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A ‘pearl’ of Number Theory: the theorem of van der Waerden . . . Sukumar Das Adhikari 58

Some Topics in Prime Number Theory . . . T. N. Shorey 62

Refresher Course in Real Analysis 67

TATA Institute of Fundamental Research 68

Annual Thematic Programs 68

For Details About Gate-2009 68

For Details About PH.D. 68

24th Annual Conference of the Mathematical Society-Banaras Hindu University, Varanasi
(ACMS-BHU-2008) 68

National Conference on History of Mathematics 68

Indo-German Workshop-Cum-Lecture Series on Computational Models and Methods Driven

by Industrial Problems 68

Visit: www.ramanujanmathsociety.org

Typeset in LATEXat Krishtel eMaging Solutions Pvt. Ltd., Chennai - 600 017 Phone: 2434 55 16 and printed at
United Bind Graphics, Chennai - 600 004. Phone: 2498 7562, 2466 1807
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Related to Ramanujan, Part 1
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Abstract. This two-part article is intended to give an introduction to the Mathematica software, developed by Wolfram Research,

Inc. Rather than systematically going through the elements of Mathematica, we give several examples of applications. Most of

the examples are related to results given by Ramanujan, whilst a few at the end of Part 2 relate to the geography, demography, and

economy of India. We hope that the examples will provide an overview of the uses of Mathematica and an insight into the exciting

possibilities that it offers. The second part of the article will appear later.

Part 1

Introduction

1. Results Related to Integrals

2. Results Related to Sums

3. Nested Radicals and Continued Fractions

4. Powers Representations

5. The Landau-Ramanujan Constant

6. The Diophantine Equation—Fourth Powers

References

Part 2

Introduction

7. The Ramanujan Tau Function

8. The Ramanujan Tau L Function

9. Primes, Divisors, and Partitions

10. Highly Composite Numbers
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Introduction

G. H. Hardy [1] wrote about Srinivasa Ramanujan:

I remember going to see him once when he was lying ill in Putney. I had ridden in taxi-cab No. 1729, and remarked that the

number seemed to me rather a dull one, and that I hoped that it was not an unfavorable omen. “No,” he replied, “it is a very

interesting number; it is the smallest number expressible as a sum of two cubes in two different ways.”

In the words of Wolfram Research, Inc., the developer of the Mathematica software, “Mathematica has been built from its inception

to deliver one vision: the ultimate technical computing environment.” Mathematica is not only used for symbolic and numerical

computation and programming but also for modeling, simulation, visualization, development, documentation, and deployment.
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In this article, we introduce the reader to Mathematica through several examples. We do not give a systematic account of the

elements of Mathematica. For such an introduction, we refer the reader to some built-in documentation sources, one of which

can be found by choosing StartupPalette from the Help menu and then clicking the First Five Minutes with Mathematica link.

Another source is the Introduction item in the Virtual Book which can also be found from the Help menu. There are also books

available, for example [4].—This article is based on Mathematica 6.

The examples studied in this article relate to the mathematics of Srinivasa Ramanujan (1887–1920). Thus, the examples do

not give a balanced overview of Mathematica but rather are biased towards the mathematical topics that were of particular

interest to Ramanujan. The topics considered include integrals, sums, nested radicals, continued fractions, powers representations,

Diophantine equations, Ramanujan tau and tau L functions, primes, divisors, partitions, and composites. We also give examples

related to India.

Our main source of material on Ramanujan has been Wolfram MathWorld, the on-line mathematics resource at

http://mathworld.wolfram.com/ which has been created and developed by Eric Weisstein. For a CD-ROM about the life and

work of Srinivasa Ramanujan, see http://www/cdac.in/html/nmrc/mathgen.asp.

In the examples, we mainly use two-dimensional inputs, as they are very easy to read. As an example, we write
∫ 2

1

Log[x]k

x−1−1−1
dx

instead of

Integrate[Log[x]∧∧∧k/(x-1), {x,1,2}]

Inputs can easily be written in the two-dimensional form by using the BasicMathInput palette or by using special key combinations.

Remember that after writing a command, to get the result one has to press the SHIFT and RETURN keys at the same time.

1. Results Related to Integrals

� Soldner’s Constant

The logarithmic integral function li(x) is defined to be li(x) = ∫ x

0
1

ln t
dt , where the integral is calculated as the Cauchy principal

value. This function is shown below:

f = LogIntegral[x]

LogIntegral[x]

Plot
[[[
f, {{{x,0,3}}}, PlotRange→→→ {{{-5.1,2.3}}}]]]

(Note that the arrow → can be written as −> but Mathematica automatically replaces these two characters with →.)
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Soldner’s constant [17] is the root of the li(x) function. The root appears, from the diagram, to be about 1.5. Ramanujan

calculated for the root an approximation of 1.45136380. Let us calculate an approximation using Mathematica:

FindRoot
[[[
f, {{{x,1.5}}}]]]

{x→→→ 1.45137}
To obtain more decimal places, one can use a high-precision calculation:

sol = FindRoot[f, {{{x,1.5}}}, WorkingPrecision→→→ 100]

{ x →→→
1.45136923488338105028396848589202744949303228364801586309300455766242559575451

7835659531357711086829}
These are all correct digits. At the calculated zero, the function is, indeed, zero to a very high degree of accuracy:

f/. sol

0. × 10−100

� Nielsen–Ramanujan Constants

Consider the integral

a[k ] :=

∫ 2

1

Log[x]k

x - 1
dx

for various values of k (note that functions in Mathematica are defined with := and the arguments in the left-hand side have the

underscore ). The values of this integral are called Nielsen–Ramanujan constants [11]. Ramanujan was able to find the value of

the constant for k = 1 and 2.

Let us see what we can do using Mathematica. First we try to calculate the general value of the integral:

a[k]

∫ 2

1

Log[x]k

-1 + x
dx

We can see from the output that Mathematica was not able to calculate the general value. However, we can calculate the integral

for special values of k:

Table
[[[
a
[[[
k
]]]
, {{{k, 4}}}]]]

{
π2

12
,
Zeta[3]

4
,

π4

15
+ 1

4
π2 Log[2]2 − Log[2]4

4
− 6 PolyLog

[
4,

1

2

]
− 21

4
Log[2]Zeta[3],

2

3
π2Log[2]3 − 4 Log[2]5

5
− 21

2
Log[2]2Zeta[3]

−4
(
Log[64] PolyLog

[
4,

1

2

]
+ 6 PolyLog

[
5,

1

2

]
− 6 Zeta[5]

)}
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The traditional forms of these expressions are as follows (note that % refers to the previously computed result):

% // TraditionalForm

{
π2

12
,
ζ(3)

4
,
π4

15
+ 1

4
π2 log2(2) − log4(2)

4
− 6Li4

(
1

2

)
− 21

4
log(2)ζ(3),

2

3
π2 log3(2)

−4 log5(2)

5
− 21

2
log2(2)ζ(3) − 4

(
log(64)Li4

(
1

2

)
+ 6Li5

(
1

2

)
− 6ζ(5)

)}

The general value of the constant has been proved to be

aa[k ] := k! Zeta[k + 1]− k Log[2]k + 1

k + 1
− k!

k−1∑
i=0

PolyLog
[
k + 1 - i,12

]
Log[2]i

i!

We calculate the first few values:

Table
[[[
aa[k],{{{k, 4}]}]}] // Simplify

{
π2

12
,
Zeta[3]

4
,

π4

15
+ 1

4
π2 Log[2]2 − Log[2]4

4
− 6 PolyLog

[
4,

1

2

]
− 21

4
Log[2] Zeta[3],

2

3
π2Log[2]3 − 4 Log[2]5

5
− 24 Log[2] PolyLog

[
4,

1

2

]

−21

2
Log[2]2Zeta[3]+ 24

(
−PolyLog

[
5,

1

2

]
+ Zeta[5]

)}

These values agree with the values we calculated earlier.

� Ramanujan’s Master Theorem

Suppose that in some neighbourhood of x = 0,

F(x) =
∞∑

k=0

φ(k)
(−x)k

k!

for some function (say, analytic or integrable) φ(k). Then∫ ∞

0
xs−1F(x)dx = �(s)φ(−s).

This is Ramanujan’s Master Theorem [6]. As an example, let us choose φ(k) = ak , where a > 0. Then

F =
∞∞∞∑

k=0

ak (−x)k

k!

E−a x

From the theorem we then know that
∫∞

0 xs−1e−a xdx = �(s)a−s . We can check this integral:
∫ ∞∞∞

000
xs−1 E−a x dx

If
[
Re[a] > 0 && Re[s] > 0,a−s Gamma[s],

Integrate
[
E−a x x−1+s , {x,0,∞}, Assumptions → Re[a] ≤ 0 | | (Re[a] > 0 && Re[s] ≤ 0)

]]
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Thus, if Re(a) > 0 and Re(s) > 0, then the integral is �(s)a−s ; otherwise the integral does not converge. We can define the

required assumptions either as

Assuming

[
Re[a] > 0 && Re[s] > 0,

∫ ∞∞∞

0
xs−1 E−a x dx

]

a−s Gamma[s]

or as

Integrate
[
xs−1 E−a x, {{{x,0,∞}∞}∞}, Assumptions → Re[a] > 0 && Re[s] > 0

]

a−s Gamma[s]

� Ramanujan’s Interpolation Formula

Ramanujan’s Interpolation Formula [5] says that if

F(x) =
∞∑

k=0

φ(k)(−x)k,

then ∫ ∞

0
xs−1F(x)dx = π

sin(sπ)
φ(−s).

For example, let us choose φ(k) = ak where a > 0. Then

F =
∞∞∞∑

k=0

ak (-x)k

1

1+a x

From the theorem we then know that ∫ ∞

0
xs−1 1

1 + ax
dx = π

sin(sπ)
a−s .

We can check this integral:
∫ ∞∞∞

0

xs−1

1 + ax
dx

If

[
0 < Re[s] < 1 && s Arg[a] ≤ π && (Re[a] ≥ 0| |Im[a] �= 0),

a−sπ Csc[πs],Integrate

[
x−1+s

1+a x
,{x,0,∞},

Assumptions → !(0 < Re [s] < 1&& s Arg[a] ≤ π &&(Re[a] ≥ 0 | | Im[a] �= 0))

]]

The assumptions are satisfied, for example, when a > 0 and 0 < s < 1:

Assuming

[
a > 0 && 0 < s < 1,

∫ ∞

0

xs−1

1+a x
dx

]

a−s π Csc[π s]
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2. Results Related to Sums

� A Formula for π

Ramanujan presented several formulas for π. One of them [12] states that if

a[n ] :=
(-1)n(1123 + 21460n)(2n-1)!!(4n-1)!!

8822n+1 32n(n!)3

then
∑∞

n=0 an = 4
π

. Let us see what value Mathematica gives for this sum:

∞∞∞∑
n=0n=0n=0

a[n]

1

882

(
1123 HypergeometricPFQ

[{
1

4
,
1

2
,
3

4

}
, {1,1}, − 1

777924

]

−
5365 HypergeometricPFQ

[{
5
4,

3
2,

7
4

}
, {2,2},− 1

777924

]

2074464




We did not get the value of 4
π

. However, we can verify that the result is in fact 4
π

by calculating high-precision values for both the

value of the sum and for 4
π

and then calculating their difference:

N[%, 50]-N

[
4

πππ
,50

]

0.× 10−50

The difference is zero to a very high degree of accuracy, thus verifying that the expressions are the same.

To see how fast the sum converges to 4
π

, we calculate the value of the sum when the upper bound is 0, 1, 2, and 3, respectively:

Table

[
m∑

n=0

a[n], {m, 0, 3}
]

{
1123

882
,
9318469705

7318708992
,
29456502762912445

23135083170103296
,
6599497091136739430870515

5183232894725597694001152

}

We then calculate the differences:

N[%,50]-N

[
4

πππ
,50

]
// N

{3.08565× 10−6,-3.17288× 10−12,3.4753× 10−18,-3.95304× 10−24}

Even the first term is quite a good approximation, and as we add more terms, the series converges very rapidly.

� Ramanujan’s Hypergeometric Identity

Ramanujan’s Hypergeometric Identity [16] states that

∞∑
n=0

(−1)n
n∏

k=1

(
2k − 1

2k

)3

= 3F2

({
1

2
,

1

2
,

1

2

}
; {1, 1}; −1

)
= 2F1

(
1

4
,

1

4
; 1; −1

)2

= �
(

9
8

)2
�
(

5
4

)2
�
(

7
8

)2 .
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To check this formula, we first calculate the sum:

s =
∞∞∞∑

n=0

(-1)n
n∏

k=1

(
2k-1

2k

)3

π
√
2 Gamma

[
5
8

]2
Gamma

[
7
8

]2

This looks similar to the expression on the far right in the equation above. Actually, these two expressions are the same:

s ==
Gamma

[
9
8

]2

Gamma
[
5
4

]2
Gamma

[
7
8

]2 // FullSimplify

True

(Note here that equations are written with two equal signs == but Mathematica automatically replaces them with a special symbol.)

Let us now calculate the values of the hypergeometric function and the generalized hypergeometric function:

Hypergeometric2F1

[
1

4
,
1

4
,1,-1

]2

π
√
2 Gamma

[
5
8

]2
Gamma

[
7
8

]2

HypergeometricPFQ

[{
1

2
,
1

2
,
1

2

}
,{1,1}, -1

]

π
√
2Gamma

[
5
8

]2
Gamma

[
7
8

]2

These values are the same as the value of the sum. Thus, we have checked Ramanujan’s Hypergeometric Identity.

� The Ramanujan φφφ Function

The one-argument Ramanujan phi function [14] is

φ(a) = 1 + 2
∞∑

k=1

1

(ak)3 − ak
.

This function can be expressed in terms of the polygamma function:

1+2
∞∞∞∑

k=1

1

(ak)3 -ak
//Simplify

−
-a+2 EulerGamma + PolyGamma

[
0,1+1a

]
+ PolyGamma

[
0, -1 + a

a

]

a

Another representation is in terms of harmonic numbers:

phi[a ] = % // FullSimplify

−
-a+ HarmonicNumber

[
-1a

]
+ HarmonicNumber

[
1
a

]

a
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Some special values of the phi function are as follows:

Table[phi[a],{a, 2, 6}]
{
1

2

(
2- HarmonicNumber

[
-
1

2

]
- HarmonicNumber

[
1

2

])
,

1

3

(
3 - HarmonicNumber

[
-
1

3

]
- HarmonicNumber

[
1

3

])
,

1

4

(
4 - HarmonicNumber

[
-
1

4

]
- HarmonicNumber

[
1

4

])
,

1

5

(
5- HarmonicNumber

[
-
1

5

]
- HarmonicNumber

[
1

5

])
,

1

6

(
6 - HarmonicNumber

[
-
1

6

]
- HarmonicNumber

[
1

6

])}

% // FunctionExpand

{
Log[4],

1

3

(
2

(
- Log[2] +

Log[3]

2

)
+ 2 Log[6]

)
,

Log[8]

2
,
1

5

(
2 Log[10]+

1

2
Log

[
5

8
−

√
5

8

]
-
1

2

√
5 Log

[
5

8
-

√
5

8

]

+
1

2
Log

[
5

8
+

√
5

8

]
+
1

2

√
5Log

[
5

8
+

√
5

8

])
,
1

6
(4 Log[2]+3 Log[3])

}

% // FullSimplify

{
Log[4], Log[3],

Log[8]

2
,
ArcCoth

[√
5
]

√
5

+ Log[5]

2
,
Log[432]

6

}

The value of the phi function at a = 5 can also be expressed in terms of the golden ratio (note that with [[ ]] we can pick out parts

of expressions):

%[[4]]==

(
1

5

√
5Log[GoldenRatio]+

1

2
Log[5]

)
// FullSimplify

True

� The Ramanujan Theta Function

Let us define

F[a ,b ,s ]:=
s∑

n=−s

a
n(n+1)

2 b
n(n−1)

2

The Ramanujan theta function f (a, b) is then given by F(a, b, ∞) [15]. The one-argument form of this function is f (−q) =
f (−q, −q2), so let us define

F[-q ,s ]:= F[-q, -q2,s]
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The first few terms of f (−q) are then

F[-q,8]

1-q-q2+ q5+ q7-q12-q15+ q22+ q26-q35- q40+q51+ q57-q70-q77+q92+q100

It can be shown that f (−q) =∏∞
k=1(1 − qk). If we form the product of the first 100 terms, we get the same coefficients as above:

Take

[
100∏
k=1

(1 - qk) // Expand, 17

]

1-q-q2 +q5 +q7 -q12 -q15 +q22 +q26 -q35 -q40 +q51 +q57 -q70 -q77 +q92 +q100

� The Ramanujan ϕϕϕ Function

Ramanujan’s phi function ϕ(q) [15] is defined to be f (q, q), where the latter function is the Ramanujan theta function considered

above. Clearly, ϕ(q) =∑∞
n=−∞ qn2

. Further, ϕ(q) = ϑ3(0, q), where ϑ3(0, q) is the Jacobi theta function. Indeed,

∞∞∞∑
n=−∞n=−∞n=−∞

qn2

EllipticTheta [3,0,q]

% // TraditionalForm

ϑ3(0, q)

It can be shown that ϕ(e−π) = π1/4

�( 3
4 )

. We verify this property:

EllipticTheta [3,0,E−π] -
π

1
4

Gamma
[ 3

4

] // N

0.

� The Ramanujan Mock Theta Function

Let us define

f[q , s ] :=
s∑

n=0n=0n=0

qn2

∏n
k=1k=1k=1

(
1 + qk)2

Ramanujan’s mock theta function f (q) is then the infinite sum f (q, ∞) [9]. Here are the first few terms:

f[q,3]

1 +
q

(1+q)2 +
q4

(1+q)2(1+q2)2 +
q9

(1+q)2(1+q2)2(1+q3)2

We are interested in the series expansion of the mock theta function. It turns out that the first eleven terms of the series expansion

of f (q, 3) equal those of f (q):

Series
[
f[q,3],{q,0,10}]

1+q-2q2+3q3-3q4+3q5-5q6+7q7-6q8+6q9-10q10+O[q]11
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The coefficients are

CoefficientList[%,q]

{1,1,-2,3,-3,3,-5,7,-6,6,-10}
We calculate the coefficients of the series expansion of the mock theta function using an alternative method. Let us define

g[q , s ] := 1 + 4
s∑

k=1k=1k=1

(-1)kq
1
2 k(3k+1)

1+qk

Then g(q, ∞) is the generating function of Dragonette’s gamma sequence. Let us calculate the first 12 coefficients of this generating

function (it suffices to take s = 2):

gamma = CoefficientList[Series[g[q,2],{q,0,11}],q]

{1,0,-4,4,-4,4,-4,8,-4,0,-4,8}
The coefficient A(n) of the nth term of the series expansion of the mock theta function is then A(n) =∑n−1

r=0 P(r)γ (n− r), where

P(r) is the partition function (giving the number of ways of writing the integer r as a sum of positive integers). Thus, the first few

coefficients of the series expansion of the mock theta function are:

Table
[
Sum[PartitionsP[r]gamma[[n-r]],{r, 0,n-1}], {n, 11}]

{1,1,-2,3,-3,3,-5,7,-6,6,-10}
These coefficients are the same as the ones we obtained earlier.

3. Nested Radicals and Continued Fractions

� Some Examples of Nested Radicals

Nested radicals appear, for example, in some values of trigonometric functions:

Table
[
Sin

[ π

2n

]
, {n,5}

]
// FunctionExpand


1,

1√
2
,

√
2-

√
2

2
,
1

2

√
2-

√
2+

√
2,

1

2

√
2-

√
2+

√
2+

√
2




The golden ratio can be expressed as a nested radical:

φ =

√
1 +

√
1 +

√
1 + √

1 + . . ..

An approximation can be calculated as follows:√
Nest

[
1+

√
###&,1,10

]

√√√√√√√√√1 +

√√√√√√√√1 +

√√√√√√√1 +

√√√√√√
1 +

√√√√√
1 +

√√√√
1 +

√
1 +

√
1 +

√
1 +

√
2
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We can compare the decimal values of the golden ratio and the above approximation:

{GoldenRatio,%}// N

{1.61803,1.61803}

� A Nested Radical by Ramanujan

Ramanujan discovered the following nested radical [10]:

a + n + x = √
(

(a + n)2 + ax + x

√
(a + n)2 + a(n + x) + (n + x)

√
(a + n)2 + a(2n + x) + (2n + x)

√
. . .

)

The following code calculates the left-hand side and an m-term approximation to the right-hand side:

Rnr[x ,a ,n ,m ]:=

{x + n + a, Sqrt[Fold[a(x + #2 n)+(n+a)2+(x + #2 n)
√
#1&,0,Range[m-1,0,-1]]]}

For example, a 3-term approximation is as follows:

Rnr[x,a,n,3]

{
a+n+x,

√(
(a+n)2+ax+x

√
(a+n)2+a(n+x)+(n+x)

√
(a+n)2+a(2 n+x)

)}

Here are some special cases:

Rnr[x,0,1,6]



1+x,

√√√√
1+x

√
1+(1+x)

√
1+(2+x)

√
1+(3+x)

√
5+x




Rnr[2,0,1,8]



3,

√√√√√
1+2

√√√√
1+3

√
1+4

√
1+5

√
1+6

√
22




From the following decimal values we can see how the nested radicals converge to 3:

Table[Rnr[2,0,1,m][[2]] //N,{m,20}]

{1.,1.73205,2.23607,2.55983,2.75505,2.8671,

2.92917,2.96272,2.98055,2.98992,2.9948,2.99733,2.99863,

2.9993,2.99964,2.99982,2.99991,2.99995,2.99998,2.99999}
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� A Continued Fraction by Ramanujan

Consider the following constant:

(
cc=E2π/5

(
4
√

5
√
GoldenRatio - GoldenRatio

))
// TraditionalForm

E2π/5
(

4
√

5
√

φ − φ
)

cc // N

0.998136

A continued fraction approximation of this constant is

cf = ContinuedFraction[cc,6]

{0,1,535,2,38,10}

In other words, the constant is approximated by a value expressed in the form

0+
1

1+ 1
535+ 1

2+ 1
38+ 1

10

413401

414173

% // N

0.998136

Mathematica also has a command to construct a number directly from the list representing the continued fraction:

FromContinuedFraction[cf]

413401

414173

Ramanujan [13] presented a completely different continued fraction for the constant considered above:

1

1+
e−2π

1+
e−4π

1+
e−6π

1+ · · · = e2π/5
(

4
√

5
√

φ − φ
)

.

One way to construct a continued fraction with, say, the first four terms, is the following:

c=0; Table

[
c=

E−2nπ

1+c
, {n,4,0,-1}

]




E−8π,
E−6π

1 + E−8π
,

E−4π

1 + E−6π

1+e−8π

,
E−2π

1 + E−4π

1+ E−6π

1+E−8π

,
1

1 + E−2π

1+ E−4π

1+ E−6π

1+E−8π
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Here, the last term is the continued fraction. Another way is as follows:

FoldList

[
E−2 #2 π

1+ #1
&,0,Range[4,0,-1]

]



0,E−8π,

E−6π

1+E−8π
,

E−4π

1+ E−6π

1+E−8π

,
E−2π

1+ E−4π

1+ E−6π

1+E−8π

,
1

1+ E−2π

1+ E−4π

1+ E−6π

1+E−8π




Let us construct the first four continued fractions:

cf2=Table

[
Fold

[
E−2 #2 π

1+ #1
&,0,Range[n,0,-1]

]
, {n,4}

]




1

1+E−2π
,

1

1+ E−2π

1+E−4π

,
1

1+ E−2π

1+ E−4π

1+E−6π

,
1

1+ E−2π

1+ E−4π

1+ E−6π

1+E−8π




We can check how accurate these continued fractions are:

N[cf2 - cc, 50] // N

{-6.48813× 10−9,4.22533× 10−17,-5.13865× 10−28,1.16704× 10−41}

The convergence is fast.

� The Rogers–Ramanujan Continued Fraction

The Rogers–Ramanujan continued fraction [3] is defined by

R(q) = q1/5

1+
q

1+
q2

1+
q3

1+ · · ·

To calculate an approximation to this function, we define

R[q ,n ]:=q1/5 Fold

[
q#2

1+ #1
&,0, Range[n,0,-1]

]

For example,

R[q,4]

q1/5

1+ q
1+ q2

1+ q3

1+q4
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We take 50 terms and plot the function:

Plot
[
R[q,50], {q,0,6}]

It can be shown that rn = R(e−nπ ) is an algebraic number for n = 0, 1, 2, . . . . The values of r0 = R(1), r1 = R(e−π), and

r2 = R(e−2π) are as follows:

r0 = GoldenRatio-1;

r1=
1

8

(
3+

√
5
) (

4
√
5-1

)(√
10+2

√
5-
(
3+ 4

√
5
) (

4
√
5-1

))
;

r2=-GoldenRatio+

√
1

2

(
5+

√
5
)
;

(Note that we used the semicolon ; at the end of these commands. The semicolon suppresses the display of the result. Thus, the

results are calculated and stored in the memory but not shown on the screen.) Recall that the value of the golden ratio is

RootReduce[GoldenRatio]

1

2

(
1+

√
5
)

The decimal values of r0, r1, and r2 are

{r0, r1, r2}// N

{0.618034,0.511428,0.284079}

Below we check these three values:

{
R[1,50]-r0,R[E−π,50]- r1,R[E−2π ,50]- r2

}
// N

{0., 0., 2.22045× 10−16}

Construct the minimal polynomials for the three values:

mp0 = MinimalPolynomial[r0]

− 1 + #1+ #12&
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mp1= MinimalPolynomial[r1]

1-14 #1+ 22 #12 -22#13+ 30#14 + 22#15 +22#16+ 14#17+ #18&

mp2 = MinimalPolynomial[r2]

1-2 #1-6#12+ 2 #13 + #14&

The three values are certain zeros of these polynomials:

NSolve[mp0[x]==0,x][[2]]

{x → 0.618034}

NSolve[mp1[x]==0,x][[8]]

{x → 0.511428}
NSolve[mp2[x]==0,x][[3]]

{x → 0.284079}

For another example of an interesting continued fraction due to Ramanujan, see [7].

4. Powers Representations

� Finding Powers Representations

Let us investigate the mathematical question in the story about Ramanujan at the beginning of the Introduction. Are there numbers

n1 and n2 such that 1729 = n3
1 + n3

2? Mathematica has a special command to solve this kind of problem:

?PowersRepresentations

PowersRepresentations[n, k, p] gives the distinct representations of the integer n as a

sum of k non-negative pth integer powers.�
Thus, we write the following command:

pr = PowersRepresentations[1729,2,3]

{{1,12},{9,10}}

The result means that 1729 is equal to 13 +123 and 93 +103 and thus 1729 really does have two representations as sum of two cubes.

Later, we demonstrate that 1729 is the smallest integer expressible as the sum of two cubes in two different ways, as Ramanujan

asserted. However, first we verify in several ways that the above result is correct. In doing these verifications, we simultaneously

learn about some important features of Mathematica.

� Simple Verifications

It is straightforward to verify the powers representations:

{
13+123, 93+103}

{1729, 1729}
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To study Mathematica further, let us verify the result using an alternative method. We first calculate the third powers of the

numbers that constitute the powers representation:

pr3

{{1,1728},{729,1000}}

Note that Mathematica does the required calculation for each element of a list automatically, and so one does not need do the

calculation for each individual element of the list separately. The above result is a (2×2) matrix with rows (1, 1728) and (729, 1000).

With Total we can add the rows element-wise, that is, calculate the column sums:

Total
[
pr3]

{730, 2728}

Thus, by first transposing the matrix, we get the row sums:

Total
[(
pr3)ᵀ]

{1729,1729}

This again verifies the powers representation. The transposition symbol ᵀ can be written as ESC tr ESC (just press these four

keys in turn). We could also use Transpose:

Total
[
Transpose

[
pr3]]

{1729,1729}

� Yet Another Verification

Let us verify the powers representation in yet another way; this allows us to introduce so-called pure functions and the important

Map command. To verify the result, we need the following sums:

{Total[{1,1728}],Total[{729,1000}]}
{1729,1729}

A simple way to do this calculation is to use the Map command:

Map[Total [#][#][#]&&&, {{1,1728}, {729,1000}}]
{1729,1729}

Here, the functionTotal [#][#][#]&&& is applied to each element of the second argument ofMap; the elements are, in this example, the rows

{1, 1728} and {729, 1000} of the matrix in question. Thus, we get the sums of the rows. The function to be applied, Total [#][#][#]&&&,

is a pure function. The argument of such a function is written as ### and at the end of the function we have the ampersand, &&&.

We can also apply Map in a shorter way, with the aid of the symbol sequence /@/@/@:

Total [#][#][#]&&&/@/@/@{{1,1728}, {729,1000}}

{1729,1729}
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Actually, in a simple pure function such as the one above, we can even omit the argument ### and the ampersand &&&:

Total/@{{1,1728}, {729,1000}}

{1729,1729}

Thus, we get the following way to verify the powers representation:

Total/@/@/@pr3

{1729,1729}

� Finding Powers Representations for Several Numbers

Next, we will find the powers representations of the numbers 1725, . . . , 1730 as a sum of two cubes:

Table[PowersRepresentations[n,2,3],{n,1725,1730}]

{{}, {}, {}, {{0,12}}, {{1,12}, {9,10}}, {}}

This means that the numbers 1725, 1726, 1727 and 1730 do not have a representation as the sum of two cubes; note that { } is an

empty list. The number 1728 has the representation 1728 = 03 + 123. The number 1729 has the two representations that we have

already studied: 1729 = 13 + 123 and 1729 = 93 + 103.

To do the same calculation in another way, note that with Range we get lists of consecutive integers:

Range[10]

{1,2,3,4,5,6,7,8,9,10}

Range[1725,1730]

{1725,1726,1727,1728,1729,1730}

Thus, we can also use Map:

pr = PowersRepresentations[#,#,#,2,3]&/@/@/@Range[1725,1730]

{{}, {}, {}, {{0,12}}, {{1,12}, {9,10}}, {}}

Let us then select the results that have at least two elements in order to find the numbers that can be represented as a sum of two

cubes in at least two ways. Use Select:

Select[pr, Length [###] ≥≥≥ 2&&&]

{{{1,12}, {9,10}}}

The criterion used by Select is expressed as a pure function. In our example, we are interested in all of the elements whose

length was at least 2. Here are some examples of lengths:

{Length[{}],Length[{{0,12}}],Length[{{1,12}, {9,10}}]}

{0,1,2}
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� A Demanding Computation

Now, we will find which integers from 1 to 21000 can be represented as the sum of two cubes in at least two ways. First we

calculate the powers representations:

Timing[pr = PowersRepresentations[#,#,#,2,3]&&&/@/@/@Range[21000];]

{76.4082, Null}

Here, we have used Timing to show the number of seconds used in the calculation; the time was about one minute on my not

very fast computer. Then we find the representations having a length of at least two:

pr2 = Select[pr, Length[###] ≥≥≥ 2&&&]

{{{1,12}, {9,10}}, {{2,16}, {9,15}}, {{2,24}, {18,20}}, {{10,27}, {19,24}}}

We found four numbers that can be represented as the sum of two cubes in two ways. Next, let us calculate these numbers.

� Was Ramanujan Right 1

What are the four numbers mentioned above? A simple way to find them is the following:

{{13 +123, 93+103}, {23+163,93+153},{23+243,183+203},{103+273,193+243}}

{{1729,1729}, {4104,4104}, {13832,13832}, {20683,20683}}

Thus, 1729, 4104, 13832, and 20683 are the only integers between 1 and 21000 that can be represented as a sum of two cubes in

at least two ways. Now we see that the number 1729 is the smallest. Ramanujan was right!

� Was Ramanujan Right 2

Another way to find the four numbers is the following. First calculate the third powers:

pr23

{{{1,1728},{729,1000}},{{8,4096},{729,3375}},

{{8,13824},{5832,8000}},{{1000,19683},{6859,13824}}}

Then calculate, with Map, the transposes of these four matrices:

Transpose/@/@/@pr23

{{{1,729},{1728,1000}},{{8,729},{4096,3375}},

{{8,5832},{13824,8000}},{{1000,6859},{19683,13824}}}

Lastly, we calculate the column sums of these matrices, again using Map:

Total/@ %/@ %/@ %

{{1729,1729},{4104,4104},{13832,13832},{20683,20683}}
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The above steps can be collected together:

Total/@/@/@ (Transpose/@/@/@pr23)

{{1729,1729},{4104,4104},{13832,13832},{20683,20683}}

� Was Ramanujan Right 3

We can also map the Total function at the second level of pr23:

Map
[
Total, pr23,{2}]

{{1729,1729},{4104,4104},{13832,13832},{20683, 20683}}

The default level in Map is the first level, that is, the level where we have the elements of the list in question. At the first level of

pr23, we have the four matrices but at the second level we have the rows of the matrices. Mapping Total to the rows, we get the

row sums.

� Further Taxicab Numbers

The nth taxicab number Ta(n) is the smallest number representable in n ways as the sum of two positive cubes [18]. We have seen

that Ta(2) = 1729. The next three taxicab numbers are introduced below, where we only show that the numbers in question can

be written as the sum of two cubes in 3, 4, and 5 ways, respectively:

PowersRepresentations[87539319,2,3]

{{167,436},{228,423},{255,414}}

PowersRepresentations[6963472309248,2,3]

{{2421,19083},{5436,18948},{10200,18072},{13322,16630}}

PowersRepresentations[48988659276962496,2,3]

{{38787,365757},{107839,362753},{205292,342952},{221424,336588},{231518,331954}}

The sixth taxicab number is strongly believed to be the number shown in the next command. However, this remains to be proved.

PowersRepresentations[24153319581254312065344,2,3]

{{582162,28906206},{3064173,28894803},{8519281,28657487},
{16218068,27093208},{17492496,26590452},{18289922,26224366}}

5. The Landau–Ramanujan Constant

� Introduction

Let S(x) be the number of positive integers not exceeding x which can be expressed as the sum of two squares. For example:

1 = 02 + 12; 2 = 12 + 12; 3 cannot be expressed as the sum of two squares; 4 = 02 + 22; 5 = 12 + 22; 6 and 7 cannot be expressed
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as the sum of two squares; 8 = 22 + 22. Accordingly, S(1) = 1, S(2) = 2, S(3) = 2, S(4) = 3, S(5) = 4, S(6) = 4, S(7) = 4,

and S(8) = 5.

We can use Mathematica to find the number of ways in which integers can be written as the sum of two squares:

Table[Length[PowersRepresentations[n,2,2]],{n,25}]

{1,1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,1,0,0,0,0,2}

Taking the sign function gives 1 if such a representation exists and 0 if it does not exist:

% // Sign

{1,1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,1,0,0,0,0,1}

Then we can calculate the cumulative sums:

% // Accumulate

{1,2,2,3,4,4,4,5,6,7,7,7,8,8,8,9,10,11,11,12,12,12,12,12,13}

These are the first few values of the S(x) function at integer points.

� A limit

Landau has shown that

lim
x→∞

√
ln(x)

x
S(x) = K = 0.764223653 . . . .

Here, S(x) is the function introduced above. Ramanujan presented a slightly different result. The constant K is the Landau–

Ramanujan constant [8]. Let us see how fast the convergence is. Consider the first 10,000 integers:

(ss = Accumulate[

Sign[Table[Length[PowersRepresentations[n,2,2]],{n,10000}]]];) // Timing

{13.7525, Null}

We calculate the coefficients:

tt = Table

[√
Log[n]

n
,{n, 1., 10000}

]
;

Then we plot the values of
√

ln(x)

x
S(x) at x = 1, 2, . . . , 10, 000:

ListLinePlot[tt ss,

Epilog → Line
[{{0,0.764224}, {10000,0.764224}}],Text[K,{9800,0.778}]},

PlotRange → {0.7,1.07}]
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After 10,000 terms, we are still quite far away from the limit, and so the convergence is very slow.

� Another Limit

Landau showed that the constant K can also be represented as

K = 1√
2

∏
p prime≡3(mod4)

(
1 − 1

p2

)− 1
2

.

Let us try this formula, considering only the first 2000 primes:

pp = Select[Prime[Range[2000]], Mod [#, 4][#, 4][#, 4]== 3&];

This list has about one thousand elements:

pp // Length

1013

We then calculate an approximation to K:

1√
2
Product

[(
1.-

1

p2

)− 1
2

,{p, pp}
]
// InputForm

0.7642226322911497

This result is correct to five decimal places, and thus this second formula gives a rapidly converging sequence for K .

� Yet Another Limit

Yet another representation is given below:

K = 1√
2

∞∏
n=1

[(
1 − 1

22n

)
ζ (2n)

β (2n)

] 1
2n+1

.
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Here, ζ(x) is the Riemann zeta function and β(x) is the Dirichlet beta function:

βββ[x ] =
∞∞∞∑

n=0

(-1)n

(2n+1)x

4−x

(
Zeta

[
x,

1

4

]
− Zeta

[
x,

3

4

])

Only three terms of the product are required to give an accuracy of eight decimal places:

1.1.1.√
2

3∏
n=1

((
1− 1

22n

)
Zeta[2n]

βββ[2n]

) 1
2n+1

/ / InputForm

0.7642236524796345

6. The Diophantine Equation—Fourth Powers

� A Theorem by Ramanujan

Ramanujan derived several theorems that provide infinite families of solutions for sums of equal powers [2]. One of these theorems

is as follows. Let a1, . . . , a6 be

a[1] = 8s2 +40s t-24t2;

a[2] = 6s2 -44s t-18t2;

a[3] = 14s2 -4s t-42t2;

a[4] = 9s2 +27t2;

a[5] = 4s2+12t2;

a[6] = 15s2+45t2;

Then
∑5

i=1 ai
4 = a6

4. We can check that this result holds true:

5∑
i=1i=1i=1

a[i]4 == a[6]4/ / Expand

True

� Searching Solutions

To get examples of positive integers ai that satisfy
∑5

i=1 a4
i = a4

6 , we can calculate the values of a1, . . . , a6 defined above for

several integer values of s and t and then pick the values of s and t that give positive values for the ai .

First, we collect the ai expressions into one list:

aa = Array[a,6]

{8s2+40s t-24t2, 6s2-44s t-18 t2, 14s2-4s t-42 t2, 9s2+27t2, 4s2+12 t2,15 s2+45t2}
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As an example, we try the values s = 0, 1, 2 and t = 0, 1, 2:

(aas = Flatten[Table[{s,t,aa}, {s, 0, 2}, {t,0,2}],1])// Column

{0,0,{0,0,0,0,0,0}}

{0,1,{-24,-18,-42,27,12,45}}

{0,2,{-96,-72,-168,108,48,180}}

{1,0,{8,6,14,9,4,15}}

{1,1,{24,-56,-32,36,16,60}}

{1,2,{-8,-154,-162,117,52,195}}

{2,0,{32,24,56,36,16,60}}

{2,1,{88,-82,6,63,28,105}}

{2,2,{96,-224,-128,144,64,240}}

The ai are positive for (s, t) = (1, 0) and (s, t) = (2, 0). Thus, 84+64+144+94+44 = 154 and 324+244+564+364+164 = 604.

� Searching Positive Solutions

Note that we can test whether given numbers in a list are positive using the Positive command:

pos = Positive[{-24,-18,-42,27,12,45}]

{False, False, False, True, True, True}

We can then apply the logical AND operation using Apply. Write either

Apply [And, pos]

False

or

And@@@@@@pos

False

On the other hand, if all the elements are positive, then the result is True:

Positive[{8,6,14,9,4,15}]

{True, True, True, True, True, True}

And@@%@@%@@%

True
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So, we can continue as follows to select the lists having positive elements:

aas = Flatten[Table[aa,{s,0,2},{t,0,2}],1]

{{0,0,0,0,0,0},{-24,-18,-42,27,12,45},{-96,-72,-168,108,48,180},

{8,6,14,9,4,15},{24,-56,-32,36,16,60},{-8,-154,-162,117,52,195},

{32,24,56,36,16,60},{88,-82,6,63,28,105},{96,-224,-128,144,64,240}}

sol = Select[aas, And@@@@@@Positive[#]&][#]&][#]&]

{{8,6,14,9,4,15},{32,24,56,36,16,60}}
To show the representations in the form of

∑5
i=1 ai

4 = a6
4, we proceed as follows:

Map[Superscript[#, 4]&,[#, 4]&,[#, 4]&,sol,{2}]

{{84,64,144,94,44,154}, {324,244,564,364,164,604}}

Map[Total[Most [#]][#]][#]]==Last[#]&, %][#]&, %][#]&, %]

{44+64+84+94+144==154, 164+244+324+364+564==604}

� More Solutions

Next we do a somewhat more extensive search:

sol = Select[Flatten[Table[aa, {s,0,10}, {t,0,10}],1], And@@@@@@Positive [#]&][#]&][#]&];

Map[Total[Most[#][#][#]] == Last [#]&,[#]&,[#]&,Map[Superscript [#, 4]&,[#, 4]&,[#, 4]&,sol,{2}]] // Column

44+64+84+94+144==154

164+244+324+364+564==604

364+544+724+814+1264==1354

644+964+1284+1444+2244==2404

1004+1504+2004+2254+3504==3754

1444+2164+2884+3244+5044==5404

1964+2944+3924+4414+6864==7354

2564+3844+5124+5764+8964==9604

144+2684+6034+8084+8224==10054

3244+4864+6484+7294+11344==12154

724+3364+7564+9844+10564==12604

4004+6004+8004+9004+14004==15004

1424+4124+9274+11764+13184==15454
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1. Introduction

The theorem of van der Waerden, about which we are going

to discuss here, is one among the ‘pearls’ that Khinchin pre-

sented [17] in his ‘Three pearls of Number Theory’. As we

shall see in this small expository article, this result has led to

many interesting developments in Combinatorics and Number

Theory.

Let Z+, be the set of positive integers.

If one considers the partition Z+ = X ∪ Y , where

X = {n ∈ Z+ : n ∈ [2r , 2r+1) for some even integer r
}

and

Y = {n ∈ Z+ : n ∈ [2r , 2r+1) for some odd integer r
}
,

then it is clear that neither X nor Y will contain an infinite

arithmetic progression.

However, we have the following [29]:

Theorem. (van der Waerden). Given positive integers k

and r , there exists a positive integer W(k, r) such that for any

r-colouring of {1, 2, . . . W(k, r)}, there is a monochromatic

arithmetic progression (A.P.) of k terms.

Here an r-colouring of a set S is a map χ : S →
{c1, . . . , cr}. Writing S = χ−1(c1)∪χ−1(c2)∪ . . .∪χ−1(cr),

an r-colouring of a set S is nothing but a partition of S into

r parts where elements belonging to the same part receive the

same colour. A subset A of S is called monochromatic if A ⊂
χ−1(ci) for some i ∈ {1, 2, . . . , r}. Thus given an r-colouring

χ : Z+ → {c1, . . . , cr}, an A.P. a, a + b, . . . , a + kb will be

monochromatic if χ(a) = χ(a + b) = · · · = χ(a + kb).

The above theorem implies that for any finite partition Z+ =
X1∪X2∪· · ·∪Xr of Z+, at least one Xi will contain arithmetic

progression of any given length.

We should remark that van der Waerden’s Theorem is a

Ramsey-type theorem. Ramsey Theory can be characterized as

the subject dealing with results that talk about the phenomena

of ‘large’ substructures of certain structures retaining certain

regularities. Most often, we come across results saying that

if a large structure is divided into finitely many parts, at least

one of the parts will retain certain regularity properties of the

original structure.

To our readers we recommend van der Waerden’s personal

account [30] of finding its proof. It contains the formulation of

the problem with the valuable suggestions due to Emil Artin

and Otto Schreier and depicts how the sequence of basic ideas

occurred as an elaboration of the psychology of invention. It

should also be mentioned that the result was originally (see

[12] for instance) conjectured by Schur; since van der Waerden

came to know it through Baudet, he calls it Baudet’s conjecture.

At this point, it will be appropriate to mention one of the

early Ramsey-type results due to Schur [24]:

Theorem. (Schur). For any r-colouring of Z+, ∃ a

monochromatic subset {x, y, z} of Z+ such that x+y = z. (The

situation is described by saying that the equation x + y = z

has a monochromatic solution.)

One observes that a three term arithmetic progression x <

y < z is a solution of the equation x + z = 2y and

by van der Waerden’s theorem, for any finite colouring of

Z+, this equation has a monochromatic solution. We remark

that, in this direction, successful investigations of Rado ([20],

[21], [22]) provided necessary and sufficient conditions for

a system of homogeneous linear equations over Z to pos-

sess monochromatic solutions for finite colouring of Z+. One

may look into [12] for Rado’s theorem and some related

results.

The following result [2] (see also [18], [1]) generalizes van

der Waerden’s Theorem to higher dimensions.
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Theorem. (Grünwald). Let d, r ∈ Z+, the set of positive

integers. Then given any finite set S ⊂ (Z+)d , and an r-

colouring of (Z+)d , there exists a positive integer ‘a’ and a

point ‘v’ in (Z+)d such that the set aS + v is monochromatic.

Remark. We note that when d = 1, one derives van der Waer-

den’s Theorem by taking S = {1, . . . , k}, in the above theo-

rem.

In the next section we give an account of further develop-

ments along this theme. In the final section, we shall give a

proof of Grünwald’s Theorem.

2. Further Developments

First, we discuss the theorem of Hales and Jewett [15] which

reveals the combinatorial nature of van der Waerden’s theorem.

As has been said in [12]:

“the Hales-Jewett theorem strips van der Waerden’s theorem

of its unessential elements and reveals the heart of Ramsey

theory".

So, this ‘pearl of number theory’ belongs to the ancient

shore of Combinatorics! Indeed, van der Waerden’s theorem

was a prelude to a very important theme where interplay of

several areas of Mathematics would be seen. Development of

this theme, saw the results of Roth and Szemerédi and a num-

ber of different proofs of these results including the ergodic

proof of Szemeredi’s theorem due to Furstenberg. And, in the

recent years, we have the results of Gowers and the Green-Tao

Theorem.

We need some definitions before we can state Hales–Jewett

Theorem.

Write

Cn
t = {x1x2 . . . xn : xi ∈ {1, 2, . . . t}}.

In other words, Cn
t is the collection of words of length n

over the alphabet of t- symbols 1, 2, . . . t.

Then, by a combinatorial line in Cn
t we mean a set of t points

in Cn
t ordered as X1, X2, . . . , Xt where Xi = xi1xi2 . . . xin

such that for j belonging to a nonempty subset I of {1, . . . n}
we have xsj = s for 1 ≤ s ≤ t and x1j = · · · = xtj = cj

for some cj ∈ {1, . . . t} for j belonging to the complement

(possibly empty) of I in {1, . . . n}.
For example, for t = 3 and n = 5, the following is a com-

binatorial line in C5
3 :

11122

21222

31322

Theorem. (Hales-Jewett). Given any two positive integers

r and t , there exists a positive integer n = HJ(r, t) such

that if Cn
t is r-coloured then there exists a monochromatic

combinatorial line.

Observing the above example of the combinatorial line in

C5
3 , and identifying the collection of words in C5

3 with the set of

integers in their usual expression in decimal system, it is easy

to see that the above combinatorial line corresponds to a three

term arithmetic progression with common difference 10100.

Thus, if we consider an r-colouring of Cn
t (with suitably

large t), induced from a given r-colouring of the integers which

have base d representation with d ≥ t , Hales-Jewett Theo-

rem would imply the existence of a monochromatic arithmetic

progression of t terms.

It was felt that, in the case of van der Waerden’s theorem,

while considering finite partition of Z+, only the ‘size’ of the

part matters. Indeed, Erdős and Turan [6] conjectured that any

subset of Z+ with positive upper natural density contains arith-

metic progressions of arbitrary length, where, for A ∈ Z+, the

upper natural density, d̄(A) of A is defined by

d̄(A) = lim sup
N→∞

|A ∩ [N ]|
N

,

where N denotes the set {1, 2, . . . , N}.
We remark that in connection with Schur’s theorem, the

situation is quite different; though the set of even integers and

the set of odd integers have the same upper natural density 1/2

in Z+, there is no solution of x + y = z in the subset of odd

positive integers.

Towards the above mentioned conjecture of Erdős and

Turan, in 1953 Roth [23] proved that any subset A of the set

Z+ of positive integers with positive upper natural density will

always contain a three-term arithmetic progression. Later, Sze-

merédi first improved [25] Roth’s result to that of A possess-

ing a four-term arithmetic progression and finally in 1974, in a

famous paper [26] proved the general Erdős-Turan conjecture

by a sophisticated combinatorial argument. Later, Furstenberg

[7] gave an ergodic theoretic proof of Szemerédi’s theorem

which opened up the subject of Ergodic Ramsey Theory (see

[8], [3] and [19]). There have been other important proofs of

Szemerédi’s theorem since then.
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The area of Ergodic Ramsey Theory has many important

developments which include the density version of the Hales-

Jewett theorem by Furstenberg and Katznelson [9] and the

polynomial extension of Hales-Jewett theorem by Bergelson

and Leibman [4]. An expository account of the Bergelson-

Leibman result is available in [3].

Defining rk(n) to be the smallest integer such that when-

ever A ⊂ [n] satisfies |A| > rk(n), A contains an arithmetic

progression of k terms, Szemerédi’s result [26] implies that

rk(n) = o(n).

For the case k = 3, Roth’s proof [23] gave r3(n) =
O
(

n
log log n

)
; successive improvements in this direction were

obtained by Heath–Brown [16], Szemerédi [27] and Bourgain

[5], the result of Bourgain being

r3(n) = O

(
n ·
√

log log n

log n

)
.

Regarding estimates of rk(n) for k > 3, Gowers [10] has

made a remarkable breakthrough while establishing

r4(n) <
n

(log log n)d
for some absolute constant d > 0,

where the method seems to go through for rk(n) for k ≥ 4.

Apart from the original paper [10], we recommend the two

beautiful articles [11] and [5] for getting an idea as well as the

background of the proof.

The following conjecture of Erdős is still open.

Conjecture. (Erdős). If A ⊂ Z+ satisfies
∑
a∈A

1

a
= ∞,

then A contains arithmetic progressions of arbitrary length.

Recently, in the Green-Tao Theorem [14] we have seen a

major breakthrough. Green and Tao showed that the set of

primes contains arithmetic progressions of arbitrary length.

We refer to [28] and [13] for an accessible account of the

recent developments in the area of Additive Combinatorics; the

reader will find the extensive bibliography provided in those

volumes very helpful.

3. Proof of Grünwald’s Theorem

We work with fixed d. Now, the theorem will be proved if we

prove the following statement for all finite sets S ⊂ (Z+)d .

A(S): For each k ∈ Z+, ∃ n = n(k) such that for every k-

colouring of Bn
def= {(a1, . . . , ad) : ai ∈ Z+, 1 ≤ ai ≤ n}, Bn

contains a monochromatic subset of the form aS + v for some

a ∈ Z+ and v ∈ Bn.

We remark that the above statement not only proves the the-

orem, given the number of colours used and the given set S,

it tells us (as in our statement of van der Waerden’s theorem)

about the size of the finite cube where the monochromatic sub-

set of the form aS + v can be found. In fact, by the ‘Compact-

ness Principle’ (see [12], for instance), the above statement is

equivalent to the statement in the theorem; we shall not go into

this.

Since A(S) is obviously true if |S| = 1, it is enough to show

that A(S) ⇒ A(S ∪ {s}) for any s ∈ (Z+)d .

For the induction procedure, once A(S) is established for

a given S, we prove the the following intermediate statement

C(p) corresponding to a positive integer p. Once C(p) is

established for any positive integer p, it will lead to the state-

ment A(S ∪ {s}) and we shall be through.

C(p): Let S ⊂ (Z+)d be fixed for which A(S) is true. Then

for given k ∈ Z+ and s ∈ (Z+)d , ∃n = n(p, k, s) ∈ Z+

such that for each k-colouring of Bn, there are positive integers

a0, a1, . . . , ap and a point u ∈ (Z+)d such that the each of the

(p + 1) sets

Tq
def= u +

∑
0≤i<q

aiS +
( ∑

q≤i≤p

ai

)
s, 0 ≤ q ≤ p,

are monochromatic subsets of Bn.

C(0) holds trivially and we have to show that C(p) ⇒
C(p + 1).

Let n = n(p, k, s) be the integer specified for C(p). Now,

given a k-colouring of (Z+)d , we define the associated colour-

ing of (Z+)d such that two points u and v will have the same

colour in this new colouring iff the lattice points in the cubes

u + Bn and v + Bn are identically coloured in the original k-

colouring of (Z+)d .

Clearly, this associated colouring of (Z+)d is a k′- colouring

where k′ def= knd

.

Now, from A(S), it follows that ∃ an integer n′ = n′(k′) such

that for every k′-colouring of Bn′ , Bn′ contains a monochro-

matic subset of the form a′S + v′ for some a′(�= 0) ∈ Z+ and

v′ ∈ Bn′ .

Let N = n+n′ +1. Let a k-colouring of BN be given. In an

arbitrary way we extend this to a k-colouring of (Z+)d . Now,
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corresponding to the associated k′- colouring of (Z+)d , Bn′

contains a monochromatic subset of the form a′S + v′. This

means that the |S|-cubes Bn + a′t + v′, t ∈ S are coloured

identically in the original k- colouring. We observe that all

these cubes lie in BN . By C(p), for any t ∈ S, the cube Bn +
a′t + v′ contains monochromatic sets

Tq(t) = a′t + v′ + u +
∑

0≤i<q

aiS +
( ∑

q≤i≤p

ai

)
s, 0 ≤ q ≤ p.

Setting b0 = a′ and bi = ai−1, 1 ≤ i ≤ p + 1, we claim that

the sets

T ′
q = (v′ + u) +

∑
0≤i<q

biS +
( ∑

q≤i≤p+1

bi

)
s, 0 ≤ q ≤ p + 1

are monochromatic.

For q = 0,

T ′
0=(v′ + u) +

( ∑
0≤i≤p+1

bi

)
s

is a singleton and the claim is established.

For q ≥ 1, T ′
q = ∪t∈STq−1(t). Since Bn + a′t + v′ are

identically coloured for different t’s belonging to S, it follows

that the monochromatic sets Tq−1(t) are of the same colour and

hence T ′
q = ∪t∈STq−1(t) is a monochromatic subset of BN .

Thus C(p + 1) holds with n(p + 1, k, s) = N .

Now that C(p) is established for all integers p ≥ 0, the

particular case p = k gives us an integer n = n(k, k, s) such

that given any k-colouring of Bn, ∃(k+1) monochromatic sets

T0, . . . , Tk in Bn. By pigeonhole principal, two of these sets,

say Tr, Tq with r < q are of the same colour.

Writing

Tr = u +
∑

0≤i<r

aiS +
( ∑

r≤i<q

ai

)
s +

( ∑
q≤i<k+1

ai

)
s

and

Tq = u +
∑

0≤i<r

aiS +
∑

r≤i<q

aiS +
( ∑

q≤i<k+1

ai

)
s,

and choosing s0 ∈ S (S being nonempty), it follows that the set

T = u +
(∑

0≤i<r

ai

)
s0 +

( ∑
r≤i<q

ai

)
(S ∪ {s}) +

( ∑
q≤i<k+1

ai

)
s

is contained in BN and is monochromatic.

Setting a = ∑
r≤i<q ai and v = u + (∑

0≤i<r ai

)
s0 +(∑

q≤i<k+1 ai

)
s, T = a(S ∪ {s}) + v and this establishes

A(S ∪ {s}).
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Observe that � is an integer > 1. Therefore there exists

q ∈ P with q | �.

Then

q �= pi for 1 ≤ i ≤ n

since q � |� − 1. Thus

q > pn.

We started with primes p1, · · · , pn and we found a prime q >

pn. Therefore we have proved

Theorem 1. (Euclid) P is infinite.

Let us have a closer look at the proof of Euclid. For this,

we introduce the following important function for counting
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primes:

π(x) =
∑
p≤x

1,

the number of primes ≤ x. Thus

π(4) = 2, π(10) = 4.

Let n > 1. We have shown that

pn+1 ≤ q ≤ p1 · · · pn + 1.

Therefore

pn+1 ≤ pn
n.

Thus we have bounded (n+1)-th prime in terms of n-th prime.

Using this inequality, we show that

pn ≤ 222n

.

The proof is by induction on n. It is fine when n = 1 and

assume for n. Then

pn+1 ≤ pn
n ≤ (222n

)n ≤ 222n+1

.

Now

n = π(pn) ≤ π(222n

).

Let x ≥ x0 where x0 is sufficiently large absolute constant.

Then

222n ≤ x < 222n+1

for some n. Now

π(x) ≥ π(222n

) ≥ n ≥ log log log x.

Thus Euclid’s proof not only shows that primes are infinitely

many in numbers but it also gives a lower bound for π(x) and

the lower bound tends to infinity with x. We have a definite

result here:

Prime Number Theorem.

lim
x→∞

π(x)

(x/ log x)
= 1.

Thus for ε > 0,

π(x) ≥ (1 − ε)
x

log x
for x ≥ x1(ε) (1)

and

π(x) ≤ (1 + ε)
x

log x
for x ≥ x2(ε). (2)

Let x = pN . Then

lim
N→∞

π(pN)

(pN | log pN)
= 1

i.e.,

lim
N→∞

(
N

pN | log pN

) = 1.

i.e.,

lim
N→∞

(
pN

N log N
) = 1. (3)

Now we use Euclid’s proof to show

Theorem 1′. There are infinitely many primes of the form 4n+
3 with n > 0.

Proof. By contradiction. Suppose that q1, · · · , qm are all the

primes ≡ 3(mod 4). Consider

�′ = 4q1 · · · qm − 1.

There exists q ∈ P, q | �′ and q ≡ 3 (mod 4) since �′ ≡ 3

(mod 4). Then

q = qi with 1 ≤ i ≤ m

implying q | (�′ + 1) which is a contradiction.

The above proof can not be used to show that there are

infinitely many primes of the form 4n + 1 with n > 0. But we

have a general result.

Theorem 2. (Dirichlet) Let a > 0 and b > 0 be integers

with gcd (a, b) = 1. Then there are infinitely many primes of

the form an + b with n > 0.

Put

f (X) = aX + b.

Then

f (X) ∈ Q[X]

satisfying

(i) f (X) is irreducible over Q

(ii) the leading coefficient of f is positive
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(iii) Let p be a prime. Then

f (X) �≡ 0(mod p).

We have the following conjecture:

Conjecture. (Schinzel) Let f (X) ∈ Q[X] satisfying (i), (ii)

and (iii). Then there are infinitely many positive integers m

such that f (m) is prime.

It is easy to see that the assumptions (i), (ii) and (iii) for

f are necessary. Further Schinzel formulated a more general

conjecture valid for an arbitrary number of polynomials.

A powerful tool for studying primes is the Riemann Zeta

function. To begin with, it is defined in the half plane

ζ(s) =
∞∑

n=1

1

ns
, s = σ + it, σ > 1.

Its connection with primes is given by Euler Identity

ζ(s) =
∏
p

(
1 − 1

ps

)−1

, s = σ + it, σ > 1.

ζ(s) can be continued analytically in the whole plane except at

s = 1 where it has simple pole. We call the extended function

also ζ(s). Now

ζ(s) = 0 for s = −2 − 4, · · ·

But these are not all the zeros of ζ(s). We have

Theorem 3. (Hardy) There are infinitely many zeros of ζ(s)

on s = σ + it with σ = 1
2 .

Further we have the famous conjecture:

Riemann Hypothesis. Apart from s = −2, −4, · · · , all the

zeros of ζ(s) lie on the line s = σ + it with σ = 1
2 .

For n ≥ 1, let

h(N) = pN+1 − pn.

Consider the interval

(pN, 2pN ].

It is well-known that there is q ∈ P with q ∈ (pN, 2pN ]. Thus

q ≥ pN+1

and

h(N) = pN+1 − pN ≤ q − pN < pN.

This can be improved by using Prime Number Theorem as

follows: Let 0 < θ < 1. Then

h(N) < θN with N ≥ N1(θ).

For this we should consider the interval

(pN, pN + θpN ]

and show that it has a prime. This is equivalent to showing

π(pN + θpN) − π(pN) > 0.

We use the lower bound (1) for the first term and upper bound

(2) for the second term for deriving the above inequality. There

is a

Conjecture. (Cramer) There exists an absolute constant N2

such that

h(N) ≤ (log pN)2 for N ≥ N2.

This is a very difficult conjecture. Even Riemann Hypothesis

implies

h(N) ≤ P
1
2 +ε

N , N ≥ N3(ε).

It is known due to Baker, Harman and Pintz [1] that

h(N) ≤ p
1
2 + 1

40 +ε

N for N ≥ N4(ε).

Let

E(N) = pN+1 − pN

log pN

and we put

E∗
1 = lim supN→∞E(N),

E∗
2 = lim infN→∞E(N).

By Prime Number Theorem

E∗
1 ≥ 1 and E∗

2 ≤ 1.

For deriving this, we observe that

p2M − pM =
M∑
i=1

(pM+i − pM+i−1)

and use Prime Number Theorem for getting

(1 − ε)M log M ≤ p2M − pM

≤ (1 + ε)M log M for M ≥ M0(ε).
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Schönhage [9] showed that E∗
1 = ∞ and we refer to his paper

for more precise formulation of his result. There are primes of

the type 3,5 or 5,7 or 11,13 These are called twin primes. It has

been conjectured that there are infinitely many twin primes.

Then

E∗
2 = 0.

Erdős [4] was the first to show that

E∗
2 < 1

and Bombieri, Friedlander, Iwaniec [2] showed that

E∗
2 ≤ 6

7
.

For integers n > 0 and k ≥ 2, we write

�0 = �0(n, k) = n(n + 1) · · · (n + k − 1).

Further we denote by P(�0) and ω(�0) the greatest prime

factor and the number of distinct prime divisors of �0, respec-

tively. As already stated, there is a prime between X and 2X.

This is a particular case n = k + 1 of the following result dat-

ing back to 1892.

Theorem 4. (Sylvester [12]) We have

P(�0) > k if n > k.

Thus a product of k consecutive positive integers each

exceeding k is divisible by a prime greater than k. By applying

Theorem 4 with n = k + 1, we have

P(�0(k + 1, k)) > k.

Therefore there is an integer between k + 1 and 2k divisible

by a prime exceeding k and this integer has to be a prime. The

assumption n > k in Theorem 4 is necessary since

P(�0(1, k)) = P(1.2 · · · k) ≤ k.

We have several more such instances. Let n > 1 and k = n!+1.

We write

�0(n, k) = n(n + 1) · · · (n! + 1)(n! + 2) · · · (n! + n)

and we observe that

P(�0) ≤ n! + 1 = k,

since n! + 2, · · · , n! + n are all composites. Thus there are

infinitely many pairs (n, k) for which

P(�(n, k)) ≤ k.

This is special about consecutive integers. Let d > 1, gcd

(n, d) = 1 and k ≥ 3. Then Shorey and Tijdeman [11] showed

that

P(n(n + d) · · · (n + (k − 1)d)) > k

unless (n, d, k) = (2, 7, 3). We observe that P(2.9.16) = 3

and therefore it is necessary to exclude the tuple (2,7,3). Also

the assumption k ≥ 3 is necessary since

P(1(1 + 2r − 1)) = P(1.2r ) = 2 for r = 1, 2, . . . .

We know that

k! | �0(n, k).

Thus

ω(�0(n, k)) ≥ π(k).

Theorem 4 can be re-formulated as

ω(�0) > π(k) if n > k. (4)

Let us see how far we can go. We observe that

�0(k + 1, k) = (k + 1) · · · (2k)

and

ω(�0(k + 1, k)) = π(k) + π(2k) − π(k) = π(2k)

In fact, we can say a little more. We consider

�0(k + 2, k) = (k + 1)(k + 2) · · · (2k)
(2k + 1)

(k + 1)

and

ω(�0(k + 2, k)) = π(k) + π(2k) − π(k) − 1 = π(2k) − 1

if k + 1 is prime and 2k + 1 is composite. There are infinitely

many such k. We have already seen that there are infinitely

many primes p ≡ 2(mod 3). Let k = p − 1. Then k + 1 = p

is prime and

2k + 1 = 2(k + 1) − 1 ≡ 0(mod 3)
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implying the assertion. There are examples when

ω(�0(n, k)) < π(2k) − 1. For example

ω(�0(74, 57)) = π(2k) − 2, ω(�0(3936, 3879))

= π(2k) − 3,

ω(�0(1304, 1239)) = π(2k) − 4, ω(�0(3932, 3880))

= π(2k) − 5

but we do not know whether there are infinitely many such

pairs. But this is the case under Schinzel’s Conjecture as

observed by Balasubramanian, Laishram, Thangadurai and

myself. Sylvester’s theorem can not be sharpened to

ω(�0(n, k)) ≥ π(2k) for n > k.

On the other hand, Laishram and Shorey [6] showed that

ω(�0(n, k)) ≥ min(π(k) +
[

3

4
π(k)

]

− 1, π(2k) − 1) for n > k.

If the interval [n, n+k) is contained in an interval (pN, pN+1),

then the estimate (4) may be sharpened considerably. Infact

Grimm [5] conjectured that

ω(�0) ≥ k

if n, n+ 1, · · · , n+ k − 1 are all composites. This conjecture,

according to Erdős, implies that there exist absolute constants

α > 0 and N5 such that

pN+1 − pN < p
1
2 −α

N for N ≥ N5.

The conjecture has been confirmed by Ramachandra, Shorey

and Tijdeman [8] when log k ≤ C1(log n)1/2 for n ≥ N6

where C1 and N6 are absolute constants.

Now we point out a relation between Theorem 4 and Dio-

phantine equations. Let k be fixed and P(�0) ≤ k. Then the

terms of �0 are composed of fixed primes. For any three dis-

tinct terms n + i1, n + i2 and n + i3 of �0 with i1 < i2 < i3,

we have Siegel’s identity

(i3 − i2)(n + i1) + (i2 − i1)(n + i3) = (i3 − i1)(n + i2).

Therefore we have an equation of the form

X1 + X2 = X3

where X1, X2 and X3 are composed of primes from a given

set. This leads us to a fundamental and central problem in

Diophantine equations:

a b c Conjecture. Let a, b and c be positive integers such

that gcd (a, b, c) = 1 and

a + b = c.

Let ε > 0. Then there exists K = K(ε) such that

c ≤ K
(∏

p
)1+ε

where the product is taken over all prime divisors of abc.

This conjecture has several consequences. For example, it

can be applied to Fermat equation (5) to obtain the following

result.

Theorem 5. Let p ≥ 3 be prime and x, y, z be positive inte-

gers such that gcd (x, y, z) = 1 and

xp + yp = zp. (5)

Then

max(p, x, y, z) ≤ C2

where C2 is an absolute constant.

Now we show that a b c conjecture implies Theorem 5.

Proof. Assume (5). Then p > 3 by Euler. We apply a b c

conjecture with

a = xp, b = yp, c = zp, ε = 1

6
.

Then gcd (a, b, c) = 1 and a + b = c. We obtain

zp ≤ K

(∏
p|xyz

p

)7/6

≤ K(xyz)7/6 ≤ Kz7/2

where K is an absolute constant. Thus 2p− 7
2 ≤ zp− 7

2 ≤ K .

Hence p and z are bounded since p > 3. Consequently x and

y are bounded.

Wiles [13] has proved that Fermat’s equation does not hold.

Now we state a result proved recently coming out of the ideas

of Wiles and others on Fermat’s equation and the theory of

linear forms in logarithms. We define the Fibonacci sequence

F0 = 0, F1 = 1
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and

Fn = Fn−1 + Fn−2 for n ≥ 2.

We write the members of the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · · .

Thus F0 = 0, F1 = 1, F2 = 1, F6 = 8, F12 = 144 are powers.

It has been proved recently by Bugeaud, Mignotte and Siksek

[3] that these are the only powers in the Fibonacci sequence.

Fibonacci sequences are binary recursive sequences. Let

u0, u1 ∈ Q and r, s ∈ Q with s �= 0, r2 + 4s �= 0. Then we

consider the binary recursive sequence {um} given by

um = rum−1 + sum−2 for m ≥ 2.

Let α and β be roots of X2 −rX−s. Then αβ �= 0, α �= β and

α + β = r, αβ = −s. Now we show by induction on m that

um = aαm + bβm for m ≥ 0

where

a = u0β − u1

β − α
, b = u1 − u0α

β − α
.

Then {um} is called non-degenerate if ab �= 0 and α/β is not a

root of unity. It has been proved by Pethő [7] and Shorey and

Stewart [10], independently, that there are only finitely many

powers in a non-degenerate binary recursive sequence and the

proof depends on the theory of linear forms in logarithms.
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Refresher Course in Real Analysis

Ramanujan Institute for Advanced Study in Mathematics

University of Madras

Sponsored by UGC-Academic Staff College

2008–2009

There will be a refresher course (batch No. XXIV), for college

teachers, in Real Analysis, from 05-11-2008 to 25-11-2008,

at Ramanujan Institute for Advanced Study in Mathematics,

University of Madras, Chepauk, Chennai 600 005. In this

course, Real Analysis will be developed from the basics. Appli-

cations of Real Analysis in other areas will be discussed after

developing the basic theory. Experts in Analysis from leading

institutions will deliver lectures for this refresher course.

For Applications and Other Information, Please Contact:

Dr. K. A. Chandrasekar (Director),
UGC – Academic Staff College
University of Madras, Chennai 600 005
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Phone: 25368778 Ext: 269, 343
Email: ugcascuomyahoo.com

If You Have Further Questions, You May Also Contact:

Prof. E. Thandapani (Coordinator)

RIASM, University of Madras, Chennai 600 005
Phone: 25360357 Ext: 25
Email: ethandapaniyahoo.co.in

TATA Institute of Fundamental Research

TIFR Centre For Applicable Mathematics
Advanced Instructional School On Partial

Diffrential Equations (AIS-PDE)

December 15, 2008–January 6, 2009

For Further Details Visit/Contact:

http://math.tifrbng.res.in/aispde

Annual Thematic Programs

at

Indian Institute of Science Bangalore
August 2008–July 2009

For Further Details Visit/Contact:

http://math.iisc.ernet.in/ imi/atp-0809.htm

Email: imi@math.iisc.ernet.in

For Details About Gate-2009

Visit: http://gate.iitm.ac.in/

For Details About PH.D.

Programme at IIT Madras

Visit: http://www.iitm.ac.in

24th Annual Conference of the
Mathematical Society-Banaras Hindu

University, Varanasi (ACMS-BHU-2008)

December 30–31, 2008

For Details Contact:

1. Prof. S. D. Singh by Mobile: 09335665529
2. Dr. B. S. Bhadauria by Mobile: 09453641182

The Mathematical Society-BHU, Department of Math-

ematics, Faculty of Science, Banaras Hindu University,

Varanasi 221 005, U.P.

Emails: acmsbhu2008@gmail.com, acmsbhu@yahoo.in

National Conference on History of
Mathematics

Its Role in Science and Society, Imphal

December 19–21, 2008

For Further Details Contact:

1. B. S. Yadav, TU-67, Vishakha Enclave, Pitampura,

Delhi 110 088.

Tel: 011-27343878, Mob: +919891002425,
Email: bsyadav@indianshm.com

2. M. Ranjit Singh, Dept. of Mathematics, Manipur

University, Canchipur 795 003, Imphal, Manipur.
Email: mranjitmu@rediffmail.com

Indo-German Workshop-Cum-Lecture
Series on Computational Models and

Methods Driven by Industrial Problems

November 2008–February 2009

Interested Participants May Contact/Visit:

Prof. S. Sundar, Department of Mathematics, IIT Madras,
Chennai 600 036, India

Email:slnt@iitm.ac.in; http:/cmmdip0809.iitm.ac.in/

The readers may download the Mathematics Newsletter from the RMS website at
www.ramanujanmathsociety.org
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