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Abstract. An element x of a finite group G is said to be p-regular if its order is not divisible by p. Brauer gave several proofs of the

fact that the number of isomorphism classes of irreducible representations of G over an algebraically closed field of characteristic

p is the same as the number of conjugacy classes in G that consist of p-regular elements. One such proof is presented here.

Let G be a finite group, and K be any field. Then the group

algebra K[G] is a K-vector space with basis consisting of the

elements of G:

K[G] =
{∑

g∈G

agg | ag ∈ K

}
.

Multiplication is defined by linearly extending the product on

basis elements

g · h = gh for g, h ∈ G

to K[G]. The group algebra was introduced by the German

mathematician Ferdinand Georg Frobenius in 1897 to study

the representations of finite groups.

Exercise 1. Let n > 1 be an integer. Let Z/nZ denote the

cyclic group with n elements. Show that K[Z/nZ] is isomor-

phic to K[t]/(tn − 1).

In this article, the term K[G]-module will be used to refer

to a vector space M over K , together with an algebra homo-

morphism R: K[G] → EndK(M), where EndK(M) denotes

the algebra of K-linear maps from M to itself. In practice, for

any a ∈ K[G] and m ∈ M , the element R(a)(m) of M will be

denoted simply by am. For any vector space M , let GL(M)

denote the group of invertible K-linear maps from M to itself.

Recall that a representation of G over the field K consists of a

vector space M over K and a function r: G → GL(M) such

that r(gh) = r(g)r(h) for all g, h ∈ G. Such a vector space

becomes a K[G]-module under the action(∑
g∈G

agg

)
m =

∑
g∈G

agr(g)m for all m ∈ V.

The representation r can be recovered from the K[G]-module

structure by restricting to the basis elements of K[G] coming

from G. In fact, the study of K[G]-modules is equivalent to the

study of representations of G over K (in a category-theoretic

sense, which will not be formulated here). This article takes

the module-theoretic viewpoint.

Two modules (or representations) are said to be isomorphic

if there is an isomorphism between their underlying vector

spaces which preserves the actions of the algebra (or group).

A module defined by R and M as above is called simple if M

is non-trivial and does not admit a non-trivial proper subspace

that is invariant under R(a) for every a ∈ K[G]. Similarly,

a representation defined by r and M as above is called irre-

ducible if M is non-trivial and does not admit a non-trivial

proper subspace that is invariant under r(g) for every g ∈ G.

Simple K[G]-modules correspond to irreducible representa-

tions of G over K . Irreducible representations may be consid-

ered to be the building blocks of all representations, a point of

view which is partially justified by the Jordan–Hölder theorem.

Frobenius showed that the number of isomorphism classes

of irreducible representations of a finite group G over an alge-

braically closed field K of characteristic zero (such as the

field of complex numbers) is equal to the number of conju-

gacy classes in G. In many modern textbooks this is deduced

from the fact that the characters of irreducible representations

form a basis of the space of class functions (see e.g., [Art94]).

This result fails when the characteristic of K divides the order

of the group G, as was pointed out by the American mathe-

matician Leonard Eugene Dickson in the first decade of the
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twentieth century. The determination of the number of iso-

morphism classes of irreducible representations in this case

remained open for a long time and was finally solved by another

German mathematician, Richard Brauer, in 1935.

Even though Brauer was already a leading representation

theorist, he lost his position at the University of Königsberg

in Germany in 1933, after Hitler assumed dictatorial pow-

ers and started implementing his anti-semitic policies. Brauer

moved to the United States, and then to Canada, and went on

to become the most influential figure in modern representa-

tion theory. The result of Brauer that is discussed here is only

the first of many discoveries that he made on representations

in positive characteristic by analysing the ring-theoretic prop-

erties of group algebras. The most striking of these is known

as the theory of blocks, which has been applied with great

success to the study of the structure and the classification of

finite simple groups. The reader who is interested in Brauer’s

life and work is referred to Curtis’s remarkable book [Cur99],

from where the proof of Brauer’s theorem given here (origi-

nally due to Brauer himself) has been adapted. The standard

reference for results on non-semisimple algebras and modu-

lar representations is [CR62]. A picture of developments in

the general theory of modular representations up to 1980 is

found in [Fei82]. Many newer developments can be found

in [Ben91a] and [Ben91b].

Brauer’s theorem is easy to state: an element of G is called

p-regular if its order is not divisible by p. A p-regular con-

jugacy class is a conjugacy class consisting of p-regular ele-

ments.

Theorem. (Brauer). When K is algebraically closed of char-

acteristic p > 0, the number of isomorphism classes of simple

K[G]-modules is equal to the number of p-regular conjugacy

classes in G.

This theorem follows from Propositions 8 and 10 below.

The reader who is already familiar with the basic theory of

associative algebras may proceed directly to these statements

and their proofs.

In what follows, K will always be an algebraically closed

field and all K-algebras and all their modules will be assumed

to be finite dimensional vector spaces over K . Every algebra A

will be assumed to have a multiplicative unit 1 ∈ A. For every

module M it will be assumed that 1 acts on M as the identity

(such a module is called unital). For two A-modules M and

N , HomA(M, N) will denote the A-module homomorphisms

from M to N , namely those linear maps φ : M → N for

which φ(am) = aφ(m) for all a ∈ A and m ∈ M . EndA(M)

will denote the space HomA(M, M) of endomorphisms of M .

A submodule of M will be a subspace M ′ of M such that

am′ ∈ M ′ for every a ∈ A and m′ ∈ M ′. Note that the image

and the kernel of an A-module homomorphism is a submodule.

Definition. M is said to be a simple A-module if it is non-

trivial and it contains no non-trivial proper submodules.

Theorem. (Schur’s lemma).

(1) If M is a simple A-module, EndA(M) ∼= K .

(2) If M and N are non-isomorphic simple A-modules then

HomA(M, N) = 0.

Proof. Suppose M is simple and φ ∈ EndA(M). Then, since

K is algebraically closed, φ has an eigenvalue λ ∈ K . φ − λI

is singular and lies in EndA(M). Its kernel is a non-trivial A-

submodule. By the simplicity of M , this kernel must be all of

M . Therefore φ = λI . The proof of the second assertion is an

easy exercise for the reader. �

Suppose M is a simple A-module. Pick m ∈ M such that

m �= 0. The map φm : A → M given by

φm(a) = am for all a ∈ A

is an A-module homomorphism (here A is viewed as a left A-

module). Since the image of φm is a non-trivial submodule of

M , it must be all of M . Therefore, φm is surjective. Its kernel

is a left ideal in A.

Conclusion. Every simple A-module is isomorphic to a quo-

tient of A by a left ideal.

Definition. A left ideal N of A is said to be nilpotent if there

exists a positive integer k such that Nk = 0 (here Nk is the

vector space spanned by products of k elements in N ).

Exercise 2. Suppose that K is an algebraically closed field of

characteristic p, and that n = pm for some positive integer m.

Show that (tm−1) generates a nilpotent ideal in K[t]/(tn−1).

Proposition 1. Every nilpotent left ideal of A is contained in

the kernel of φm.

Proof. Suppose that N is a left ideal of A not contained in

ker φm. Then Nm is a non-trivial submodule of M , hence

Mathematics Newsletter -74- Vol. 16 #4, March 2007



Nm = M . In particular, there exists n ∈ N such that nm = m.

It follows that nkm = m for every positive integer k. There-

fore, every power of n is non-zero. N cannot, therefore, be

nilpotent. �

It is not always the case that a finite dimensional A-module

is a direct sum of simple modules.

Exercise 3. Take K to be any field of characteristic two. Take

A to be K[Z/2Z]. Show that A has a unique non-trivial proper

submodule, which is spanned by 0 + 1 (here 0 and 1 are the

basis vectors). Conclude that A can not be written as a direct

sum of simple A-modules.

Definition. An A-module M is said to be semisimple if it can

be written as a direct sum of simple modules. A is called a

semisimple algebra if, as an A-module, A is semisimple. A is

called a simple algebra if it has no proper two-sided ideals.

Exercise 4. Suppose that K is a algebraically closed and that

the characteristic of K does not divide n. Show that the equa-

tion tn − 1 = 0 has n distinct roots.

Exercise 5. Assume that K is as in Exercise 4. Show that

K[Z/nZ] is semisimple (Hint: use Exercises 1 and 4).

Example. Maschke’s theorem (see, e.g., [Art94, p. 316])

states that K[G] is semisimple when the characteristic of K

does not divide the order of G.

Exercise 6. (see [Lan99, p. 656]) Show that the algebra

Mn(K) of n × n matrices is simple (for example, by showing

that the two-sided ideal generated by any non-zero matrix is

all of Mn(K)). Show that every simple module is isomorphic

to Kn (which can be thought of as the space of column vectors

on which Mn(K) acts on the left by multiplication).

Proposition 2. Every semisimple algebra is a direct sum of

simple algebras.

Proof. Let A1 be a minimal two-sided ideal of A. Let A′ be a

complement of A1 (as a left A-module), so that A = A1 ⊕ A′.
Suppose that the decomposition of 1 under the above direct

sum decomposition is 1 = ε1 + ε′. The decomposition of

a ∈ A is given by a = aε1 + aε′. In particular, ε1 = ε11 =
ε1(ε1 + ε′) = ε2

1 + ε1ε
′. Therefore, ε2

1 = ε1 and ε1ε
′ = 0.

Similarly, ε′ε1 = 0. We can also write A = ε1A ⊕ ε′A, where

the decomposition of a ∈ A is given by a = ε1a + ε′a. If

a1 ∈ A1, then comparing its two decompositions shows that

a1 = a1ε1 = ε1a1. More generally, if a ∈ A, then aε1 =
aε2

1 = (aε1)ε1. But aε1 ∈ A1. Therefore, (aε1)ε1 = ε1(aε1).

A similar argument can be used to show that ε1a = (ε1a)ε1.

Therefore aε1 = ε1a. Since ε′ = 1 − ε1, it also follows that

ε′a = aε′ for every a ∈ A. Therefore, A′ = Aε′ = ε′A, so

that A′ is also a two sided ideal. Now repeat this argument

replacing A by A′. Continuing in this manner, one obtains that

A = A1 ⊕ · · · ⊕ As for some s, where the summands are

minimal two-sided ideals, hence simple algebras. �

We now discuss another characterization of semisimple

algebras. Firstly note that

Lemma 3. The sum of two nilpotent left ideals is nilpotent.

Proof. Suppose that N1 and N2 are two nilpotent left ideals.

Take k such that Nk
1 = Nk

2 = 0. Every element of (N1 +N2)
2k

is a linear combination of elements of the form (n1 + n2)
k ,

where n1 ∈ N1 and n2 ∈ N2. In each term of the expansion of

the product (n1 + n2)
k , either n1 or n2 occurs at least k times,

so that each term is either in Nk
1 or Nk

2 , and is therefore 0. �

Exercise 7. Show that
(

0 0
1 0

)
and

(
0 1
0 0

)
are nilpotent elements

in M2(K), but their sum is not nilpotent. Why does this exam-

ple not contradict Lemma 3?

Suppose that N is a nilpotent left ideal of A. If N is not

maximal, then there exists a nilpotent ideal N ′ that is not con-

tained in N . By Lemma 3, N + N ′ is a nilpotent ideal, which

is strictly larger than N . From the finite dimensionality of A, it

now follows that A has a unique maximal nilpotent left ideal,

which is called the radical of A, denoted RadA. By Proposi-

tion 1, RadA ⊂ ker φm. Now (RadA)A is a two-sided ideal. It

is nilpotent because

[(RadA)A]2 ⊂ (RadA)2A, [(RadA)A]3 ⊂ (RadA)3A, . . . .

It follows that (RadA)A ⊂ RadA, and so RadA is a two-sided

ideal.

Exercise 8. If I is a two-sided ideal in A, show that the formu-

las (a + I )+ (b+ I ) = a +b+ I and (a + I )(b+ I ) = ab+ I

give rise to a well-defined algebra structure on the quotient

space A
I

.

This allows one to make sense of the quotient A
RadA

as an

algebra.
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Proposition 4. A is semisimple if and only if RadA = 0.

Proof. Suppose that A is semisimple. Then A, as a left A-

module, can be written as a sum of simple A-modules:

A = M1 ⊕ · · · ⊕ Mk.

Suppose that 1 = e1 + · · · + ek is the decomposition of 1.

Then the identity map of A (which is right multiplication by 1)

can be written as φe1 + · · · + φem
. By Proposition 1, RadA ⊂

∩k
i=1 ker φei

. On the other hand

∩k
i=1 ker φei

= ker(φe1 + · · · + φek
) = 0.

Therefore, RadA = 0.

Conversely, suppose that RadA = 0. Then A has no non-

trivial nilpotent left ideals. Let N be a minimal non-zero left

ideal of A (as an A-module, N is simple). Then N2 is a left

ideal contained in N . Since N2 �= 0, N2 = N . Therefore,

there exists a ∈ N such that Na �= 0. But Na itself is a

left ideal contained in N . Therefore, Na = N . It follows that

B = {b ∈ N | ba = 0} is a left ideal properly contained

in N . Therefore B = 0. Moreover, since Na = N , a = ca

for some c ∈ N . Also ca = c2a, so that (c − c2)a = 0. In

other words, c − c2 ∈ B. Therefore c − c2 = 0. Therefore

c is a non-zero idempotent in N . By the minimality of N ,

Ac = N . Moreover, A = Ac ⊕ A(1 − c). If A(1 − c) is not

simple, then take a minimal left ideal in A(1 − c) and repeat

the above process. Since A is a finite dimensional vector space,

this process will end after a finite number of steps, resulting

in a decomposition of A into a direct sum of simple modules.

Therefore A is semisimple. �

Corollary 5. A
RadA

is semisimple.

Proof. Since RadA is a maximal nilpotent ideal, A
RadA

has no

nilpotent ideals. By Proposition 4, A
RadA

is semisimple. �

Exercise 9. Suppose that K has characteristic p, and let n =
pm for some positive integer m. Show that K[Z/nZ] is not

semisimple (Hint: use Exercises 1 and 2).

Corollary 6. Every simple algebra is semisimple.

Proof. Since RadA is a proper two-sided ideal, the simplicity

of A implies that RadA = 0. Therefore A is semisimple. �

Theorem. (Wedderburn). Every simple algebra is isomor-

phic to Mn(K) for some positive integer n.

Proof. Since A is semisimple, A (viewed as a left A-module)

can be decomposed into a direct sum of simple A-modules. Let

A = M
⊕m1
1 ⊕ · · · ⊕ M

⊕mk

k (7)

be such a decomposition where M1, . . . , Mk are pairwise non-

isomorphic. For each a ∈ A, the map φa : A → A defined by

φa(x) = xa is an A-module homomorphism A → A. More-

over, φa ◦ φb = φba . Conversely, every A-module homomor-

phism φ : A → A is of the form φa , where a = φ(1). There-

fore the A-module homomorphisms A → A form an algebra

A∗ whose elements are the same as those of A, but multiplica-

tion is reversed. A two-sided ideal of A is also a two sided ideal

of this A∗. Therefore A∗ is also simple. Schur’s lemma can be

used to show that A∗ = Mm1(K)⊕· · ·⊕Mmk
(K). Mm1(K) is

proper two-sided ideal of A∗. Therefore, by the simplicity A∗

we must have k = 1 in (7) and A∗ = Mm1(K). �

Proposition 8. Let A be a finite dimensional algebra over an

algebraically closed field K of characteristic p > 0. Let

S = Span {ab − ba | a, b ∈ A},
T = {r ∈ A | rq ∈ S for some power q of p}.

Then T is a subspace of A, and the number of isomorphism
classes of simple A-modules is dimK(A/T ).

Proof. In the expansion

(a + b)p =
∑

εi∈{a,b}
ε1 · · · εp,

all the terms except ap and bp can be grouped into sets of p

summands of the form

ε1 · · · εp + ε2 · · · εpε1 + · · · + εpε1 · · · εp−1.

All the terms in the above expansion are congruent modulo S,

and so their sum vanishes modulo S. Therefore,

(a + b)p ≡ ap + bp mod S. (9)

It follows T is closed under addition. It is clear that T is closed

under multiplication by scalars in K . Hence T is a subspace

of A.

Now take u, v ∈ A, and let w = v(uv)p−1. Then

(uv − vu)p ≡ (uv)p − (vu)p ≡ uw − wu ≡ 0 mod S.

Therefore, the pth power of an element of S is again in S.

Hence S ⊂ T .
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Suppose now, that A is simple. By Wedderburn’s theorem,

one may assume that A = Mn(K). Clearly every matrix in S

has trace zero. The converse of this statement is also true: every

matrix with trace zero lies in S. To see this for n = 2, note

that (
1 0

0 −1

)
=
[(

0 1

0 0

)
,

(
0 0

1 0

)]
,

(
0 1

0 0

)
=
[(

1 0

0 0

)
,

(
0 1

0 0

)]
,

(
0 0

1 0

)
=
[(

0 0

0 1

)
,

(
0 0

1 0

)]
.

In the above equations, ab − ba has been denoted [a, b],

which is customary. Similar identities can be used to obtain

the result for arbitrary n. Since S consists of trace zero matri-

ces, dim(A/S) = 1, and since S ⊂ T , dim(A/T ) must be 0 or

1. The matrix E11 for which the entry in the first row and first

column is 1 and all other entries are 0 is never in T . There-

fore T is a proper subspace of A. One must therefore have

that dim(A/T ) = 1. On the other hand Mn(K), being simple,

has a unique simple module up to isomorphism. Therefore,

Proposition 8 holds when A is simple.

For the general case, note that every nilpotent element of A

is in T . Therefore, RadA ⊂ T . It follows from Proposition 8

that RadA acts trivially on every simple A-module and that the

number of isomorphism classes of simple modules is the same

forA and A
RadA

. Now A
RadA

is a direct sumA1⊕· · ·⊕Ar of simple

algebras by Proposition 2. A simple module for Ai becomes a

simple module for A1 ⊕ · · · ⊕ Ar when the other summands

act trivially. Moreover, every simple module is obtained in this

way. Therefore, A1⊕· · ·⊕Ar (and hence A) has r isomorphism

classes of simple modules. On the other hand, define Ti for Ai

just as T was defined for A. Then A/T is a direct sum of the

Ai/Ti’s. Therefore, applying Proposition 8 in the simple case

to Ai , we see that dim A/T = r . �

Proposition 10. Let K be an algebraically closed field of

characteristic p > 0 and let A = K[G]. Then, the number of

p-regular conjugacy classes in G is the same as dim A/T .

Proof. Every x ∈ G can be written as x = st , where s is

p-regular and the order of t is a power of p, for if the order of

x is n = n′pe, where n′ is not divisible by p, then there exist

integers a and b such that ape + bn′ = 1, and one may take

s = xape

and t = xbn′
. By (9),

(st − s)p ≡ sptp − sp mod S.

Consequently, if q is the order of t ,

(st − s)q ≡ sqtq − sq ≡ 0 mod S.

Therefore, st − s ∈ T , or st ≡ s mod T . Therefore, every

element of G (thought of as an element of K[G]) is congruent

modulo T to a p-regular element. Furthermore, since T con-

tains S, all elements in the same conjugacy class are equiva-

lent modulo T . Therefore, the number of p-regular conjugacy

classes in G is an upper bound for dim A/T .

Suppose R ⊂ G is a set of representatives of p-regular con-

jugacy classes. It remains to show that R is a linearly indepen-

dent set in A/T . Suppose that
∑

arr ∈ T for some ar ∈ K ,

r ∈ R. There exists a power q of p such that rq = r for every

r ∈ R (because p is a unit in Z/n′Z, where n′ is the order of

r), and such that (
∑

arr)
q ∈ S. Therefore,(∑

arr
)q

≡
∑

aq
r rq ≡

∑
aq

r r mod S,

and consequently,
∑

a
q
r r ∈ S. But S consists of those elements

of K[G] with the property that the sum of the coefficients of

all the elements in each conjugacy class of G is zero (prove

this). Therefore, a
q
r , and hence ar is zero for every r ∈ R. It

follows that R is linearly independent in A/T . �
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Abstract. In this expository article, we study the dichotomy of the complex sphere into Fatou and Julia sets based on the family

of iterates of an arbitrary nonlinear rational map. We shall then observe some important properties that these two sets satisfy and

go on to prove the first milestone of this theory which states that the repelling periodic points are dense in the Julia set. For a better

understanding, we conclude with a few examples.

1. Introduction

Complex Dynamics is today very much a focus of interest.

Holomorphic, non-invertible dynamical systems of the Rie-

mann sphere are surprisingly intricate and beautiful. A surpris-

ing discovery was made by Fatou, in 1906, when he observed

that iterations of a very simple function like f (z) = z2/(z2+2)

lead naturally to the appearance of a Cantor set. This was then

considered to be a very exotic subject. Later, Fatou and Julia

undertook a thorough study of the dynamics of rational func-

tions during the time of first world war. Both of them indepen-

dently published a number of Comptes Rendus notes, and then

wrote long Memoires: Julia in 1918 and Fatou in 1919 and

1920. In 1918, Julia was awarded the Grand Prix des Sciences

Mathématiques by the Paris Academy of sciences for his work.

The theory developed by Fatou and Julia was based on

Koebe-Poincaré uniformisation theorem, Montel’s normality

criterion and some earlier work on functional equations due to
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Böttcher, Koenigs, Leau, Poincaré and Schröder at the begin-

ning of the 20th century. This field was then dormant for the

next few decades. Then, the creation of the theory of hyper-

bolic dynamical systems in the 1960’s and early 1970’s in the

papers by Anosov, Smale, Sinai and Bowen led to the fact that

the intricate dynamics of rational endomorphisms ceased to

be considered as something strange related to irreversibility.

The papers by Yakobson and Guckenheimer, where the iterates

of rational functions are studied by the methods of symbolic

dynamics, date back to that time.

The study of the dynamics of rational endomorphisms was

also very popular in the 1980’s. Great enthusiasm was caused

by the numerical experiments carried out by Brooks and Matel-

ski, Hubbard and Mandelbrot, which resulted in the appearance

of deep conjectures and beautiful pictures visually demonstrat-

ing the fact that the situation is non-trivial. Soon, papers by

Douady and Hubbard, Sullivan and Thurston appeared, which

related the dynamics of rational functions to the theory of
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Kleinian groups and Teichmüller spaces. These relations cast

a new light on the whole field and provided a key to many

problems.

In the last 15 years, the theory of holomorphic dynamical

systems has had a resurgence of activity, particularly concern-

ing the fine analysis of the Julia sets associated with polyno-

mials. It should be mentioned that there has been an explosion

of interest in the subject and many mathematicians have made

substantial contributions.

In this article, we shall study the dichotomy of the Riemann

sphere into sets now bearing the names of the above mentioned

eminent French mathematicians, the founders of this theory by

considering the sequence of iterates of an arbitrary, non-linear,

rational map. It was noted that the function was well-behaved

on one set and chaotic on the other.

2. The Riemann Sphere

By a Riemann sphere or complex sphere, we mean the complex

plane along with the point at ∞. Observe that this is possible

through a well-known process called stereographic projection.

We shall denote the Riemann sphere by Ĉ. By a region, we

shall mean a non-empty, connected, open subset of the com-

plex sphere, Ĉ. Let us call the union of disjoint regions by the

term plane open set, and denote it by �. By a Riemann surface,

we shall mean a connected, complex analytic manifold of com-

plex dimension one. Two Riemann surfaces S1 and S2 are said

to be conformally isomorphic if there exists a homeomorphism

from S1 onto S2 which is holomorphic, with holomorphic

inverse.

Lemma 1. (Schwarz). Let D be the open unit disk in the com-

plex sphere. Let f: D −→ D be a holomorphic function with

f (0) = 0. Then |f ′(0)| ≤ 1. If equality holds, then f (z) = kz,

for some constant k with |k| = 1. In particular, it follows that

f is a conformal automorphism of D. Otherwise, |f (z)| < |z|
for all z �= 0 and f is not a conformal automorphism.

A proof of the Schwarz’s lemma can be found in many

standard books on Complex Analysis, say [1], [7]. If a func-

tion f defined on a surface � is differentiable everywhere in

its domain, then f is said to be holomorphic (or analytic) in

�. Let H(�) denote the class of all holomorphic functions

in �.

Definition. Suppose F ⊂ H(�), for some region �. F is

said to be a normal family in �, if every sequence {fn} of func-

tions; fn ∈ F , contains a subsequence {fnk
} which converges

uniformly on every compact subset of �. The limit function is

not required to belong to F .

Consider the family of functions, {f (z) = zn}∞n=1 on the

open unit disk. Then observe that the limit of this sequence is

simply the constant function 0, which is not a member of this

family. We shall now proceed to state a result due to Montel

which throws some light on normal families.

Theorem 1. (Montel). Let F be a family of holomorphic

functions from a Riemann surface S to the Riemann sphere

Ĉ. If there are three distinct points of Ĉ that never occur as

values, then this family F is normal.

A proof of the Montel’s theorem can be found in [4]. It is

based on the Schwarz’s lemma, the fact that the unit disc covers

the 3-punctured sphere, and uses the hyperbolic geometry due

to Lobachevsky extensively. Now, let us move on to define

rational maps and their degree.

Definition. A rational map f (z) is the quotient of two rela-

tively prime polynomials, P(z) and Q(z).

f (z) = P(z)

Q(z)
= a0z

m + a1z
m−1 + · · · + am

b0zn + b1zn−1 + · · · + bn

(1)

with a0, a1, . . . , am, b0, b1, . . . , bn ∈ C, a0 �= 0 and b0 �= 0.

And its degree (d) is defined to be the maximum among the

degrees of P and Q, d = max(deg P , deg Q) = max(m, n).

We shall assume henceforth that the degree of the rational

function f is strictly greater than 1.

Definition. The Fatou set F = F(f ) of a rational function f

is the maximal subset of Ĉ, the domain of f , on which the

family of iterates of f i.e., F = {f n: n = 1, 2, . . . } is normal.

The complement of the Fatou set is known as the Julia set

J = J(f ).

3. Properties of the Fatou and Julia sets

Having dichotomised the Riemann sphere Ĉ into the Fatou set

F(f ) and the Julia set J(f ), we shall in this section look at

some simple properties these two sets satisfy.

Property 1. The Fatou set is open.
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By the definition of the Fatou set, if z ∈ F, we can find an open

neighbourhood U of z such that f n|U is normal. Thus for any

ζ ∈ U , we can use the same definition to show immediately

that ζ ∈ F.

Property 2. If z ∈ F(f ), then the family {f m}∞m=0 is equicon-

tinuous in a neighbourhood of z.

Consider a compact set K ⊂ F containing z. Then, by defi-

nition we know that the family {f m} is normal in K . Now, for

any open δ-neighbourhood of z in K containing ζ , we have

|f m(z) − f m(ζ )| < ε for m = 1, 2, . . . .

The orbit of a point z with regard to a function f is said to

be Lyapunov stable if for every ε > 0, there exists a δ > 0,

such that |f m(z) − f m(ζ )| < ε, whenever |z − ζ | < δ for

m = 0, 1, 2, . . . .

Property 3. The orbit of any point in the Fatou set is Lyapunov

stable.

This is fairly obvious from property (2). The next one

describes the property of complete invariance satisfied by the

Fatou set. We first recall that a set X is said to be invariant if

f (X) ⊂ X. It is said to be completely invariant if, in addition,

f −1(X) = X.

Property 4. The Fatou set is completely invariant.

Consider z0 ∈ f −1(F). And letf (z0) = w0. Hence,w0 ∈ F.

Now, the orbit of w0 is Lyapunov stable. So, for every ε > 0,

there exists δ1 > 0 and δ2 > 0 such that |z − z0| < δ1 �⇒
|f (z) − f (z0)| < δ2 �⇒ |f n+1(z) − f n+1(z0)| < ε. Hence,

{f n+1: n ≥ 1} is equicontinuous at z0 and so on f −1(F). Since,

f −1(F) is open, f −1(F) ⊆ F. To get the other inclusion, let

z0 ∈ F and f (z0) = w0. Then for an open δ-neighbourhood,

say N , of z0, f (N) is an open neighbourhood of w0. And for

any w ∈ f (N), there corresponds a z ∈ N . So, |f n(w) −
f n(w0)| = |f n+1(z) − f n+1(z0)| < ε. Hence, w0 ∈ F. So,

F ⊆ f −1(F).

The following properties describe the Julia set. These are,

in part, a consequence of the above properties of the Fatou set.

Property 5. The Julia set is non empty.

If the Julia set is empty, F(f ) = Ĉ, meaning the family

{f m}∞m=0 is normal in Ĉ. In such a case, we can find a sequence

{mk} of numbers with mk → ∞ and a rational function g to

claim that f mk → g uniformly on Ĉ. But this is impossible

since deg f mk → ∞. Hence, J(f ) �= φ.

Property 6. The Julia set is closed and completely invariant.

And the orbit of any point in the Julia set is not Lyapunov stable.

The first two properties are simple observations from prop-

erties (1) and (4) while the orbit of any point in the Julia set is

not Lyapunov stable because the family {f m} is not normal in

the Julia set.

Property 7. The Julia set of f coincides with that of f n for

any n ≥ 1.

The Fatou sets of f and f n are the same since the family

{f m} is normal on an open set U if and only if the family {f mn}
is normal on U . Hence the Fatou set of f and f n are the same

and so are their Julia sets.

Let z ∈ J and let U be any neighbourhood of z. Then by

Montel’s theorem, the family {f n} on U can afford to omit

a set Ez containing atmost two points only. Such points are

called exceptional points.

Consider a polynomial P(z). Then the point at ∞ is very

special because it is a fixed point whose only inverse image

is itself. Very few fixed points have this property. In fact, if a

rational map f fixes a point ζ and f −1(ζ ) = {ζ }, then f can

be conjugated by a Möbius map that would send ∞ to ζ .

Property 8. The setEz is independent of z (so shall be denoted

by E). If E is a singleton, then f (z) can be conjugated to a

polynomial. If E consists of two points, they could be conju-

gated to 0 and ∞, and f (z) can be conjugated to the form czd

or cz−d . In all cases, E is contained in the Fatou set.

By definition, f −1(Ez) ⊂ Ez. If Ez contains one point ζ

only, f (ζ ) = ζ . Conjugating by a Möbius map, let ζ = ∞.

Since f̄ −1(∞) = ∞, there are no other poles, and hence, f̄

is a polynomial. Clearly, Ez is independent of z. If E consists

of two points, assume 0 and ∞ then either f̄ (0) = 0 and

f̄ (∞) = ∞, or f̄ (0) = ∞ and f̄ (∞) = 0. In the first case,

f̄ is a polynomial with 0 as its only zero and so, f̄ (z) = czd .

Similarly, in the second case, f̄ (z) = cz−d .

For any function f ,the zeroes of its derivative f ′ and its

own multiple poles are called the critical points.

Property 9. If V is a non-empty set completely invariant

under the rational map f , then V contains one, two or infinitely

many points.

Assume V contains finitely many points, i.e., V = {z1,

z2, . . . , zk} such that k > 2. Since V is completely invariant
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under the rational map f , there exists some number, say m

such that f m fixes every point in V . In other words, each point

in V has only itself as its preimage under f m. Therefore, each

of these is a critical point and is of multiplicity dm − 1. But,

the total number of critical points counted with multiplicities

is 2dm − 2 for f m, implying k ≤ 2 a contradiction to our

assumption.

Property 10. The Julia set is infinite.

We know that J is a non-empty set completely invariant

under f . Now applying property (9), we conclude that J must

be infinite. We rule out the case of J having 1 or 2 points

because if a set contains at most two points, then it is indeed

the exceptional set, E ⊂ F.

Property 11. The backward iterates of any z ∈ J are dense

in J.

From the definition of E, it is clear that if z /∈ E, J is in

the closure of the inverse orbit
⋃

n≥1 f −n(z). Moreover, E is

disjoint from J.

Definition. A point z ∈ Ĉ is called periodic if f p(z) =
z, for some p. The least such number p is called the

period of the periodic point z. The multiplier λ of a point

z0 ∈ Ĉ is the derivative of f calculated at this point,

λ(z0) = f ′(z0).

The point z0 is classified as super-attracting, attracting, neu-

tral or repelling with regard to the value of its multiplier,

λ(z0). If λ(z0) = 0 then we call z0, a super-attracting point,

if 0 < |λ(z0)| < 1, then z0 is known as an attracting point, if

|λ(z0)| = 1, then we name z0 a neutral point and if |λ(z0)| > 1,

z0 is classified as a repelling point.

Property 12. For every z1 ∈ J, there exists a point z2 ∈ J such

that z1 ∈ O+(z2) but z2 /∈ O+(z1). Here, by O+ we describe

the forward orbit of the point, under the rational map f .

Let z1 be a non-periodic point. Then z2 can be any inverse

image of z1. Now let z1 be a periodic point of period p;

f p(z1) = z1. Consider h = f p and the equation h(z) = z1.

If z1 is the only solution to this equation, we can conjugate

h to a polynomial. And since ∞ ∈ F of the polynomial, we

have z1 ∈ F(h), a contradiction to our assumption. Conse-

quently, there exists another solution z2 to the above equation

and z2 /∈ O+(z1) because z1 is the only solution to that equa-

tion in O+(z1).

Property 13. The Julia set is perfect.

Consider any point z ∈ J. Then choose a point w as in

property (12). Let D be a neighbourhood of z. Since w ∈ J, it

is clear that w /∈ E. Hence, there exists an integer n such that

w ∈ f n(D). Let ζ denote a point in D such that f n(ζ ) = w.

Then, ζ �= z because w /∈ O+(z) and ζ ∈ J because J is

f -invariant.

Property 14. If the Julia set J has a non empty interior, then

it coincides with the extended complex plane.

Suppose there is an open U ⊂ J. Then, f n(U) ⊆ J by

property (6). But,
⋃

f n(U) = Ĉ \ E (by the definition of E)

is dense in Ĉ and since J is closed, J = Ĉ.

Property 15. Every attracting periodic orbit is contained in

the Fatou set. In fact the entire basin of attraction � for an

attracting periodic orbit is contained in the Fatou set. How-

ever, the boundary ∂� is contained in the Julia set, and every

repelling periodic orbit is contained in the Julia set.

In view of the property (7), we need to consider the case of

a fixed point f (z0) = z0 only. If z0 is attracting, then it follows

from the Taylor’s theorem that {f m}∞m=1 restricted to a small

neighbourhood of z0 converge uniformly to the constant func-

tion g(z) = z0. The corresponding statement for any compact

subset of the basin � then follows. But, around a point on ∂�

no sequence from {f m}∞m=1 can converge to a continuous limit.

However, if z0 is repelling, no sequence of elements in {f m}∞m=1

can converge uniformly near z0, since the derivative d
dz

f n(z)

at z0 takes the value λn which diverges to ∞ as n → ∞.

A periodic point f p(z0) = z0 is called parabolic if the

absolute value of the multiplier |λ| at z0 is equal to 1, yet f p is

not the identity map. Consider the rational map f : Ĉ −→ Ĉ

defined by f (z) = z/z − 1. Note that the two fixed points

of this function are 0 and 2 and that the absolute value of

the multiplier calculated at both these points is 1. However,

these points do not count as parabolic points since f ◦ f (z) is

identically equal to z. This exclusion is necessary so that the

following assertion will be true.

Property 16. Every parabolic periodic point belongs to the

Julia set.

Let w be a local uniformising parameter, with w = 0 cor-

responding to the periodic point. Then some iterate f m corre-

sponds to a local mapping of the w-plane with power series
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expansion of the form w �−→ w + akw
k + ak+1w

k+1 + · · ·
where k ≥ 2, ak �= 0. It follows that f mp corresponds to a

power series w �−→ w + pakw
k + · · · . Thus the k-th deriva-

tives of f mp diverge as p → ∞. Hence, no subsequence

can converge locally uniformly, by Weierstrass theorem, as

in [1] which states “If a sequence of holomorphic functions

converges uniformly, then their derivatives also converge uni-

formly, and the limit function is itself holomorphic.”

4. An alternate definition of the Julia set

We begin this section by defining what is meant by a meromor-

phic function. A rational function f (z) = P(z)/Q(z) defined

on � is said to be a meromorphic function if both the func-

tions P(z) and Q(z) are holomorphic in �. Though this is not

the standard definition of a meromorphic function, we urge the

reader to observe that this is no different from the usual one.

Interested readers are referred to [7].

Lemma 2. If a family {fm} of meromorphic functions is nor-

mal in a neighbourhood of ζ ∈ Ĉ and if there exists a positive

constant c1 such that |fm(ζ )| ≤ c1, then there exists a positive

constant c2 such that |f ′
m(ζ )| ≤ c2.

Lemma 3. Consider a family {fm} of meromorphic functions

in the open unit disc, D. Suppose there are three different

meromorphic functions gn (n = 1, 2, 3) in D with the prop-

erty that the equations fm(z) = gn(z), gr(z) = gn(z) where

n �= r, n = 1, 2, 3 and r = 1, 2, 3 have no roots in D. Then

the family {fm} is normal.

This lemma reduces to the Montel’s theorem for the family{
(fm − g2)(g1 − g3)

(fm − g3)(g1 − g2)

}
which has three exceptional values namely 0, 1 and ∞.

Theorem 2. The Julia set J(f ) is the closure of the set of all

repelling periodic points of the rational map f .

Proof: Let z be a repelling periodic point of order p, i.e.,

f p(z) = z. Without loss of generality, let us assume z �= ∞.

Let λ be its multiplier. Then, (f pm)′(z) = λm → ∞ as m →
∞ and |f pm(z)| = |z| < ∞. Hence, by lemma (2), {f pm}∞m=1

is not normal in a neighbourhood of z. Hence, all repelling

cycles lie on J.

Now, let ζ ∈ J(f ). Since J is perfect, we may assume

that ζ is not periodic and ζ is not a critical value of f .

So, ζ has d different inverse images under f . Let them be

ζi ; 1 ≤ i ≤ d. Here, ζi �= ζ for any i. Let D1 be a neigh-

bourhood of ζ . Then in D1 there exist d univalent branches

of f −1, namely gi ; 1 ≤ i ≤ d such that gi(ζi) = ζ . More-

over, gi(D1) ∩ gj (D1) = φ, for i �= j . Define a function

g0(z) = z on D1. Note that D1 can be chosen sufficiently small

such that gi(D1) ∩ g0(D1) = φ ∀ i �= 0. Hence, the equa-

tion gi(z) = gj (z) has no roots in D1. Now consider another

neighbourhood D2 of ζ such that D2 ⊂ D1. Then by lemma

(3) there should be a root z0 of some equation f p(z) = gi(z).

The point z0 is periodic (with period p for j = 0 and p+1 for

j = 1, 2). And since there are only finitely many neutral and

attracting periodic points, z0 is repelling provided the neigh-

bourhood D2 is chosen sufficiently small. Hence, the theorem

follows. •

5. Examples

We conclude our article by studying some examples.

Example 1. Consider the polynomial map f : C −→ C

defined by f (z) = zd for d > 1.

Consider the unit disc D = {z ∈ C: |z| < 1}. Then it is clear

that z = 0 is the only super-attracting point. The points in D

are the attracting points. However, the points on the boundary

of D are neutral while the rest are repelling points. Hence, the

Julia set for this function is

J = {z ∈ C: |z| = 1},

while the rest of the points in the complex plane lie in F.

Example 2. Consider the quadratic map f : C −→ C defined

by f (z) = z2 − 2.

Consider on the real axis, the interval I = [−2, 2]. Note

that f maps I onto itself. For any point z0 ∈ I , both the

solutions of the equation f (z) = z0 lies in I . And since I

contains a repelling fixed point z = 2, property (11) tells us

that I contains the Julia set. On the other hand, the basin of

attraction �(∞) is a neighbourhood of ∞, whose boundary is

contained in J(f ) ⊂ I , by property (15). Hence, every point

outside J belongs to this basin. Since f (I) ⊂ I , it is clear that
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the Julia set for this function is the above considered interval

J = I and F = C \ I .

Though the Julia set in both the above examples have a

smooth boundary, in general, it is not the case. The next exam-

ple is typical. A totally disconnected, perfect, compact metric

space is called a Cantor set.

Example 3. Consider the rational function f : C −→ C

defined by f (z) = 2z − 1
z
.

Note that the upper half plane, the lower half plane and the

exterior of the unit disc (C \ D) are invariant under f . Hence,

J(f ) ⊂ [−1, 1]. Now consider the interval I0 = (− 1
2 , 1

2 ).

Then f (I0) = {x ∈ R : |x| > 1}. Hence, I0 ⊂ F. Let

K1 = [−1, − 1
2 ] and K2 = [ 1

2 , 1]. Then, J ⊂ K1 ∪ K2. And

since f maps Ki monotonically onto I , there should exist

an interval Ii ⊂ Ki such that f (Ii) = I0. Hence, if we cut

off Ii from Ki we obtain 4 intervals Ki,j such that J(f ) =⋃
i,j=1,2 Ki,j . And f maps Ki,j monotonically onto Ki . If we

continue this construction, we obtain a family of 2n intervals,

namely Ki,j with i = 1, 2, . . . , n − 1 and j = 1, 2. And

J ⊂ ⋃n−1
i=1

⋃2
j=1 Ki,j ≡ Kn. Moreover, f maps Ki,j mono-

tonically onto Ki . Since |f ′(z)| ≥ 3 on [−1, 1], the lengths

of these intervals Ki,j do not exceed 2
3n . So, K∞ = ⋂

Kn is a

Cantor set. The Julia set J(f ) is contained in K∞. Conversely,

if x ∈ K∞, then, |f nx| ≤ 1 and |(f n)′x| ≥ 3n. Hence, by

lemma (2), x ∈ J(f ). Thus, in this example, J = K∞ is a

Cantor set.

Property (5) tells us that the Julia set is non-empty. However,

there are maps with empty Fatou set. One familiar example of

such kind is the Lattes’ example.

Example 4. Consider the rational map f : Ĉ −→ Ĉ defined

by

f (z) = (z2 + 1)2

4z(z2 − 1)
.

This rational function has for its Julia set all of Ĉ. This

example was constructed by S.Lattes, shortly before his death

in 1918. The estimation of Fatou set and Julia set for this map

is done with the help of Riemann–Hurwitz formula and the

Weierstrass ℘ function. We do not go into the details, as it may

get too technical. Interested readers are referred to [2] and [3]

for more details.
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Abstract. In population genetics, the simplest model involves two alleles at a single locus. Under ideal conditions, the proportions

of the genotypes in the population are determined by the Hardy–Weinberg law. But in nature, it is frequently observed that values

of the genotypes differ from those predicted by the Hardy–Weinberg law. An unusual case is when the number of heterozygotes

is far below its expected value, although they are believed to be more viable than the homozygotes. In this paper we will examine

a few theoretical models for this case and try to supply a satisfactory explanation for the excess of homozygotes.
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1. Introduction

Natural selection is a fundamental tenet of the biological sciences. The underlying mechanism of natural selection is genetic

heredity, and it is this concept that serves as the foundation for population genetics. At the heart of population genetics lies a

mathematical model developed independently by the British mathematician Godfrey H. Hardy and the German physician Wilhelm

Weinberg ([3]). This model is known today as the Hardy–Weinberg law.

Under a set of assumptions, the Hardy–Weinberg law predicts that genotype and allele frequencies will remain constant from

generation to generation. The following conditions are assumed ([3], [6]):

1. The population is large enough that sampling errors and random effects are negligible.

2. Mating within a population occurs at random.

3. All genotypes produced by random mating are equally viable and fertile.

4. There is an absence of mutation, migration, and random genetic drift.

5. There is equal allele frequency among females and males.

The basic model for the Hardy–Weinberg law assumes a single gene with only two alleles, a dominant allele A and a recessive

allele a. Assuming allele frequencies of p and q, respectively, the probability of an individual having a particular genotype will be

given by p2, 2pq, and q2 for AA, Aa, and aa respectively. Clearly, p2 +2pq +q2 = (p+q)2 = 1. In general the Hardy–Weinberg

law extends to any number of alleles. For an elementary mathematical treatment of the Hardy–Weinberg law, see [7].

In nature, the frequencies predicted by the Hardy–Weinberg law are often violated. Consider an example cited by John Maynard

Smith, which, for convenience, is going to be referred to as Example E.

Example E. Abdomen color in Drosophila polymorpha is determined by two alleles at a single locus. A dark colored abdomen

is represented by AA, an intermediate color by Aa, and a pale color by aa. Data on 8070 flies sampled in Brazil was originally

collected by Da Cunha in 1949 ([2]) and is summarized as follows ([6]):
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Genotype

dark (AA) intermediate (Aa) pale (aa) Total

Observed numbers of flies 3969 3174 927 8070

Expected from H-W ratio 3825 3462 783

One can easily calculate the allele frequencies using the observed genotypes. Two A alleles were observed in 3,969 flies while one

A allele was observed in 3,174 flies. This gives a total of 11,112 A alleles within the sample population. There were 8070 flies, each

with two alleles, giving a total of 16,140 alleles. Therefore, the frequency for the A allele is p = 11112
16140 ≈ 0.6885, and the frequency

for the a allele is q = 1 − p ≈ 0.3115. The Hardy–Weinberg proportions are p2 = 0.4740, 2pq = 0.4289, and q2 = 0.0970.

Thus, the expected numbers of sampled flies having the AA, Aa, and aa genotypes are respectively (0.4740)(8070) = 3825,

(0.4289)(8070) = 3462, and (0.0970)(8070) = 783. Notice that the observed number of heterozygous flies is significantly lower

than its expected value while the observed numbers of homozygous flies are significantly higher than their expected values.

Martinez and Cordeiro ([5]) obtained experimental results on Drosophila polymorpha that suggest the existence of color

modifying alleles that segregate independently from the major locus. The modifying alleles do not determine abdomen color by

themselves, but modify the expression of gene products thereby altering the expected phenotypes from those predicted by the

Hardy–Weinberg law. The so called modifier alleles, if they do exist, may account for some of the discrepancies in Example E.

However, in Da Cunha’s same study ([2]), it was reported that dark × dark resulted in only dark phenotypes, light × light resulted

in only light phenotypes, and dark × light resulted in only intermediate phenotypes. These results are consistent with the view that

abdomen color is controlled by one pair of alleles. Further, crosses of dark × light, intermediate × light, and intermediate × dark

resulted in an excess of intermediate phenotypes, sharply contrasting the results observed in natural populations.

Regardless of the experimental results obtained thus far, to our knowledge, an adequate explanation has not been provided for

the unusual excess of homozygotes from that predicted by the Hardy–Weinberg law. In this paper we will consider three possible

reasons that can explain the type of deviations from the Hardy–Weinberg law as observed in Example E. They are selection,

non-random mating, and multiple population composition. Our focus is to provide a theoretical explanation for such deviations.

2. Evolution Operators

Consider the evolution of the population from one generation to the next. Let x, y, z be the proportions of the three genotypes in

the parent population. We can define an evolution operator based on the proportions of the alleles in the gene pool,

i.e., E1 : (pn, qn) −→ (pn+1, qn+1).

Here pn = x + 1
2y and qn = 1

2y + z are the proportions of the alleles A and a respectively in the parent population. Without

selection (but with random mating), the proportions in the next generation are

pn+1 = p2
n + pnqn = pn and qn+1 = pnqn + q2

n = qn

respectively. It follows that the evolution operator E1 is an identity. This is the so called Gene Conservation Law, in which the

genes neither arise nor disappear.

To keep track of the proportions of the genotypes, we employ the following notations, termed as the Mendel Diallelic Zygote

Algebra (see [4] and [7]).

First note that during meiosis,

AA ↔ A, aa ↔ a, Aa ↔ 1

2
A + 1

2
a.
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Then during fertilization,

AA × AA = A · A = AA,

AA × aa = A · a = Aa,

aa × aa = a · a = aa,

AA × Aa = A ·
(

1

2
A + 1

2
a

)
= 1

2
AA + 1

2
Aa,

Aa × aa =
(

1

2
A + 1

2
a

)
· a = 1

2
Aa + 1

2
aa,

Aa × Aa =
(

1

2
A + 1

2
a

)
·
(

1

2
A + 1

2
a

)
= 1

4
AA + 1

2
Aa + 1

4
aa.

It follows that given proportions x, y, z of the three genotypes in the parent population, with random mating, the following algebra

governs the proportions of the genotypes in the next generation:

(xAA + yAa + zaa)2

=
[
xA + y

(
1

2
A + 1

2
a

)
+ za

]2

=
[(

x + 1

2
y

)
A +

(
1

2
y + z

)
a

]2

=
(

x + 1

2
y

)2

AA + 2

(
x + 1

2
y

)(
1

2
y + z

)
Aa +

(
1

2
y + z

)2

aa.

This is equivalent to

(xAA + yAa + zaa)2

= x2AA × AA + 2xyAA × Aa + y2Aa × Aa + 2xzAA × aa + 2yzAa × aa + z2aa × aa

=
(

x2 + xy + 1

4
y2

)
AA +

(
xy + 1

2
y2 + 2xz + yz

)
Aa +

(
1

4
y2 + yz + z2

)
aa.

Let 
 be the subset of R3 defined by


 = {(x, y, z)|x, y, z ≥ 0, x + y + z = 1}
and let xn, yn, zn be the proportions of AA, Aa, and aa in the nth generation respectively. Then the evolution operator E2 : 
 −→ 


is defined by

E2(xn, yn, zn) = (xn+1, yn+1, zn+1).

The proportions xn+1, yn+1, zn+1 in the next generation are given by the following evolution equations
xn+1 = x2

n + xnyn + 1

4
y2

n

yn+1 = xnyn + 1

2
y2

n + 2xnzn + ynzn

zn+1 = 1

4
y2

n + ynzn + z2
n

. (4)

Note that with random mating, the population is stationary in the sense that E2 is an idempotent: E2
2 = E2, and the system reaches

Hardy–Weinberg equilibrium in one step.

From the above we see that with random mating, but without selection, the evolution operators are trivial. In the following two

sections, we will study how the population evolves when there is selection or non-random mating.
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3. Selection

When selection is present in the population, only a fraction of the offspring survive to the next generation. These fractions are

represented by the so called fitness parameters. Let λ1, λ2, λ3 be the fitness parameters for the three genotypes AA, Aa, and aa

respectively, with λi = 1 being neutral. Let pn and qn be the proportions of alleles A and a respectively in the gene pool at

generation n. Then the evolution operator E1 can be represented by the following evolution equation

pn+1 = λ1p
2
n + λ2pnqn

Tn

where Tn = λ1p
2
n + 2λ2pnqn + λ3q

2
n . Using the relation pn + qn = 1 for all n, this equation can be written as pn+1 = f (pn) with

f (p) = λ1p
2 + λ2p(1 − p)

λ1p2 + 2λ2p(1 − p) + λ3(1 − p)2
, for p ∈ [0, 1].

The stability results on the equilibria of the evolution equation are well known, see for example, [1] and [4]. We will briefly

summarize the results here and examine their implications. There are two boundary equilibria, p∗
1 = 0 and p∗

2 = 1, and one

possible interior equilibrium

p∗
3 = λ3 − λ2

λ1 − 2λ2 + λ3
.

The stability of an equilibrium p∗ can be determined by f ′(p∗). More exactly, if |f ′(p∗)| < 1 then p∗ is stable, while if |f ′(p∗)| > 1

then p∗ is unstable. It turns out that as far as the long term proportion of population is concerned, it is the relative size, not the

absolute size, of the λi’s that are important. Specifically, it has been shown that if λ1 > λ2 > λ3, then p∗
1 is unstable, p∗

2 is stable,

and p∗
3 does not exist because the value is not in [0, 1]. Thus AA is the fittest and will survive, but Aa and aa will become extinct

in the long run. Conversely, if λ1 < λ2 < λ3, then p∗
1 is stable, p∗

2 is unstable, and again p∗
3 does not exist. Thus aa is the fittest and

will survive, but Aa and AA will become extinct in the long run. In the case of the so called superrecessivity, that is, λ2 < λ1 and

λ2 < λ3, p∗
1 and p∗

2 are stable, while p∗
3 exists but is unstable. Thus there is bistability. Obviously none of the three cases above can

explain the deviations in Example E. Finally, in the case of the so called superdominance, i.e., λ2 > λ1 and λ2 > λ3, p∗
1 and p∗

2 are

unstable, while p∗
3 is stable. Thus when the heterozygotes are more viable, we reach the polymorphism case where all alleles survive

in the long run. Can this case explain the deviations in Example E? Our hope is quickly dashed by noting that it corresponds to the

situation where there is a higher proportion of Ea than in the Hardy–Weinberg equilibrium, which is the opposite of Example E.

Conclusion: Selection alone does not explain the type of deviations in Example E.

4. Non-random Mating

It is known that random mating is a sufficient but not a necessary condition for the Hardy–Weinberg law. A pseudo-random mating

population is one in which nonrandom mating results in Hardy–Weinberg proportions ([10]). In a single population, when the

Hardy–Weinberg law is violated, under the condition that no other factor is at work, such as selection, mutation, and migration,

there must be nonrandom mating. The question is, can the type of deviation in Example E be explained by nonrandom mating?

The laboratory work of Da Cunha ([2]) and Martinez and Cordeiro ([5]) do not provide a clear indication on the mating preference

of the flies. If non-random mating is present in the natural environment, it is not unreasonable to assume that the abdomen color

plays an important role, as is the case for certain other species of fruit flies. For simplicity, consider a model in which the mating

rates between phenotypes is largely determined by the presence of the dominant allele. Then there will be three different mating

rates:

• the same rate α between AA and AA, AA and Aa, or Aa and Aa.

• the same rate β between AA and aa, or Aa and aa.

• the same rate γ between aa and aa.
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Then the evolution equations are

xn+1 = α

Tn

[
x2

n + xnyn + 1

4
y2

n

]
,

yn+1 = 1

Tn

[
α

(
xnyn + 1

2
y2

n

)
+ β(2xnzn + ynzn)

]
,

zn+1 = 1

Tn

[
1

4
αy2

n + βynzn + γ z2
n

]
.

(5)

Here Tn = α(x2
n +2xnyn +y2

n)+β(2xnzn +2ynzn)+γ z2
n. With random mating, we have α = β = γ , and the evolution equations

in (5) will be the same as those in (4).

By setting (xn+1, yn+1, zn+1) = (xn, yn, zn), we can find two boundary equilibria (0, 0, 1), (1, 0, 0), and possibly one interior

equilibrium (x∗, y∗, z∗). If α, γ > β, then

x∗ = 1

α(α − 2β + γ )

[
αβ + αγ − 2β2 − 2

√
β(α − β)(αγ − β2)

]
,

y∗ = 2

α(α − 2β + γ )

[
−β(α − β) +

√
β(α − β)(αγ − β2)

]
,

z∗ = α − β

α − 2β + γ
.

If α, γ < β, then

x∗ = 1

α(α − 2β + γ )

[
αβ + αγ − 2β2 + 2

√
β(α − β)(αγ − β2)

]
,

y∗ = 2

α(α − 2β + γ )

[
−β(α − β) −

√
β(α − β)(αγ − β2)

]
,

z∗ = α − β

α − 2β + γ
.

In all other cases, there is no interior equilibrium. It’s easy to see that α(y∗)2 = 4βx∗z∗. This fact will be used below.

We can measure the degree of departure of the proportions in (x∗, y∗, z∗) from the Hardy–Weinberg Law. One such measure

was introduced by Smith as

η = x∗z∗ − 1

4
(y∗)2

(see [8] and [9]). The sign of η indicates the type of mating. If η > 0, it is assortative mating; if η < 0, it is dissortative mating;

while if η = 0, it can be shown that the population must be in Hardy–Weinberg Equilibrium. Check directly that for the equilibrium

(x∗, y∗, z∗) above, the Smith measure is

η = (α − β)2

α(α − 2β + γ )
x∗.

Clearly, η > 0 if α, γ > β, and η < 0 if α, γ < β.

To study the stability of the equilibria, we can use the relation xn + yn + zn = 1 for n ≥ 1, and rewrite the equations in (5) asxn+1 = f (xn, yn),

yn+1 = g(xn, yn),
(6)

where

f (x, y) = α

T (x, y)

[
x2 + xy + 1

4
y2

]
,
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g(x, y) = 1

T (x, y)

[
α

(
xy + 1

2
y2

)
+ β(2x + y)(1 − x − y)

]
.

with T (x, y) = α(x + y)2 + 2β(x + y)(1 − x − y) + γ (1 − x − y)2. We then compute the Jacobian J(x, y) of system (6) and

evaluate it at each of the equilibria (0, 0), (1, 0), and (x∗, y∗). It can be shown that at (0, 0),

J(0, 0) =
[

0 0
2β

γ

β

γ

]
.

It has two eigenvalues λ1 = 0, λ2 = β

γ
. At (1, 0),

J(1, 0) =
[

2β

α

2β

α
− 1

− 2β

α
1 − 2β

α

]
.

It has two eigenvalues λ1 = 0, λ2 = 1. While (0, 0) can be stable or unstable depending on whether β < γ or β > γ , (1, 0) is

always neutrally stable. At the interior equilibrium (x∗, y∗), we have

J(x∗, y∗) = 1

α(αγ − β2)

[
2α(αγ − β2 − σQ) α(αγ − β2 − σQ)

2[−β(αγ − β2) + (α + β)σQ] (αγ − β2)(α − 2β) + 2βσQ

]

where Q =
√

β(α − β)(αγ − β2) and σ = 1 or −1 depending on whether α, γ > β or α, γ < β. It is easy to see that the long

term proportions of the genotypes only depend on the relative size of the three parameters α, β, γ . So we set α = sβ, γ = tβ, and

consider the relative size of the parameters s and t to 1. Then

J(x∗, y∗) = 1

s(st − 1)

[
2s(st − 1 − σQ) s(st − 1 − σQ)

2[−(st − 1) + (s + 1)σQ] (st − 1)(s − 2) + 2σQ

]

with Q = √
(s − 1)(st − 1).

Let the two eigenvalues of J(x∗, y∗) be λ1 < λ2. Long calculation shows that for s, t > 1, 0 < λ1 < 1 < λ2, so (x∗, y∗) is

unstable while (0, 0) is stable. This does not explain Example E. On the other hand, if s, t < 1, then −1 < λ1 < 0 < λ2 < 1, so

(x∗, y∗) is stable while (0, 0) is unstable. In this case, using the relation α(y∗)2 = 4βx∗z∗, and letting

p = x∗ + 1

2
y∗ and q = 1

2
y∗ + z∗,

we have

p2 = (x∗)2 + x∗y∗ + 1

4
(y∗)2 = (x∗)2 + x∗y∗ + β

α
x∗z∗ > (x∗)2 + x∗y∗ + x∗z∗ = x∗,

q2 = 1

4
(y∗)2 + y∗z∗ + (z∗)2 = β

α
x∗z∗ + y∗z∗ + (z∗)2 > x∗z∗ + y∗z∗ + (z∗)2 = z∗.

Similar to the case of selection, the predictions for the homozygotes are higher than the observations. This is exactly the opposite

of Example E.

Conclusion: Non-random mating does not explain the type of deviations in Example E.

5. Multiple Population Models

Consider two single populations Ni (i = 1, 2), each perfectly following the Hardy–Weinberg law. In population Ni the proportions

of the alleles A and a are pi and qi respectively, with pi + qi = 1. The proportions for the three genotypes AA, Aa, and aa are
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then p2
i , 2piqi , and q2

i respectively. When the two populations are mixed, the total population is N = N1 + N2. The proportions

of alleles A and a are

p = p1N1 + p2N2

N1 + N2
, q = q1N1 + q2N2

N1 + N2
,

respectively.

The actual proportions of the three genotypes are given by

x∗ = p2
1N1 + p2

2N2

N1 + N2
, y∗ = 2(p1q1N1 + p2q2N2)

N1 + N2
, z∗ = q2

1N1 + q2
2N2

N1 + N2
.

These can be compared with their expected values if the combined population were to satisfy the Hardy–Weinberg Law:

p2 = (p1N1 + p2N2)
2

(N1 + N2)2
, 2pq = 2(p1N1 + p2N2)(q1N1 + q2N2)

(N1 + N2)2
, q2 = (q1N1 + q2N2)

2

(N1 + N2)2
.

We have

x∗ − p2 = (p1 − p2)
2 N1N2

(N1 + N2)2
≥ 0,

z∗ − q2 = (q1 − q2)
2 N1N2

(N1 + N2)2
≥ 0,

and

y∗ − 2pq = 2(p1 − p2)(q1 − q2)
N1N2

(N1 + N2)2
≤ 0.

Also note that p1 − p2 = q2 − q1, so we have the symmetric relation x∗ − p2 = z∗ − q2. Thus, in a two population model, the

heterozygote Aa always has a lower proportion, while the homozygotes AA and aa always have higher proportions than what will

be predicted by the Hardy–Weinberg law. This agrees with Example E.

In particular, consider the special case N1 = N2. We have

x∗ − p2 = 1

4
(p1 − p2)

2 = z∗ − q2, y∗ − 2pq = −1

2
(p1 − p2)

2.

To fit Example E, we let N1 = N2 = 4035 so the total population is N = 8070. Also let

x∗ = 3969

8070
, y∗ = 3174

8070
, z∗ = 927

8070
.

Then

p = x∗ + 1

2
y∗ = 5556

8070
.

Using

p = p1 + p2

2
and x∗ − p2 = (p1 − p2)

2

4

we can solve for the proportions in the original individual populations to get p1 = 0.8221 and p2 = 0.5549. These values give the

number of alleles as follows:

AA: p2
1N1 + p2

2N2 ≈ 3969,

Aa: 2p1q1N1 + 2p2q2N2 ≈ 3173,

aa: q2
1N1 + q2

2N2 ≈ 927.

These values match that of Example E exactly.

Conclusion: The deviations in Example E can be perfectly explained by a two population model. It’s easy to see that any multiple

population model also can serve this purpose.
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6. Discussion

In this paper we have considered three possible reasons that can explain the type of deviations from the Hardy–Weinberg Law as

observed in Example E. They are selection, non-random mating, and multiple population composition. These have been suggested

by Maynard Smith without supplying any detail. We quote him as follows ([6]).

One possible explanation is that heterozygotes are less viable in the wild, but this is unlikely, because laboratory measurements

suggested that heterozygotes had a higher viability than either homozygote. It is conceivable that abdomen color influences mate

choice: if there is a tendency for like to mate with like this could explain the discrepancy. Perhaps the most plausible explanation

is that the flies are not drawn from a single random-mating population.

Two of the possible explanations supplied by him, selection and random mating, are shown to be largely invalid. Each working

alone cannot be the legitimate cause for such deviations. His last suggestion that the flies are not drawn from a single random-

mating population is confirmed by our study. The multiple population model is elementary and only involves algebra. But we are

able to show that a two population model can provide a perfect explanation to Example E. The observations recorded by Da Cunha

strongly support the results of our mathematical models. The excess of homozygotes resulted from sampling multiple populations

is called the Wahlund effect.

Other possible reasons can be supplied, such as mutation and migration. They can be studied along similar lines employed in this

paper. Each of the factors can be formulated in more complicated ways, say, with age structures or sex differentials. In addition, a

few factors can take effect at the same time, as it is typically the case in the natural world. Our study strongly suggests which of

the factors can possibly be the main contributor to such deviations.

References

[1] W. L. Briggs, A. Chung, M. Grant and D. S. Robertson, “Differential and difference equations of population genetics",

Proc. of the 15th Annual Conference on Applied Math., Edmond, Oklahoma, (1999) 37–49.

[2] Da Cunha, A. Brito, “Genetic analysis of the polymorphism of color pattern in Drosophila Polymorpha", Evolution, 3,

(1949) 239–251.

[3] W. S. Klug, (1999), Essential of Genetics, 3rd ed. Prentice-Hall, Inc.

[4] Lyubich, I. Yuri, Mathematical Structures in Population Genetics, Springer-Verlag, (1992).

[5] M. N. Martinez and A. R. Cordeiro, “Modifiers of color pattern genes in Drosophila Polymorpha", Genetics, 64, (1970),

573–587.

[6] J. Maynard Smith, Evolutionary Genetics, Oxford University Press, (1996).

[7] Preiss, Mitchell, “The Hardy–Weinberg law in population genetics", New England Mathematics Journal, Nov., (1997),

51–62.

[8] Price and R. George , “Extension of the Hardy–Weinberg Law to assortative mating", Annals of Human Genetics, 34,

(1971), 455–458.

[9] C. A. B. Smith, “A note on testing the Hardy–Weinberg Law", Annals of Human Genetics, 33, (1970), 377–383.

[10] Tai and J. John, “On nonrandom mating systems for attaining Hardy–Weinberg equilibrium", Biom. J., 32(8), (1990), 1015–

1018.

Mathematics Newsletter -91- Vol. 16 #4, March 2007



Chennai Mathematical Institute
A University under Section 3 of the UGC Act, 1956

Plot H1, SIPCOT IT Park,

Padur P. O., Siruseri 603 103, Tamil Nadu.

http://www.cmi.ac.in

National Undergraduate & Postgraduate
Programmes in Mathematical Sciences

CMI Invites Applications for the Following
Programmes

• B.Sc. (Hons.) in Mathematics and Computer Science (3 year

integrated course).

• B.Sc. (Hons.) in Physics (3 year course).

• M.Sc. in Mathematics, M.Sc. in Computer Science.

• Ph.D. in Mathematics, Ph.D. in Computer Science.

The courses are conducted by CMI with the cooperation of

the Institute of Mathematical Sciences, Chennai. All degrees

are awarded by CMI. All students will be provided hostel

accommodation in campus. These Programmes are supported

by National Board for Higher Mathematics (NBHM), Depart-

ment of Atomic Energy.

Eligibility for Admission

• B.Sc. 12th standard or equivalent.

• M.Sc. (Math) B.Sc.(Math)/B.Math/B. Stat/B.Tech.

• M.Sc. (C. S.) B.E./B.Tech/B.Sc.(C. S.) or B.Sc.(Math) with

a strong background in C. S.

• Ph.D. (Math) B.E./B.Tech./B.Sc.(Math)/M.Sc.(Math).

• Ph.D. (C. S.) B.E/B.Tech/M.Sc.(C. S.)/M.C.A.

For all the programmes, applicants shortlisted on the basis of

their scholastic record will have to take an entrance examina-

tion to be held at several centres across India on Thursday,

May 31, 2007. In addition, selection for Ph.D. will involve an

interview at Chennai.

How to Apply: To obtain application forms and information

brochures, send a DD for Rs. 300/- in favour of Chennai Math-

ematical Institute payable at Chennai to the address at the top.

Indicate clearly your name, address and the programme(s) you

are applying for. Completed forms are due by April 20, 2007.

Seventh Asian Computational Fluid
Dynamics Conference

November 26–30, 2007

Scope of the Conference

The Asian Computational Fluid Dynamics Conference

(ACFD) is held once in every two years. The first confer-

ence (ACFD1) was held at Hong Kong in 1995, followed by

the successive ones held at Tokyo (Japan), Bangalore (India),

Miyanyang (China), Pusan (Korea) and Taipei (Taiwan)

respectively. The major objective of ACFD is to provide a

common forum for exchange of new ideas and experiences

amongst the scientists and engineers from Asia as well as other

parts of the globe, working on algorithms and applications of

CFD.

The ACFD7 will be held at Bangalore, India during

November 26–30, 2007. The programme includes invited

keynote lectures by distinguished experts from across the

globe. There will be a few plenary sessions and a large num-

ber of parallel technical sessions spread over five days. The

conference is being jointly organized by National Aerospace

Laboratories, Bangalore (www.nal.res.in), CFD Division

of the Aeronautical Society of India (www.aesi.org),

Indian Institute of Science, Bangalore (www.iisc.ernet.in),

Centre for Development of Advanced Computing, Pune

(www.cdac.in) and Indian Institute of Technology, Mumbai

(www.iitb.ac.in).

Conference Venue:

J. N. Tata Auditorium

National Science Seminar Complex

Sir C. V. Raman Avenue

Bangalore 560 012, India

Important Dates:

Submission of Extended Abstract May 31, 2007

Acceptance of Extended Abstract July 31, 2007

Submission of Full Paper September 30, 2007

ACFD7 Conference November 26–30, 2007

Mathematics Newsletter -92- Vol. 16 #4, March 2007



For Further Details Contact:

J S Mathur

Organising Secretary ACFD7
Scientist CTFD Division
National Aerospace Laboratories
PB 1779, Bangalore 560 017, India
Tel: 91 80 25051613; Fax: 91 80 25220952
E-mail: jsm@ctfd.cmmacs.ernet.in

Avijit Chatterjee

Organising Secretary ACFD7
Department of Aerospace Engineering
Indian Institute of Technology
Powai, Mumbai 400 076, India
Tel: 91 22 25767128; Fax: 91 22 25722602
E-mail: avijit@aero.iitb.ac.in
Website: http://acfd7.cdac.in

Indian Institute of Science

Bangalore, India
IISc Centenary Post-Doctoral Fellowship

The Indian Institute of Science, Bangalore is pleased to

announce the IISc Centenary POST-DOCTORAL FELLOW-

SHIP to encourage bright scientists and engineers (preferably

below 35 years) of all nationalities to work in the stimulating

environment of the Institute.

Duration: The fellowship will be for a period of 2 years

(renewable for one more year)

Qualification: Candidates with a Ph.D. degree (in Science

or Engineering) or those who have recently submitted their

doctoral theses can apply.

Fellowship:

(1) Rs. 25,000 per month for a Ph.D. with 2 years experience.

(2) Rs. 20,000 per month for a recent Ph.D.

(3) Rs. 15,000 per month for those yet to be awarded the Ph.D.

Applications can be submitted at any time of the year and appli-

cants will be informed about the decision on their application

within three months.

For Further Details Visit:

http://www.iisc.ernet.in/opportunities/

Summer Programme in Mathematics
(SPIM)

Harish–Chandra Research Institute, Allahabad
18th June–6th July, 2007

Harish–Chandra Research Institute conducts the Summer Pro-

gramme in Mathematics every year. The aim of this programme

is to introduce interesting topics in Mathematics to the stu-

dents and to give them an exposure to the world of Mathemat-

ics Research. The programme involves intensive training on

selected topics in mathematics for a period of three weeks.

The programme is primarily intended for students from

universities and colleges. Preference will be given to

M.Sc. I year and II year students, however exceptional

B.Sc. final year students are also encouraged to apply.

The students who do exceptionally well in the programme

will be considered for a special visiting programme at HRI.

The programme has, in the past, provided HRI with several

doctoral students.

Important Dates

The deadline for receiving completed application form: 20th

April, 2007.

The list of selected candidates will be available by: 27th April,

2007

This list will be put in the web site by 29th April, 2007.

Latest date on which selected candidates are expected to get

postal intimation: 12th May, 2007.

For Further Information Visit:

http://www.mri.ernet.in/∼spim/

Contact Address:

Ratnakumar P. K/Kalyan Chakraborty

Co-ordinator, SPIM 2007

Harish-Chandra Research Institute

Chhatnag Road, Jhunsi Allahabad 211 019, Uttar Pradesh

spim@hri.res.in; spim@mri.ernet.in
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Professor Srinivasa S. R. Varadhan
to Receive 2007 Abel Prize

The Norwegian Academy of Science and Letters has

announced that Srinivasa S. R. Varadhan of the Courant Insti-

tute of Mathematical Sciences is the winner of the 2007 Abel

Prize.

Srinivasa S. R. Varadhan was born on January 2, 1940 in

Madras (Chennai), India. He received his B.Sc. honours degree

in 1959 and his M.A. the following year, both from Madras

University. In 1963 he received his Ph.D. from the Indian Sta-

tistical Institute. He is currently Professor of Mathematics and

Frank J. Gould Professor of Science at the Courant Institute.

Varadhan was awarded the prize “for his fundamental

contributions to probability theory and in particular for cre-

ating a unified theory of large deviations.” The Abel Com-

mittee also said that “Varadhan’s theory of large deviations

provides a unifying and efficient method for clarifying a rich

variety of phenomena arising in complex stochastic systems,

in fields as diverse as quantum field theory, statistical physics,

population dynamics, econometrics and finance, and traffic

engineering. . . . Varadhan’s work has great conceptual strength

and ageless beauty. His ideas have been hugely influential and

will continue to stimulate further research for a long time.”

The Abel Prize is awarded annually by the Norwegian

Academy of Science and Letters. The prize amount is

NOK 6,000,000 or close to USD 1,000,000. The Abel Prize

for 2007 will be presented to Srinivasa S. R. Varadhan by

HM King Harald at the award ceremony in Oslo on 22nd May.

The Abel Prize website has more information about

Varadhan and the prize, see http://www.abelprisen.no/en/

Ramanujan Mathematical Society

National Instructional Workshop
on Complex Analysis
(June 1–5, 2007) and

22nd Annual Conference
(June 6–8, 2007)

About Workshop (June 1–5, 2007): The International

Congress of the Mathematicians (ICM) will be held in

Hyderabad during August 2010. With the objective of training

many researchers in modern areas of Mathematics (so that they

will be able to take active part in ICM -– 2010), Ramanujan

Mathematical Society has embarked on a series of workshops

oriented towards thrust areas of various branches of Mathemat-

ics. Last year, Ramanujan Mathematical Society organized a 3-

days workshop on Number Theroy at University of Hyderabad

during July 3–5, 2006. This year, the Society will be organizing

a 5-days instructional workshop on Complex Analysis (from

the standpoint of Geometry and Topology). The programme

will be directed by Prof. Ravi Kulkarni, I.I.T., Bombay. The

other expected resource persons are Prof. S. Mitra (Cor-

nell University, USA), Prof. S. S. Bhoosnurmath (Karnatak

University, Dharwad), Prof. R. R. Simha (University of

Mumbai) and Prof. I. Biswas (TIFR, Bombay). There will be

three lectures everyday for five days followed by discussions

and tutorials.

Applications (with brief C.V.) for the workshop may

be sent by E-mail to Prof. Ravi Kulkarni [E-mail-Ids:

kulkarni@math.iitb.ac.in, punekulk@yahoo.com] and

the Local Secretary: Dr. Shyam S. Kamath [E-mail-Id:

shyam@nitk.ac.in, shyam.kamath@yahoo.com]. Selected

participants will be intimated (through email) by April 15,

2007. Upon attending the workshop and the conference, the

participants will be paid to and fro 2nd class sleeper train

fare/actual bus fare, as per the Central Govt. rules. Local

hospitality will be provided with no additional charges. All

the selected participants are also entitled to stay on to attend

the 22nd Annual Conference of the Ramanujan Mathematical

Society during 6th-–8th June 2007, where more advanced lec-

tures will be delivered.

About the Venue:

National Institute of Technology of Karnataka, Surathkal,

(established originally as Karnataka Regional Engineering

College, Surathkal in 1961) has been one of the premier educa-

tional institutions owned by the Govt. of India and is a Deemed

University

About the 22nd Annual Conference (June 6–8, 2007)

Academic Programme:

There will be two invited talks of one hour in the morning

sessions. The speakers are:
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1. S. M. Bhatwadekar TIFR, Mumbai Algebra

2. John Hubbard∗ Cornell University, Analysis

USA

3. Ravi Kannan∗ Yale University, Computer

USA Science/

Combinatorics

4. Somenath NAL, Bangalore Applied Maths,

Mukherjee Finite Elements

5. Sharad Sane University of Graph Theory/

Mumbai Discrete

Mathematics

6. Harish Sheshadri I.I.Sc., Bangalore Poincare’s

Conjecture∗to be confirmed.

In the afternoon sessions, there will be three parallel symposia

each of 90 minutes duration everyday. The organizers of the

symposia have made tentative list of speakers most of whom

have confirmed their participation. In addition, there will be

sessions for presentation of papers especially by young work-

ers and teachers. There will also be a public lecture, perhaps on

a topic related to L. Euler whose 300th Birth anniversary falls

in 2007. The registration fee for the National Workshop and

the 22nd Annual Conference of the Ramanujan Mathematical

Society is:

Workshop only Rs. 500.00

Workshop and Conference Rs. 800.00

Conference only Rs. 400.00

(DD in favour of “22 ND AC - RMS 2007”
payable at Mangalore)

For further details, please visit our website:

http://www.ramanujanmathsociety.org

There will, however, be no registration fee for the Life Mem-

bers of the Ramanujan Mathematical Society.

Local Secretary:

Dr. Shyam S. Kamath

Department of Mathematical and Computational Sciences

National Institute of Technology Karnataka, Surathkal

Post: Srinivasanagar 575 025

Mangalore – Karnataka State

E-mail: shyam@nitk.ac.in, shyam kamath@yahoo.com

Phone: +91-824-247-4000 Ext. 3254

Fax: +91-824-247-4048/ +91-824-247-4033

Symposium 1: Probability Theory – organized by Abhay

Bhatt

Participants:

1. A. Krishnamoorthy, Cochin University of Science and

Technology

2. Anindya Goswami, I.I.Sc., Bangalore

3. Bhupendra Gupta, I.I.T., Kanpur

4. Krishanu Maulik, I.S.I., Kolkata

5. Nabin Kumar Jana, Bijoy Krishna Girls’ Collage, West

Bengal

6. R. Vasudev, University of Mysore

7. S. Ravi, University of Mysore

Symposium 2: Complex Analysis and Teichmuller The-

ory – organized by Ravi Kulkarni

Participants:

1. S. S. Bhoosnurmath, Karnatak University, Dharwad

2. Sudeb Mitra, Cornell University, USA

3. Indranil Biswas, TIFR, Mumbai

4. R. R. Simha, University of Mumbai (retd.)

5. S. Ponnusamy, I.I.T., Madras

6. A. P. Singh, University of Jammu

7. 3 John Hubbard, Cornell University, USA

Symposium 3: Arithmetic and Geometry – organized by

Kapil Paranjape

Participants:

1. Chandan S. Dalawal, HRI,

Allahabd

Varieties over p-adic fields

2. Ramesh Srikantan K-Theory of Arithmetic

varieties

3. Arvind Nair, TIFR, Mumbai The arithmetic of modular

varieties

4. V. Suresh, University of

Hyderabad

The arithmetic and geom-

etry of quadratic forms

5. C. S. Rajan, TIFR Varieties over global fields

6. Suryaramana, HRI,

Allahabad

Grothendieck-Teichmuller

Lego
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A special symposium devoted to teaching of mathematics

will be organised:

Symposium 4: Teaching of Functional Analysis – organized

by Subhash Bhatt

Participants:

1. Tirthankar Bhattacharyya, ISI, Bangalore

2. B. V. Rajarama Bhat, ISI, Bangalore

3. Prof. S. H. Kulkarni, IIT, Chennai

4. Pradipta Bandopadhaya ISI, Kolkata

5. Rajendra Bhatia, ISI, Delhi

6. Subhash J. Bhatt, Sardar Patel Univ., Vallabh Vidyanagar

7. V. Muruganandam, University of Pondicherry

Call for Papers: Those intending to submit papers for pre-

sentation, may send the abstracts of the papers (prefer-

ably in PDF format) to Prof. V. Balaji, CMI, Chen-

nai (E-mail-Id: balaji@cmi.ac.in) and Local Secretary,

Dr. Shyam S. Kamath (E-mail-Id: shyam@nitk.ac.in,

shyam.kamath@yahoo.com) latest by April 25, 2007. Authors

of the selected papers will be intimated through E-mail by

May 5, 2007.

Ramanujan Mathematical Society
National Instructional

Workshop on Complex Analysis
(June 1–5, 2007)

and
22nd Annual Conference

(June 6–8, 2007)
at

Department of Mathematical
and Computational Sciences

National Institute of Technology
Karnataka, Surathkal

Post: Srinivasnagar 575 025
Mangalore – Karnataka

Registration Form

Name:

(in BLOCK LETTERS)

Designation:

Institution:

Sex (M/F):

Address for Correspondence:

Telephone/

Mobile No.: STD Code Telephone No.

(off)

(Res)

(Mobile)

E-mail-Id:

Attending: Workshop/Conference/Workshop and Conference

Demand Draft Details: Amount: Rs.

(DD should be drawn in Number:

favour of Date:

“22nd AC-RMS 2007” Bank:

payable at Mangalore) Branch:

Accommodation needed?: YES/NO

Presenting Paper?: YES/NO

Place:

Date: Name and Signature of the Applicant

6th International ISAAC Congress

The ISAAC (International Society for Analysis, its Applica-

tions and Computation) board, the Turkish Mathematical Soci-

ety - Ankara Branch, the Local Organizing Committee and the

Department of Mathematics at METU, are pleased to invite

you to the 6th International ISAAC Congress to be held from

August 13, 2007 to August 18, 2007 on the campus of Mid-

dle East Technical University (METU), Ankara, Turkey. The

6th International ISAAC congress will resume the style estab-

lished during the previous meetings in USA (1997), Japan

(1999), Germany (2001), Canada (2003) and Italy (2005).

Special Sessions:

(1) Analytic Function Spaces and their Operators,

Organizers: R. Aulaskari (Finland) and H. T. Kaptanog

(lu) (Turkey)
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(2) Clifford and Quaternion Analysis,

Organizers: I. Sabadini (Italy), M. Shapiro (Mexico) and

F. Sommen (Belgium)

(3) Complex Analysis and Potential Theory,

Organizers: T. A. Aliyev (Turkey), M. L. Cristoforis

(Italy) and P. Tamrazov (Ukraine)

(4) Complex Analytic Methods for Applied Sciences,

Organizers: S. V. Rogosin (Belarus) and V. V. Mityushev

(Belarus)

(5) Complex and Functional Analytic Methods in PDEs,

Organizers: H. G. W. Begehr (Germany), D. Dai (China),

J. Du (China)

(6) Dispersive Equations,

Organizers: V. Georgiev (Italy) and M. Reissig (Germany)

(7) Fractional Differential Equations and their Applications,

Organizers: A. Kilbas (Belarus) and J. J. Trujillo (Spain)

(8) Inverse and Ill-Posed Problems: Analysis and their

Applications,

Organizers: A. Hasanov (Turkey), M. Yamamoto (Japan)

and S. I. Kabanikhin (Russia)

(9) Integral Geometry,

Organizer: M. Yamamoto (Japan)

(10) Modern Aspects of the Theory of Integral Transforms and

their Applications,

Organizers: A. Kilbas (Belarus) and S. Saitoh (Japan)

(11) Oscillation of Functional-Differential and Difference

Equations,

Organizers: L. Berezansky (Israel) and A. Zafer (Turkey)

(12) Pseudo-Differential Operators,

Organizers: L. Rodino (Italy) and M. W. Wong (Canada)

(13) Reproducing Kernels and Related Topics,

Organizers: D. Alpay (Israel), A. Berlinet (France),

S. Saitoh (Japan) and D. X. Zhou (Hong Kong)

(14) Spaces of Differentiable Functions of Several Real Vari-

ables and Applications,

Organizers: V. Burenkov (UK) and S. Samko (Portugal)

(15) Numerical Functional Analysis,

Organizers: P. E. Sobolevskii (Brazil), A. Ashyralyev

(Turkey)

(16) Integrable Systems,

Organizers: M. Gürses (Turkey), Ismagil Habibullin

(Turkey)

(17) General Session (topics which are not suitable for the

sessions listed above),

Organizer: A. O. Çelebi (Turkey)

Deadlines:

Abstract Submission: May 15, 2007

Early Registration: May 15, 2007

For Further Details Contact: info@isaac2007.org

XIII-TH Conference on Mathematics
and Computer Science

July 1–4, 2007, in Chelm

The Conference Program Covers the Following Sections:

• Mathematical and functional analysis

• Probability theory and statistics

• Mathematical didactics

• Computer science and Applications of mathematics to eco-

nomics

Address for Contact:

XIII th International Conference on Mathematics and

Computer Science

The State University of Applied Science

Pocztowa 54 22 – 100 Chelm, Poland

Phone +48 82 565 88 95

Phone/Fax. +48 82 565 88 94

E-mail: konfmat@pwsz.chelm.pl

http://www.pwsz.chelm.pl/konfmat
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Fourth International Conference of
Applied Mathematics and Computing

Plovdiv, Bulgaria
(August 12–18, 2007)

The Fourth International Conference of Applied Mathemat-

ics and Computing will take place in Plovdiv, Bulgaria,

August 12–18, 2007.

Address of the Organizing Committee:

Prof. Drumi Bainov

P. O. Box 45, 1504 Sofia, Bulgaria

Tel: +359-888-91 45 32

E-mail: drumibainov@yahoo.com

http://math.uctm.edu/conference2007/

First Joint International Meeting
between the American Mathematical

Society and Polish Mathematical
Society

July 31, 2007–August 3, 2007

Venue: At the old campus of the University of Warsaw, located

close to the Warsaw’s Old Town and other sites of interest.

Most activities will take place at the old campus (No. 10) of

the University of Warsaw, located close to the Warsaw’s Old

Town and other sites of interest.

Plenary Speakers:

• Henryk Iwaniec (Rutgers University)

• Tomasz J. Luczak (Adam Mickiewicz University)

• Tomasz Mrowka (Massachusetts Institute of Technology)

• Ludomir Newelski (University of Wroclaw)

• Madhu Sudan (Massachusetts Institute of Technology)

• Anna Zdunik (Warsaw University)

For info on organizers and programs click on the session title

from the web page at http://www.ams.ptm.org.pl/

Interested person for giving a talk in a session should contact

directly session organizers.

International Symposium on
Geometric Function Theory and

Applications

August 20–24, 2007
Istanbul, Turkey

TC Istanbul Kultur University Faculty
of Science and Letters

Department of Mathematics and Computer Science

Aim: We would like to draw your attention to the forthcoming

International Symposium on Geometric Function Theory and

Applications (GFTA 2007) dedicated to the 10th Anniversary

of TC Istanbul Kultur University, which will be held at TC

Istanbul Kultur University during August 20–24, 2007. The

aim of the symposium is to bring together leading experts as

well as young researchers working on topics mainly related to

Univalent and Geometric Function Theory and to present their

recent work to the mathematical community. English is the

official language of the symposium.

Main Topics:

• Univalent Function Theory
• Differential Subordination
• Quasiconformal Mappings
• Fractional Calculus

Important Dates:

• June 01, 2007, early registration
• June 30, 2007, deadline for the extended abstract submission
• July 31, 2007, deadline for the audience

In order for the papers presented to be published in the pro-

ceedings of the symposium, full texts of papers should be sent

to e.yavuz@iku.edu.tr by October 31, 2007.

For Further Details Visit: http://fen-edebiyat.iku.edu.tr/cfta2007/
bildiri−ozetleri−en.htm

Mathematics Newsletter -98- Vol. 16 #4, March 2007



Contact Address:

Emel YAVUZ (Scientific Secretary)
Address: TC Istanbul Kultur University
Faculty of Science and Letters
Department of Mathematics and Computer Science
Atakoy Campus,
Bakirkoy, 34156 Istanbul, Turkey
Phone: +90 (212) 498 43 61

+90 (212) 498 43 00
Fax: +90 (212) 661 92 74
E-mail: e.yavuz@iku.edu.tr

International Symposium on
Complex Function Theory

“Lucian Blaga”

University of Sibiu, Romania
August 26–29, 2007.

Organizers: Istanbul Kultur University (Turkey), Lucian

Blaga University of Sibiu (Romania) and Kinki Univeristy

(Japan).

For detailed information see http://www.siac-sibiu.net/

25 Years of Collaboration between
the Indian National Science
Academy and the Hungarian

Academy of Sciences

The Indian National Science Academy (INSA), New Delhi,

and the Hungarian Academy of Sciences (HAS), Budapest,

jointly broughtout a compendium to mark the 25th Anniversary

of the Scientific – cooperation (1980–2005). In this connec-

tion Prof. R. A. Mashelkar, FNA, FRS, the president of INSA

expressed his views as follows: The future belongs to knowl-

edge based society. As such support to Scientific activities and

motivation of Scientists to exchange their views is extremely

important. It is well demonstrated that with the advent of

globalization, global partnerships in science and technology

are going to play an increasingly important role in shaping the

world. We are proud to have collaboration with HAS, Hungary

in Scientifically & Culturally an advanced country with a great

effinity towards India. The Hungarian Scientists have earned

a great recognition in the world of Science.

In the book “25 years of collaboration between the Indian

National Science Academy and the Hungarian Academy

of Sciences” broughtout by INSA-HAS, the names of

92 Hungarian Scientists who visited India & 52 Indian Scien-

tists who visited Hungary under this Scientific Collaborative

programme, were listed. The workdone and the views of these

scientists in brief, also included.

Professor R. Balasubrahmanian is one of the members of

the INSA delegation (six men) to Hungary to discuss & iden-

tify the scientific areas to improve the scientific cooperation

between INSA & HAS. Regarding Mathematics, the detailed

visit report of Prof. R. Balasubrahmanian states that

(i) Theoritical computer Science;
(ii) Combinatorial & analytic number theory; and

(iii) Probability

are the three major areas identified in which meaningful sci-

entific cooperation can be started. He further suggested that

the programme be visit based for mathematicians. Encourage-

ment for the youngsters is essential and will ensure that the

exchange programme is well utilized.

Advanced Training in Mathematics
Schools

Funded by National Board for
Higher Mathematics

For Getting Complete Details of:

• Overview of ATM Schools
• Committees for ATM Schools
• Annual Foundation schools
• Advanced Instructional Schools
• Workshops linked to an AIS
• Schools for lecturers
• Notes of lectures in ATM Schools

Visit: http://www.math.iitb.ac.in/atm/
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International Conference of
Numerical Analysis and Applied
Mathematics (ICNAAM 2007)

16–20 September, 2007

Venue:

Hotel Marbella (Agios Ioannis Peristeron)
Corfu., Corfu, Greece

Important Dates:

Early Registration ends: April 30, 2007
Normal Registration ends: June 15, 2007
Late Registration ends: July 20, 2007
Submission of Extended Abstract: July 15, 2007 (Final Date)
Notification of acceptance: July 20, 2007
Submission of the source files of the camera ready extended

abstracts: July 31, 2007 – Final Date
Submission of the full paper: September 30, 2007 – January 31,

2008

Address For Contact:

Mrs Eleni Ralli-Simou
Secretary ICNAAM
10 Konitsis Street
Amfithea Paleon Faliro GR-175 64
Athens, Greece
Fax: +30210 94 20 091, +30 2710 237 397
E-mail: tsimos@mail.ariadne-t.gr

: tsimos.conf@gmail.com

Web page: http://www.icnaam.org/

The 32nd Conference on Stochastic
Processes and their Applications

August 6–10, 2007

Venue:

Department of Mathematics
University of Illinois
Urbana-Champaign

Important Dates:

Registration Fees:

Regular: $ 150 (before April 30, 2007),

Late: $ 200 (after April 30, 2007)

Student: $ 50 (before April 30, 2007),

Late: $ 75 (after April 30, 2007)

Abstract Deadline: May 31, 2007

For Further Details Visit: http://www.math.uiuc.edu/SPA07/

Fifth Symposium on Nonlinear
Analysis (SNA 2007)

10–14 September, 2007

Venue:

Nicolaus Copernicus University

Torun, Poland

Topics:

Topics in the topological and metric fixed point theory, Topo-

logical and variational methods in nonlinear analysis, Quali-

tiative theory of ordinary and partial differential equations and

inclusions, Nonsmooth and convex analysis, Critical point the-

ory, Optimal control theory, Applications.

Deadlines:

Registration deadline: Thu May 31, 2007

Abstract deadline: Sat June 30, 2007

Contact Address:

Slawomir Plaskacz

Faculty of Mathematics and Computer Science

Nicolaus Copernicus University

ul. Chopina 12/18

87-100 Torun, Poland

Fax: +48 56 622-89-79

E-mail: sna2007@mat.uni.torun.pl

Web page: http://www-users.mat.uni.torun.pl/∼sna2007/

contact.html

Mathematics Newsletter -100- Vol. 16 #4, March 2007


	mnl_m07_cont.pdf
	mnl_07_final

