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Dual spaces. A linear functional on a vector space X is a linear mapping α : X → C

(or to R in the real case), i.e., α(ax + by) = aα(x) + bα(y). When X is a normed

space, α is continuous if and only if it is bounded, i.e., sup{|α(x)| : ‖x‖ ≤ 1} < ∞.

Then we define ‖α‖ to be this sup, and it is a norm on the space X∗ of bounded linear

functionals, making X∗ into a Banach space.

Riesz–Fréchet. If α : H → C is a bounded linear functional on a Hilbert space H, then

there is a unique y ∈ H such that α(x) = 〈x, y〉 for all x ∈ H; also ‖α‖ = ‖y‖.

Linear Operators. These are linear mappings T : X → Y , between normed spaces.

Defining ‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}, finite, makes the bounded (i.e., continuous)

operators into a normed space, B(X, Y ). When Y is complete, so is B(X, Y ). We get

‖Tx‖ ≤ ‖T‖ ‖x‖, and, when we can compose operators, ‖ST‖ ≤ ‖S‖ ‖T‖. Write B(X)

for B(X, X), and for T ∈ B(X), ‖Tn‖ ≤ ‖T‖n. Inverse S = T−1 when ST = TS = I.

Adjoints. T ∈ B(H, K) determines T ∗ ∈ B(K, H) such that 〈Th, k〉K = 〈h, T ∗k〉H for

all h ∈ H, k ∈ K. Also ‖T ∗‖ = ‖T‖ and T ∗∗ = T .

Unitary operators. Those U ∈ B(H) for which UU∗ = U∗U = I. Equivalently, U is

surjective and an isometry (and hence preserves the inner product).

Self-adjoint or Hermitian operators. Those T ∈ B(H) such that T = T ∗.

Normal operators. Those T ∈ B(H) such that TT ∗ = T ∗T (so including Hermitian

and unitary operators).

Spectrum. σ(T ) = {λ ∈ C : (T − λI) is not invertible in B(X)}. Includes all eigenval-

ues λ where Tx = λx for some x 6= 0, and often other things as well. Spectral radius:

r(T ) = sup{|λ| : λ ∈ σ(T )}. Properties: σ(T ) is closed, bounded and nonempty. Proof:

based on the fact that (I −A) is invertible for ‖A‖ < 1. This implies that r(T ) ≤ ‖T‖.

Spectral radius formula. r(T ) = infn≥1 ‖T
n‖1/n = limn→∞ ‖Tn‖1/n.

Note that σ(Tn) = {λn : λ ∈ σ(T )} and σ(T ∗) = {λ : λ ∈ σ(T )}. The spectrum of a

unitary operator is contained in {|z| = 1}, and the spectrum of a self-adjoint operator

is real (proof by Cayley transform: U = (T − iI)(T + iI)−1 is unitary).

Finite rank operators. T ∈ F (X, Y ) if Im T is finite-dimensional.

Compact operators. T ∈ K(X, Y ) if: whenever (xn) is bounded, then (Txn) has

a convergent subsequence. Now F (X, Y ) ⊆ K(X, Y ) since bounded sequences in a

finite-dimensional space have convergent subsequences (because when Z is f.d., Z is

isomorphic to ℓn
2
, i.e., ∃S : ℓn

2
→ Z with S, S−1 bounded). Also limits of compact

operators are compact, which shows that a diagonal operator Tx =
∑

λn〈x, en〉en is

compact iff λn → 0.
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Hilbert–Schmidt operators. T is H–S when
∑

‖Ten‖
2 < ∞ for some o.n.b. (en). All

such operators are compact—write them as a limit of finite rank operators Tk with

Tk

∑∞

n=1
anen =

∑k
n=1

an(Ten). This class includes integral operators T : L2(a, b) →

L2(a, b) of the form

(Tf)(x) =

∫ b

a

K(x, y)f(y) dy,

where K is continuous on [a, b]× [a, b].

Spectral properties of normal operators. If T is normal, then (i) Ker T = Ker T ∗, so

Tx = λx =⇒ T ∗x = λx; (ii) eigenvectors corresponding to distinct eigenvalues are

orthogonal; (iii) ‖T‖ = r(T ).

If T ∈ B(H) is compact normal, then its set of eigenvalues is either finite or a sequence

tending to zero. The eigenspaces are finite-dimensional, except possibly for λ = 0. All

nonzero points of the spectrum are eigenvalues.

Spectral theorem for compact normal operators. There is an orthonormal sequence (ek)

of eigenvectors of T , and eigenvalues (λk), such that Tx =
∑

k λk〈x, ek〉ek. If (λk) is

an infinite sequence, then it tends to 0. All operators of the above form are compact

and normal.

Corollary. In the spectral theorem we can have the same formula with an orthonormal

basis, adding in vectors from Ker T .

General compact operators. We can write Tx =
∑

µk〈x, ek〉fk, where (ek) and (fk)

are orthonormal sequences and (µk) is either a finite sequence or an infinite sequence

tending to 0. Hence T ∈ B(H) is compact if and only if it is the norm limit of a

sequence of finite-rank operators.

Integral equations. Fredholm equations on L2(a, b) are Tφ = f or φ − λTφ = f , where

(Tφ)(x) =
∫ b

a
K(x, y)φ(y) dy. Volterra equations similar, except that T is now defined

by (Tφ)(x) =
∫ x

a
K(x, y)φ(y) dy.

Neumann series. (I − λT )−1 = 1 + λT + λ2T 2 + . . ., for ‖λT‖ < 1.

Separable kernels. K(x, y) =
∑n

j=1
gj(x)hj(y). The image of T (and hence its eigen-

vectors for λ 6= 0) lies in the space spanned by g1, . . . , gn.

Hilbert–Schmidt theory. Suppose that K ∈ C([a, b] × [a, b]) and K(y, x) = K(x, y).

Then (in the Fredholm case) T is a self-adjoint Hilbert-Schmidt operator and eigen-

vectors corresponding to nonzero eigenvalues are continuous functions. If λ 6= 0 and

1/λ 6∈ σ(T ), the the solution of φ − λTφ = f is

φ =

∞∑
k=1

〈f, vk〉

1 − λλk
vk.

Fredholm alternative. Let T be compact and normal and λ 6= 0. Consider the equations

(i) φ − λTφ = 0 and (ii) φ − λTφ = f . Then EITHER (A) The only solution of (i) is

φ = 0 and (ii) has a unique solution for all f OR (B) (i) has nonzero solutions φ and

(ii) can be solved if and only if f is orthogonal to every solution of (i).
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