ON THE UNIVALENCE OF A CERTAIN INTEGRAL

E. P. MERKES AND D. I. WRIGHT

ABSTRACT. We consider the function $g(z) = \int_0^z [f(t)/t]^{\alpha} dt$ for f in the classes of convex, starlike, and close-to-convex univalent functions, and we determine precisely which values of α yield a closeto-convex function g.

1. Introduction. Let S denote the class of functions $f(z) = z + a_2 z^2$ $+ \cdots$ that are analytic and univalent in the unit disk $E = \{z : |z| < 1\}$. Let C, S^* , and K denote respectively the subclasses of S whose members are close-to-convex [2], starlike relative to the origin, and convex in E. For $f \in S$, set

(1)
$$g(z) = \int_{0}^{z} \left[\frac{f(t)}{t} \right]^{\alpha} dt,$$

where α is real. Causev [1] has proved that if f is close-to-convex relative to a function $\phi \in K$, and $0 \le \alpha \le 1$, then g is close-to-convex relative to a function in K. Nunokowa [4] recently showed that $g \in S$ provided $f \in S^*$, $0 \le \alpha \le 3/2$, or $f \in K$, $0 \le \alpha \le 3$. In this paper, the following sharp theorems are proved.

THEOREM 1. If $f \in S^*$, then the function g is in C provided -1/2 $\leq \alpha \leq 3/2$. If $\alpha \in [-1/2, 3/2]$, there is a function $f \in S^*$ such that the corresponding g is not in S.

THEOREM 2. If $f \in K$, then g is in C provided $-1 \le \alpha \le 3$. For $\alpha \in [-1, 3]$, there is a function $f \in K$ such that the corresponding function g is not in S.

THEOREM 3. If $f \in C$, then g is in C provided $-1/2 \le \alpha \le 1$. If $\alpha \in [-1/2, 1]$, there is an $f \in C$ such that the corresponding g is not in C.

2. Proofs of Theorems 1 and 2. Kaplan [2] has shown that $g \in C$ if and only if

(2)
$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \left[1 + re^{i\theta} \frac{g''(re^{i\theta})}{g'(re^{i\theta})} \right] d\theta > -\pi$$

whenever $0 \le r < 1$, $0 \le \theta_1 < \theta_2 \le 2\pi$. For $f \in S^*$, we have $\operatorname{Re} \{zf'/f\} > 0$ for $z \in E$. By (1) it follows that for $\alpha > 0$

Received by the editors March 9, 1970.

AMS 1969 subject classifications. Primary 3042.

Key words and phrases. Univalent function, starlike, convex, close-to-convex.

Copyright @ 1971, American Mathematical Society

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \left[1 + re^{i\theta} \frac{g''(re^{i\theta})}{g'(re^{i\theta})} \right] d\theta = \alpha \int_{\theta_1}^{\theta_2} \operatorname{Re} \left[re^{i\theta} \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right] d\theta + (1 - \alpha)(\theta_2 - \theta_1) > (1 - \alpha)(\theta_2 - \theta_1).$$

The last quantity is not less than $-\pi$ provided $0 \le \alpha \le 3/2$, and hence $g \in C$. In fact, for $0 \le \alpha \le 1$,

(3)
$$\operatorname{Re}\left[1+\frac{zg''(z)}{g'(z)}\right]=\alpha \operatorname{Re}\frac{zf'(z)}{f(z)}+1-\alpha\geq 1-\alpha\geq 0,$$

which implies that $g \in K \subset C$. Finally, when $-1/2 \le \alpha \le 0$, a result of Marx [3] gives $\text{Re}[f(z)/z]^{\alpha} > 0$. Hence, $\text{Re}[g'(z)] = \text{Re}[f(z)/z]^{\alpha} > 0$, and this implies $g \in C$ [2].

For $\alpha \in [-1/2, 3/2]$, set $f(z) = z/(1-z)^2$. Then $g'(z) = (1-z)^{-2\alpha}$, and thus g(z) is univalent in E if and only if $h(z) = (1-z)^{1-2\alpha}$ is univalent in E. By a lemma due to Royster [5], the latter is the case if and only if $-1/2 \le \alpha \le 3/2$, $\alpha \ne 1/2$. When $\alpha = 1/2$, $g(z) = -\ln(1-z)$ which is univalent in E. This completes the proof of Theorem 1.

The proof of Theorem 2 parallels that of the first theorem. If $f \in K$, we utilize the facts that $\text{Re}\{zf'/f\} \ge 1/2$ and $\text{Re}\{z/f\} > 0$ for $z \in E$ [3]. Sharpness follows by consideration of f(z) = z/(1-z).

3. Proof of Theorem 3. The following lemma generalizes a result of Sakaguchi [6].

LEMMA. Let $f(z) = \sum_{n=1}^{\infty} a_n z^n$, $g(z) = \sum_{n=1}^{\infty} b_n z^n$ be analytic in E and let g(z) be univalent and starlike relative to the origin in E. If H denotes the convex hull of the image of E under the mapping f'/g', then $f(z)/g(z) \in H$ for $z \in E$.

PROOF. Let $\psi(w)$ denote the inverse function of g(z) and let $h(w) = f(\psi(w))$. Then

$$\frac{f(z)}{g(z)} = \frac{h(w)}{w} = \frac{1}{w} \int_0^w h'(t)dt$$
$$= \frac{1}{w} \int_0^w \frac{f'(\psi(t))}{g'(\psi(t))} dt = \frac{1}{\rho} \int_0^\rho \frac{f'(\psi(re^{i\phi}))}{g'(\psi(re^{i\phi}))} dr,$$

where $w = \rho e^{i\phi}$, and the result follows.

Suppose $f \in C$. Then there exists a convex function $\phi(z)$, $\phi(0) = 0$, in E such that Re $\{f'/\phi'\} > 0$ for $z \in E$ [2]. If $0 \le \alpha \le 1$, set

$$\Phi(z) = \int_0^z \left[\frac{\phi(t)}{t} \right]^{\alpha} dt.$$

Then as in (3) Φ is convex.

Now.

$$\operatorname{Re}\left[\frac{g'(z)}{\Phi'(z)}\right] = \operatorname{Re}\left[\frac{f(z)}{\phi(z)}\right]^{\alpha} > 0$$

by (1) and the lemma. This proves $g \in C$ in this case.

When $-1/2 \le \alpha < 0$, set

$$\Phi(z) = e^{-i(1+\alpha)\beta} \int_0^z \left[\frac{\phi(t)}{t} \right]^{1+2\alpha} dt$$

where $\beta = \arg \phi'(0)$. As in the previous case, it follows that $\Phi(z)$ is convex in E. Now

(4)
$$\operatorname{Re}\left[\frac{g'(z)}{\Phi'(z)}\right] = \operatorname{Re}\left\{\left[\frac{f(z)}{\phi(z)}\right]^{\alpha} \left[e^{i\beta} \frac{z}{\phi(z)}\right]^{1+\alpha}\right\}.$$

Since $\operatorname{Re}\{z/h(z)\}>0$ when $h(z)\in K$ [3], we conclude by the lemma that (4) is positive and, hence, that $g\in C$ for $-1/2\leq \alpha<0$.

When $\alpha < -1/2$, the sharpness is a consequence of Theorem 1. Suppose $\alpha > 1$. The function

$$f(z) = \frac{z(1+\mu z)}{(1+z)^2}, \qquad \mu = (\cos \gamma)e^{i\gamma}, \quad 0 < \gamma < \pi,$$

is close-to-convex with respect to $\phi(z) = -ie^{i\gamma}z/(1+z)$ and maps E onto the plane minus the slit

$$w = (1 + i \cot \gamma)/4 + t[1/2 - (1 + i \cot \gamma)/4], \quad 0 \le t < \infty,$$

with $f(e^{i(\pi-2\gamma)}) = (1+i \cot \gamma)/4$. If $\theta_1 = \pi - 2\gamma$ and $\theta_1 < \theta_2 < \pi$, then as $r \to 1$ and $\theta_2 \to \pi$, we have

$$\arg f(re^{i\theta_2}) - \arg f(re^{i\theta_1}) \rightarrow \gamma - \pi/2 - \arctan(\cot \gamma).$$

This in turn approaches $-\pi$ as $\gamma \rightarrow 0^+$. Thus, for $\alpha > 1$, we have

$$\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} \left\{ 1 + re^{i\theta} \frac{g''(re^{i\theta})}{g'(re^{i\theta})} \right\} d\theta$$

$$= (1 - \alpha)(\theta_{2} - \theta_{1}) + \alpha \int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} \left\{ re^{i\theta} \frac{f'(re^{i\theta})}{f(re^{i\theta})} \right\} d\theta$$

$$< \alpha \left\{ \arg f(re^{i\theta_{2}}) - \arg f(re^{i\theta_{1}}) \right\}.$$

The last quantity can be made arbitrarily close to $-\alpha\pi$ by choosing r, θ_2 , γ near 1, π , 0 respectively. By (2) it follows that $g \notin C$.

4. A related problem. Let $f \in S$ and set $G(z) = \int_0^z [f'(t)]^{\alpha} dt$. If $f \in K$, then zf'(z) is in S^* . Hence, by Theorem 1, $G \in C$ whenever $f \in K$ if and only if $-1/2 \le \alpha \le 3/2$. The following result extends a theorem due to Royster [5].

THEOREM 4. If $f \in C$, then $G \in C$ provided $-1/3 \le \alpha \le 1$. If $\alpha \notin [-1/3, 1]$, there is a function $f \in C$ such that the corresponding $G \notin S$.

PROOF. The result in case $0 \le \alpha \le 1$ was proved by Royster [5]. Suppose $-1/3 \le \alpha < 0$. If $f \in C$, there is a convex function ϕ in E such that $\phi(0) = 0$ and Re $\{f'(z)/\phi'(z)\} > 0$ for $z \in E$. Set

$$\Phi(z) = e^{-i\beta(1+2\alpha)} \int_0^z \left[\frac{\phi(t)}{t} \right]^{1+3\alpha} dt,$$

where $\beta = \arg \phi'(0)$. Then, as in (3), $\Phi(z)$ is convex in E and

$$\frac{G'(z)}{\Phi'(z)} = \left[\frac{f'(z)}{\phi'(z)}\right]^{\alpha} \left[\frac{z\phi'(z)}{\phi(z)}\right]^{\alpha} \left[e^{i\beta}\frac{z}{\phi(z)}\right]^{1+2\alpha}.$$

Since $\operatorname{Re}\left\{z\phi'/\phi\right\} > 0$, $\operatorname{Re}\left\{e^{i\beta}z/\phi(z)\right\} > 0$, it follows that $\operatorname{Re}\left\{G'(z)/\phi'(z)\right\} > 0$ for $z \in E$ and, hence, that $G \in C$.

In order to prove the result is sharp, let $f(z) = z(1-z/2)/(1-z)^2$, which is close-to-convex relative to z/(1-z). Then, $G(z) = -\log(1-z)$ if $\alpha = 1/3$ and

$$G(z) = \frac{1}{1 - 3\alpha} \left[(1 - z)^{1 - 3\alpha} - 1 \right]$$

if $\alpha \neq 1/3$. By a lemma of Royster [5], $G \notin S$ if $\alpha \notin [-1/3, 1]$.

REFERENCES

- 1. W. M. Causey, The close-to-convexity and univalence of an integral, Math. Z. 99 (1967), 207-212. MR 35 #6807.
- 2. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185. MR 14, 966.
- 3. A. Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932), 40-67.
- 4. M. Nunokowa, On the univalence of a certain integral, Trans. Amer. Math. Soc. 146 (1969), 439-446.
- 5. W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385-387. MR 32 #1342.
- K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75. MR 21 #5734.

University of Cincinnati, Cincinnati, Ohio 45221