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ON THE UNIVALENCE OF A CERTAIN INTEGRAL
E. P. MERKES AND D. J. WRIGHT

Asstract. We consider the function g(z) = f§[f () /t]dt for f in
the classes of convex, starlike, and close-to-convex univalent func-
tions, and we determine precisely which values of « yield a close-
to-convex function g.

1. Introduction. Let S denote the class of functions f(2) =2 a.2?
+ - - -thatareanalytic and univalentin the unitdisk E= {z:|z| <1}.
Let C, S*, and K denote respectively the subclasses of .S whose mem-
bers are close-to-convex [2], starlike relative to the origin, and con-
vexin E. ForfES, set

M e = [ [f—(tg]dt

where « is real. Causey [1] has proved that if f is close-to-convex
relative to a function ¢E K, and 0=a =1, then g is close-to-convex
relative to a function in K. Nunokowa [4] recently showed that g&S
provided fES*, 0=5a=<3/2, or fEK, 0=a=<3. In this paper, the
following sharp theorems are proved.

THEOREM 1. If fES*, then the function g is in C provided —1/2
Sa=<3/2. If ad[—1/2, 3/2], there is a function fES* such that the
corresponding g is not in S.

THEOREM 2. If fEK, then g is in C provided —1=Za=3. For

ad [—1, 3], there is a function f EK such that the corresponding function
gisnotin S.

TuEOREM 3. If fEC, then g is in C provided —1/2=2a=1. If
ad [—1/2, 1], there is an f E C such that the corresponding g is not in C.

2. Proofs of Theorems 1 and 2. Kaplan [2] has shown that g&C
if and only if

g , £/
2) Re|l+re? ——=|d§ > —«
0 g (re®)
whenever 0=<7<1, 0=<6, <6, <2r. For f€S5*, we have Re{zf'/f}>0
for zEE. By (1) it follows that fora>0
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b2 g (re®) _ f'(re®)
f‘ l Re [1 + re® £ (re¥) ]do =a fo l Re [re" ) ]do
+ (1 =a)l:—6) > (1 —a)b:—6).

The last quantity is not less than —= provided 0 S« <3/2, and hence
g&C. Infact,for0=a =1,

2" (2) o' (2)
= a R —azl—-—az0,
3) Re [l + 7o) ] a Re I8 +1 =1 =

which implies that gEK CC. Finally, when —1/2=<a =0, a result of
Marx [3] gives Re[f(z)/z]*>0. Hence, Re g’'(z) =Re[f(z)/z]*>0,
and this implies gE€C [2].

For adE[—1/2, 3/2], set f(z) =2/(1—2)2%. Then g'(s) = (1 —2)~2%,
and thus g(2) is univalent in E if and only if £(z) = (1 —2)!~2* is uni-
valent in E. By a lemma due to Royster [5], the latter is the case if
and only if —1/2=a=3/2, a1/2. When a=1/2, g(z) = —In(1—2)
which is univalent in E. This completes the proof of Theorem 1.

The proof of Theorem 2 parallels that of the first theorem. If fEK,
we utilize the facts that Re{zf’/f} 21/2 and Re{z/f}>0 for s€E
[3]. Sharpness follows by consideration of f(z) =2/(1 —3).

3. Proof of Theorem 3. The following lemma generalizes a result
of Sakaguchi [6].

LEMMA. Let f(2) = D ey @n2", g(8) = D1 baz" be analytic in E and let
g(2) be univalent and starlike relative to the origin in E. If H denotes the
convex hull of the image of E under the mapping f'/g’, then f(2)/g(2)
€H for zE€E.

ProOF. Let ¢ (w) denote the inverse function of g(2) and let A(w)

=f@(w)). Then
e h(w) 1 "

=—=— K (Hdt
g(2) w wdy
_L LU0 L L)
wd, g'(ll/(f)) 0 g(l#(fe"))

where w =pe*®, and the result follows.
Suppose fEC. Then there exists a convex function ¢(z), ¢(0) =0, in
Esuch that Re{f’/¢’} >0 for s€E [2]. f 0Sa =1, set

®(z) = fo ’ [@]adt
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Then as in (3) ® is convex.

Now,
Re[:g- ) ] = Re [—fﬁ] >0
'(2) o(2)
by (1) and the lemma. This proves g& C in this case.
When —1/2=a<0, set

B(z) = it f [ g ]‘”"dt

where §=arg ¢’(0). As in the previous case, it follows that ®(z) is
convex in E. Now

! a 1+a
@) Re [—g ,(Z)] - Re{[—f (z)] [ew 2 ] } .
@' (3) (2) é(3)
Since Re{z/h(z) } >0 when k(z) EK [3], we conclude by the lemma
that (4) is positive and, hence, that g&C for —1/2 <a<0.

When a< —1/2, the sharpness is a consequence of Theorem 1.
Suppose a>1. The function

z(1 + uz)
(z) = — u=(cosy)e, 0 <y <m,
f 1+ 2)?
is close-to-convex with respect to ¢(2) = —ie*’z/(1+2) and maps E

onto the plane minus the slit
w=(1+icoty)/4+[1/2— 1+ icoty)/4], 0=t< ,

with f(ef™—2M) = (1417 cot v)/4. If O,=m—2v and 6,<0;<m, then as
r—1 and 6,—, we have

arg f(re®?) — arg f(re?) -y — w/2 — arc tan(cot v).

This in turn approaches —m as y—0%*. Thus, for > 1, we have

f "’ Re {1 + re¥ gg','((:::)) } do
=1 —-0a):—6) + ozf‘,z Re {re"’ f’(re“’)}do

o f(re®)
< afarg f(re?) — arg f(re®)}.

The last quantity can be made arbitrarily close to —am by choosing
7, 05, v near 1, , 0 respectively. By (2) it follows that gE C.
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4. A related problem. Let fE€S and set G(2)=[¢ [f(t)]dt
If fEK, then zf'(2) is in S*. Hence, by Theorem 1, GEC whenever
fEK if and only if —1/2=<a=3/2. The following result extends a
theorem due to Royster [5].

THEOREM 4. If fEC, then GEC provided —1/3=a=1. If
ad[—1/3, 1], there is a function fEC such that the corresponding
G&S. :

PRrOOF. The result in case 0=a =<1 was proved by Royster [5].
Suppose —1/3 =a<0. If f&C, there is a convex function ¢ in E such
that¢(0) =0 and Re {f’(3)/¢’(3) } >0 for zEE. Set

[#] "%

@(z) = g"iﬂ(l+2a)f
t

0

where B=arg ¢’(0). Then, as in (3), (2) is convex in E and

G'@) _ [f’(z) ]a[z#(z)]“ [e,.ﬁ L]“ =
¥  Le'(@d L ¢ o@xJ1
Since Re{z¢'/¢}>0, Re{e"ﬂz/zﬁ(z)} >0, it follows that
Re{G'(2)/¢'(z) } >0 for 2EE and, hence, that GEC.
In order to prove the result is sharp, let f(z) =2(1 —2/2)/(1—2)?,

which is close-to-convex relative to z/(1 —2). Then, G(2) = —log(1 —2)
if a=1/3 and

1
G(z) = 3 [ —z)+% —1]

1—3a
if «%1/3. By alemma of Royster [5], GESifadE[—1/3,1].
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