ y1; 1Þ; . . . ;minðxn þ yn; 1ÞÞ :

If xi þ yi � 1 for all i 2 f1; . . . ; ng, then we can derive the
following formula

Adðx1;...;xnÞþAdðy1;...;ynÞ �Adðx1þy1;...;xnþynÞ
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expressing that Ad is a subadditive function on ½0; 1�
(compare also [10]). The sufficiency of the subadditivity of
Ad to ensure SL � Ad follows easily from the monotonicity
of Ad.

Observe that the subadditivity of an n-ary aggregation
operator A : 0;1½ �n! 0;1½ � is equivalent to its concavity,
however, on the domain of the unit interval the subaddi-
tivity of A is a more general property then the concavity.

3.3
Considering weights
Until this point we have said nothing about the properties
of the weights of the OWA operator. Corresponding to
above we want to prove the following assumption.

Proposition 1 Let OðnÞ be an n-ary OWA operator with
weights w1; . . . ;wn. Then SL dominates OðnÞ if and only if
w1 � w2 � � � � � wn.

Proof. First, we want to show, that if SL � OðnÞ, then
w1 � w2 � � � � � wn. Therefore suppose that there exists
some i 2 f1; . . . ; ng with wi > wiþ1. Then we have that

OðnÞ 0; . . . ; 0; 0;
1

2
;
1

2
; . . . ;

1

2

� �

¼ 1

2

Xn

j¼iþ1

wj;

OðnÞ 0; . . . ; 0;
1

2
; 0;

1

2
; . . . ;

1

2

� �

¼ 1

2

Xn

j¼iþ1

wj;

OðnÞ 0; . . . ; 0;
1

2
;
1

2
; 1; . . . ; 1

� �

¼
Xn

j¼iþ2

wj þ
1

2
wiþ1 þ

1

2
wi ;

and therefore

SL OðnÞð0; . . . ; 0; 0;
1

2
;
1

2
; . . . ;

1

2

� �

;

�

OðnÞ 0; . . . ; 0;
1

2
; 0;

1

2
; . . . ;

1

2

� ��

¼
Xn

j¼iþ1

wj

<
Xn

j¼iþ2

wj þ
1

2
wiþ1 þ

1

2
wi

¼ OðnÞ SLð0; 0Þ; . . . ; SLð0; 0Þ; SL 0;
1

2

� �

; SL
1

2
; 0

� �

;

�

SL
1

2
;
1

2

� �

; . . . ; SL
1

2
;
1

2

� ��

contradictory to SL � OðnÞ.
Secondly, we will show that for any n-ary OWA

operator OðnÞ with w1 � w2 � . . . � wn, it holds that it is
dominated by SL. Let us consider a very simple class of
n-ary OWA operators Ok characterized by its weighting
vector

w ¼
�

0; . . . ; 0;
|fflfflfflffl{zfflfflfflffl}

n�k

1

k
; . . . ;

1

k|fflfflfflffl{zfflfflfflffl}
k

�

:

For arbitrary xi; yi 2 ½0; 1� with i 2 f1; . . . ; ng and
xi þ yi � 1 for all i we have

OkðSLðx1; y1Þ; . . . ; SLðxn; ynÞÞ

¼ Okðx1 þ y1; . . . ; xn þ ynÞ ¼
1

k

Xn

j¼k

ðxi þ yiÞ0j ;

whereas
Pn

j¼k

ðxi þ yiÞ0j is an element of the set

A ¼
�X

i2I

xi þ
X

j2J

yj j jIj ¼ jJj ¼ k

�

and is therefore smaller as the maximum of the set, i.e.

Xn

j¼k

ðxi þ yiÞ0j � maxðAÞ ¼
Xn

j¼k

x0j þ
Xn

j¼k

y0j

¼ k � ðOkðx1; . . . ; xnÞ þ Okðy1; . . . ; ynÞÞ :
Since OkðSLðx1; y1Þ; . . . ; SLðxn; ynÞÞ � 1 is always fulfilled
due to the boundary conditions of an aggregation opera-
tor, we can easily see that the domination relation for SL

and Ok is fulfilled.
What happens, if there exists some l 2 f1; . . . ; ng with

xl þ yl > 1? Then we have that

OkðSLðx1; y1Þ; . . . ; SLðxn; ynÞÞ
¼ Okðx1 þ y1; . . . ; 1; . . . ; xn; ynÞ

¼ 1

k
þ 1

k

Xn�1

j¼k

ðxi þ yiÞ0j

� 1

k
ðxl þ ylÞ þ

1

k

Xn�1

j¼k

ðxi þ yiÞ0j ¼
1

k

Xn

j¼k

ðxi þ yiÞ0j

and the same arguments hold as in the previous case.
What is still missing is the fact whether any n-ary OWA

operator with non-decreasing weights can be constructed
from the set of operators Ok and whether this construction
process does not change the domination property, i.e.,
yields again a dominated n-ary OWA operator.

Therefore, we deal with the question if there exist
ck 2 ½0; 1� for an arbitrary OWA operator O with
w1 � w2 � . . . � wn such that O ¼

Pn
k¼1 ckOk. Since all

involved operators are OWA operators of the same arity
we do not have to care about the ordering algorithm but
have to investigate the weights themselves. An operator
constructed as a convex sum of Ok has the following
weighting vector.

w ¼ cn

n
;
cn

n
þ cn�1

n� 1
; . . . ;

Xn

k¼1

ck

k

 !

;

Therefore we see that each ci can be computed from the
original weights wi by

cn ¼ n � w1and cj ¼ j � ðwn�jþ1 � wn�jÞ :
Since wn�jþ1 � wn�j all ci � 0. Furthermore,
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Xn

j¼1

cj ¼
Xn

j¼1

j � ðwn�jþ1 � wn�jÞ

¼ w1 þ w2 þ . . .þ wn ¼ 1

yields that all ci � 1.
Suppose O to be an n-ary aggregation operator with

non-decreasing weights and
Pn

k¼1 ckOk its representation
with respect to the operators Ok with ck derived from the
weights as described above. We want to show that O is
dominated by SL, therefore consider arbitrary
xi; yi 2 ½0; 1�; i 2 f1; . . . ; ng
OðSLðx1;y1Þ;...;SLðxn;ynÞÞ
¼Oðminðx1þy1;1Þ;...;minðxnþyn;1ÞÞ

¼
Xn

k¼1

ckOkðminðx1þy1;1Þ;...;minðxnþyn;1ÞÞ

�
Xn

k¼1

ck minOkðx1;...;xnÞþOkðy1;...;ynÞ;1Þ

¼min
Xn

k¼1

ck �ðOkðx1;...;xnÞþOkðy1;...;ynÞÞ;
Xn

k¼1

ck �1
 !

¼min
Xn

k¼1

ck �Okðx1;...;xnÞþ
Xn

k¼1

ck �Okðy1;...;ynÞÞ;1
 !

¼SLðOðx1;...;xnÞ;Oðy1;...;ynÞÞ
which completes the proof.

Corollary 1 Consider an n-ary OWA operator AðnÞ with
weights w1; . . . ;wn. Then AðnÞ dominates TL if and only if
w1 � w2 � . . . � wn.

Proof. It is equivalent for AðnÞ � TL to prove that
SL � Ad

ðnÞ. But the weights of the dual operator Ad
ðnÞ are

nothing else then the original weights in reversed order,
i.e.,

wd
1 ¼ wn; wd

2 ¼ wn�1; . . . ;wd
n ¼ w1 ;

and are therefore fulfilling wd
1 � wd

2 � . . . � wd
n:

3.4
Extension to the general case
If we consider an OWA operator

A :
[

n2N
½0; 1�n ! ½0; 1� ;

it is clear that A� TL if and only if AðnÞ � TL for all
n 2 N.

It has been proposed in [15] to derive the weights for an
OWA operator from some quantifier function
q : ½0; 1� ! ½0; 1�, which is a monotone real function such
that f0; 1g � Ran q. As a consequence, q can either be
non-decreasing with qð0Þ ¼ 0 and qð1Þ ¼ 1 or can be non-
increasing with qð0Þ ¼ 1 and qð1Þ ¼ 0.

Since we are looking for aggregation operators
dominating TL, the corresponding weights for each n-ary

operator must be non-increasing. Therefore we are looking
for additional properties for the quantifier function, such
that the non-increasingness of the weights is guaranteed. It
will turn out, that non-increasingness of the weights is
closely related to the concavity, resp. the convexity of the
involved quantifier.

Definition 8 A function f on some convex domain A is
convex, if the following inequality

f ðkxþ ð1� kÞyÞ � kf ðxÞ þ ð1� kÞf ðyÞ
holds for all k 2 ½0; 1� and x; y 2 A. The function is said to
be concave, if the inequality

f ðkxþ ð1� kÞyÞ � kf ðxÞ þ ð1� kÞf ðyÞ
holds for all k 2 ½0; 1� and x; y 2 A.

3.4.1
Non-decreasing quantifiers
First, we will restrict our considerations to non-decreasing
quantifiers. Some examples for such functions are shown
in Fig. 1. The weights derived from such a quantifier can
be computed by

win ¼ q
i

n

� �

� q
i� 1

n

� �

:

Lemma 2 If q : ½0; 1� ! ½0; 1� is a non-decreasing quanti-
fier for some OWA operator and the generated weights
fulfill w1;n � � � � � wn;n for all n 2 N and i 2 f1; . . . ; ng,
then q is continuous on 0; 1� �.

Proof. Suppose that q is not continuous on 0; 1� �, then
there exists some u 2 0; 1� � such that either
limx!u� qðxÞ < qðuÞ or limx!uþ qðxÞ > qðuÞ (see also
Fig. 1).

Supposing that limx!u� qðxÞ < qðuÞ, we can define

e :¼ qðuÞ � lim
x!u�

qðxÞ > 0:

For any n 2 N there is in 2 f1; . . . ; ng such that

in � 1

n
< u � in

n
:

Then we know that

q
in � 1

n

� �

� lim
x!u�

qðxÞ ¼ qðuÞ � e � q
in

n

� �

� e ;

concluding that

win;n ¼ q
in

n

� �

� q
in � 1

n

� �

� e :

Analogously, if limx!uþ qðxÞ > qðuÞ, we define

e :¼ lim
x!uþ

qðxÞ � qðuÞ > 0 ;

and for in 2 f1; . . . ; ng such that

in � 1

n
� u <

in

n

we can conclude
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q
in

n

� �

� lim
x!uþ

¼ eþ qðuÞ � eþ q
in � 1

n

� �

and

win;n ¼ q
in

n

� �

� q
in � 1

n

� �

� e :

Therefore we have shown that in both cases win;n � e.
Since the weights must be non-increasing we can conclude
that wj;n � e for all j 2 f1; . . . ; ing.

Further in both cases we have that in � n � u, such that
we can choose n 2 N with n � u � e > 1. Then the following
holds

q
in

n

� �

¼
Xin

j¼1

wj;n � in � e � n � u � e > 1 ;

contradictory to the non-decreasingness of q and qð1Þ ¼ 1.
Therefore q has to be continuous on 0; 1� �. (

Proposition 2 Consider some OWA operator with
non-decreasing quantifier q : ½0; 1� ! ½0; 1� and generated
weights w1;n; . . . ;wn;n for all n 2 N. Then these weights
fulfill w1;n � . . . � wn;n for all n 2 N if and only if q is
concave on 0; 1� �, i.e., 8x; y 2 ½0; 1�; 8k 2 ½0; 1�

qðkxþ ð1� kÞyÞ � kqðxÞ þ ð1� kÞqðyÞ :

Proof. First we will show that concavity of q implies the
non-increasingness of the weights, therefore choose some

n 2 N and arbitrary i 2 f2; . . . ; n� 1g. Next we define
x ¼ i�1

n and y ¼ iþ1
n , then it holds that

q
xþ y

2

� 	
¼ q

i

n

� �

� 1

2
q

i� 1

n

� �

þ q
iþ 1

n

� �� �

2q
i

n

� �

� q
i� 1

n

� �

þ q
iþ 1

n

� �

q
i

n

� �

� q
i� 1

n

� �

� q
iþ 1

n

� �

� q
i

n

� �

wi;n � wiþ1;n

showing the non-increasingness of the weights for
arbitrary n 2 N.

For i ¼ 1, denote by u ¼ qð0þÞ ¼ limx!0þ qðxÞ. Apply-
ing previous ideas and the concavity of q on 0; 1� �, we see
that qð1nÞ � u � qð2nÞ � qð1nÞ ¼ w2;n. However, then
w1;n � qð1nÞ � u � w2;n.

Secondly, we will prove that the Jensen inequality holds
for all x; y 2 Q \ 0; 1� �, i.e.,

q
xþ y

2

� 	
� qðxÞ þ qðyÞ

2
;

if we assume that the weights are non-increasing.
If x; y 2 Q \ 0; 1� �, then we can find some n 2 N and

some i; j;2 f1; . . . ; ng such that x ¼ i
n and y ¼ j

n. Without
loss of generality we suppose that x � y, i.e., i � j and
2i � iþ j � 2j.

Fig. 1. Some examples of non-decreasing quantifier functions
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We know that wr;2n � ws;2n whenever r � s, but also

8t 2 f0; . . . ; 2n� rg : wrþt;2n � wsþt;2n ;

moreover the inequality holds also for sums with the same
amount of summands all of them fulfilling the ordering
property mentioned before, i.e., for all t 2 f0; . . . ; 2n� rg
Xt

v¼0

wrþv;2n �
Xt

v¼0

wsþv;2n ;

whenever r � s.
Now choose r ¼ iþ jþ 1; s ¼ 2iþ 1 and t ¼ j� i� 1,

then we have r � s and therefore wr;2n � ws;2n, but also

Xj�i�1

v¼0

wiþjþ1þv;2n ¼
X2j

v¼iþjþ1

wv;2n

�
Xiþj

v¼2iþ1

wv;2n ¼
Xj�i�1

v¼0

w2iþ1þv;2n :

Note that

X2j

v¼iþjþ1

wv;2n ¼ q
2j

2n

� �

� q
2j� 1

2n

� �

þ q
2j� 1

2n

� �

�þ � � � � q
iþ j

2n

� �

¼ q
j

n

� �

� q
iþ j

2n

� �

and

Xiþj

v¼2iþ1

wv;2n ¼ q
iþ j

2n

� �

� q
iþ j� 1

2n

� �

þ q
iþ j� 1

2n

� �

�þ � � � � q
2i

2n

� �

¼ q
iþ j

2n

� �

� q
i

n

� �

;

therefore

q
j

n

� �

� q
iþ j

2n

� �

� q
iþ j

2n

� �

� q
i

n

� �

q
i

n

� �

þ q
j

n

� �

� 2q
iþ j

2n

� �
1

2
q

i

n

� �

þ q
j

n

� �� �

� q
iþ j

2n

� �
1

2
qðxÞ þ qðyÞð Þ

� q
xþ y

2

� 	
;

proving the Jensen inequality for all x; y 2 Q \ 0; 1� �.
We will now extend our results for arbitrary x; y 2 0; 1� �.

If x; y 2 0; 1� � nQ we can find sequences ðxnÞ and ðynÞ with
xn; yn 2 0; 1� � \Q for all n 2 N such that

lim
n!1

xn ¼ x and lim
n!1

yn ¼ y :

We know because of the non-increasingness of the weights
that q is continous on 0; 1� �, following that
limn!1 qðxnÞ ¼ qðxÞ and limn!1 qðynÞ ¼ qðyÞ, but also

lim
n!1

q
xn þ yn

2

� 	
¼ q

xþ y

2

� 	
:

Since for all n 2 N the inequality

1

2
ðqðxnÞ þ qðynÞÞ � q

xn þ yn

2

� 	

holds, the following property is fulfilled for arbitrary
x; y 2 0; 1� � due to the continuity of q on 0; 1� �
1

2
ðqðxÞ þ qðyÞÞ � q

xþ y

2

� 	
:

Following Aczél [1], the above inequality is equivalent to
the concavity of q on 0; 1� �.
Example 3 A typical example of an OWA operator O
dominating TL is generated by the quantifier function
qðxÞ ¼ 2x� x2. Observe that for any n 2 N the
corresponding weights are given by

win ¼
2ðn� iÞ þ 1

n2
; i 2 f1; . . . ; ng :

3.4.2
Non-increasing quantifiers
If a quantifier function is non-increasing then the weights
can be computed by

win ¼ q
i� 1

n

� �

� q
i

n

� �

:

For a few examples of non-increasing quantifiers see
Fig. 2.

The following properties can be shown analogously to
the case of non-decreasing quantifiers.

Corollary 2 If q : ½0; 1� ! ½0; 1� is a non-increasing quan-
tifier for some OWA operator and the generated weights
fulfill w1n � � � � � wnn for all n 2 N and i 2 f1; . . . ; ng,
then q is continuous on 0; 1� �.

Corollary 3 Consider some OWA operator with
non-increasing quantifier q : ½0; 1� ! ½0; 1�. Then the
generated weights fulfill w1n � � � � � wnn for all n 2 N if
and only if q is convex on 0; 1� �, i.e.,
8x; y 2 ½0; 1�; 8k 2 ½0; 1�
qðkxþ ð1� kÞyÞ � kqðxÞ þ ð1� kÞqðyÞ :

4
Transformation to continuous Archimedean t-norms

4.1
Transformation to nilpotent continuous Archimedean
t-norms
Any nilpotent t-norm T is isomorphic to the Łukasiewicz
t-norm TL (see [8]), i.e., T=ðTLÞu with u : ½0; 1� ! ½0; 1� a
strictly increasing bijection. According to Lemma 1, we
know that if TL is dominated by an OWA operator O then
an isomorphic t-norm T ¼ ðTLÞu is dominated by the
aggregation operator Ou. In fact Ou is nothing else than an
ordered weighted quasi-arithmetic mean (OWQA) with
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respect to the strictly increasing bijection u : ½0; 1� ! ½0; 1�
with corresponding weights w1n � w2n � � � � � wnn for all
n 2 N, i.e.,

Ouðx1; . . . ; xnÞ ¼ u�1ðOðuðx1Þ; . . . ;uðxnÞÞÞ

¼ u�1 1

n

Xn

i¼1

winuðxiÞ0
 !

¼ u�1 1

n

Xn

i¼1

winuðx0iÞ
 !

:

4.2
Transformation to strict continuous Archimedean t-norms
If we are looking for some aggregation operator
A :
S

n2N½0; 1�
n ! ½0; 1� which dominates the product

t-norm TP we can apply once again Lemma 1, i.e., A� TP

and therefore Au � ðTPÞu for some strictly decreasing
bijection u : 0;1½ � ! ½0; 1�. If we choose the bijection u
by

u : 0;1½ � ! ½0; 1�;uðxÞ ¼ expð�xÞ ;
we get that

TPuðx; yÞ ¼ u�1ðuðxÞ � uðyÞÞ
¼ � logðexpð�xÞ � expð�yÞÞ ¼ xþ y

ensuring that an aggregation operator A dominates TP if
and only if its isomorphic transformation Au is dominated
by the sum, which means in fact that the aggregation
operator Au is subadditive on 0;1½ �.

Applying the proof as in Proposition 1 we see that an
OWA operator B is subadditive if its weights are non-
decreasing, i.e., wB

1n � wB
2n � � � � � wB

nn for all n 2 N.
As a consequence A ¼ Bu�1 will be an ordered weighted
geometric mean with non-increasing weights, i.e.,
wA

1n ¼ wB
nn � wA

2n � � � � � wA
nn ¼ wB

1n, and it will dominate
TP. Since all strict t-norms are isomorphic to the product t-
norm TP, OWQA operators dominating a given strict t-norm
can once again be constructed by applying Lemma 1.

4.3
Considerations about additive generators
As already mentioned in Remark 1 all continuous Archi-
medean t-norms can be constructed by means of some
additive generator. In this part of our contribution we
investigate whether we can derive any information about

the weights of a dominating OWA operator depending on
the involved additive generator.

Therefore let us consider a continuous Archimedean
t-norm T with additive generator t and an OWA
operator O :

S
n2N½0; 1�

n ! ½0; 1� which is supposed to
dominate T, i.e., for all n 2 N and for all
xi; yi 2 ½0; 1�; i 2 f1; . . . ; ng
OðTðx1; y1Þ; . . . ;Tðxn; ynÞÞ
� TðOðx1; . . . ; xnÞ;Oðy1; . . . ; ynÞÞ

If we concentrate on the binary case and choose x1 ¼ 0,
y1 ¼ 1, x2 ¼ 1, y2 > 0 then we see that necessarily

Oð0; y2Þ ¼ w2y2 � Tðw2;w1y2 þ w2Þ
¼ t�1ðminðtð0Þ; tðw2Þ þ tðw1y2 þ w2ÞÞÞ ;

i.e., for all y2 2 0; 1½ ½
tðw2y2Þ � tðw2Þ þ tðw1y2 þ w2Þ :
Evidently if tð0Þ ¼ þ1 then we get that w2 ¼ 0 because of
the continuity of t. Similarly we can show in the general
case with n 2 N that wi ¼ 0 for i > 1. It follows that for
any strict t-norm T only one OWA dominates T, namely
the minimum.

In the case of nilpotent t-norms, equation (5) gives a
necessary condition for O� T.

For y2 ! 0þ we get that for normed additive
generators 1 � 2tðw2Þ, i.e., w2 � t�1ð12Þ holds. This fact
can be exploited in determination of OWA operators
dominating a specific t-norm. For example, using
similar methods as in Section 2, it can be conjectured
that an OWA operator with weights ðw1; . . . ;wnÞ
dominates

	 Yager’s t-norm TY
p [8] with parameter p 2 0;1� ½ and

normed additive generator tpðxÞ ¼ ð1� xÞp if and only if

wi �
1

21=p � 1
wiþ1; i ¼ 1; . . . ; n� 1 ;

	 Schweizer-Sklar’s t-norm TSS
k [8] with parameter

k 2 0;1� ½ and normed additive generator
tkðxÞ ¼ 1� xk if and only if

wi � ð21=k � 1Þwiþ1 :

Fig. 2. Some examples of non-increasing quantifier functions
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Observe that the arithmetic mean M� TY
p if and only if

p � 1 and M� TSS
k if and only if k � 1. Recall that

TL ¼ TY
1 ¼ TSS

1 .

5
Summary
Aggregation operators appropriate for fusion of TL-based
fuzzy equivalences relations, fuzzy preorders and similar
structures based on TL-transitivity have been discussed.
We have shown that in the class of OWA operators, those
operators with non-increasing weighting vectors dominate
TL and thus are appropriate for the above mentioned
fusion. Some other distinguished cases of continuous
Archimedean t-norms have also been discussed.
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