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Abstract

In this paper we study interpolation of bilinear operators between products of Banach

spaces generated by abstract methods of interpolation in the sense of Aronszajn and

Gagliardo. A variant of bilinear interpolation theorem is proved for bilinear operators from

corresponding weighted c0 spaces into Banach spaces of non-trivial the periodic Fourier

cotype. This result is then extended to the spaces generated by the well-known minimal and

maximal methods of interpolation determined by quasi-concave functions. In the case when a

maximal construction is generated by Hilbert spaces, we obtain a general variant of bilinear

interpolation theorem. Combining this result with the abstract Grothendieck theorem of Pisier

yields further results. The results are applied in deriving a bilinear interpolation theorem

for Calderón–Lozanovsky, for Orlicz spaces and an embedding interpolation formula for

ðE; pÞ-summing operators.
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1. Introduction

Multilinear operators arise naturally in many areas of classical, harmonic analysis
as well as functional analysis, including the theory of Banach operator ideals.
Fundamental multilinear operators arising in Euclidean harmonic analysis include
convolutions, paraproducts as well as multilinear Fourier multiplier operators. For
an extended discussion of important multilinear operators and their interesting
applications, one may consult [8] and references therein. Recently, various singular
multilinear operators have been investigated intensively. The latest progress (see [19])
in the study of the bilinear Hilbert transform has stimulated the need of the
development of a systematic analysis of bilinear operators. It should be noticed that
in the last few years, the attention to Lp analysis of certain bilinear extensions of

standard linear operators increased. We mention here only the remarkable paper of
Grafakos and Kalton [13] in which bilinear multipliers of Marcinkiewicz type are
studied. A natural question that arises is whether one could extend those results for
operators between general spaces using interpolation techniques. We note that
interpolation of bilinear operators is a classical problem in interpolation theory. The
situation for the real and complex method of interpolation is well understood
however few results are known for other interpolation methods.
The purpose of this article is to prove some new abstract results on interpolation

of bilinear operators that involve minimal and maximal interpolation construction in
the sense of Aronszajn and Gagliardo [1] (see also [7]).
We now describe the main results of this paper. In Section 2 we fix the

notation and recall basic facts that will be needed in this paper. In Section 3 we prove
some vector-valued preliminary results related to double sequences and series
generated by bounded bilinear operators defined on the product c0 � c0 with values
in Banach spaces with nontrivial Fourier cotype. Then, via abstract interpolation,
these results are used to state and prove the key bilinear interpolation Theorem 2.2
of the paper.
In Section 3 we discuss the abstract interpolation of bilinear interpolation between

Banach couples. The general results are shown for minimal and maximal methods of
interpolation in the sense of Aronszajn and Gagliardo. Using these results and the
main result of Section 2, we prove a general result on interpolation of bilinear
operators involving the well-known interpolation methods of interpolation
determined by quasi-concave functions. We should point out here that using the
abstract Grothendieck theorem of Pisier, we prove a theorem which seems to be
interesting on its own. Applications of this result are shown to Calderón–
Lozanovsky spaces. Applying this result to bilinear operators between products of
Lp spaces, we obtain new bilinear interpolation theorems for Orlicz spaces.

Finally, in Section 4, we present applications to the problem of interpolation of
spaces of operators. We use the bilinear interpolation theorems proved in the paper
to show certain continuous inclusions for interpolation spaces between spaces of
operators. For the finite-dimensional couples satisfying geometrical assumptions
involving cotype 2 and 2-concavity, we show similar inclusions for certain Banach
operator ideals. In particular, for 2-summing operators, we obtain a variant of Pisier
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result for the complex method of interpolation for the Gustavsson–Peetre method
(7method) of interpolation.

2. Preliminaries

This section contains notation, most notions and basic facts necessary in the whole
paper.
We shall use standard notation and notions from interpolation theory, as

presented, e.g. in [3,7,28]. Throughout the paper we will let ðO;S; mÞ be a complete s-
finite measure space. Let L0ðmÞ denote, as usual, the space of equivalence classes of
real-valued measurable functions on O; equipped with the topology of convergence
in measure m on sets of finite measure. By a Banach lattice on O we mean a Banach
space X which is a subspace of L0ðmÞ such that there exists uAX with u40 and if
j f jpjgj a.e., where gAX and fAL0ðmÞ; then fAX and jj f jjXpjjgjjX :
In the special case when O ¼ J and m is the counting measure, where J ¼ Z (resp.,

J ¼ N) denote the set of all integers (resp., the set of all positive integers), a Banach
lattice on O is called a Banach sequence space on J:

If X is a Banach lattice on ðO; mÞ and wAL0ðmÞ with w40 a.e., then the weighted
Banach lattice XðwÞ is defined by jjxjjX ðwÞ :¼ jjxwjjXoN:

If %X ¼ ðX0;X1Þ and %Y ¼ ðY0;Y1Þ are couples of Banach spaces, we letLð %X; %YÞ be
the Banach space of all linear operators T : %X- %Y (which means, as usual, that
T :X0 þ X1-Y0 þ Y1 is linear and the restrictions T jXj

are bounded operators from

Xj to Yj for j ¼ 0; 1). This space is equipped with the norm

jjT jj %X- %Y :¼ maxfjjT jjX0-Y0
; jjT jjX1-Y1

g:

The K-functional is defined on X0 þ X1 by

Kðs; t; x; %XÞ :¼ inffsjjx0jjX0 þ tjjx1jjX1 ; x ¼ x0 þ x1g; s; t40:

In what follows, we write in short Kðt; x; %XÞ instead of Kð1; t; x; %XÞ:
Let ðX0;X1Þ be any Banach couple, E a Banach sequence space on Z which is an

intermediate space with respect to ðcN; cNð2
nÞÞ: We denote by ðX0;X1ÞE the

Banach space of all xAX0 þ X1 such that fKð2n; x; %XÞgAE equipped with the norm

jjxjj ¼ jjfKð2n; x; %XÞgjjE :

Let F denote the set of all functions j : ½0;NÞ � ½0;NÞ-½0;NÞ such that j is
homogeneous of degree one and r ¼ jð1; �Þ is a quasi-concave function on ð0;NÞ
(i.e., t/rðtÞ is a non-decreasing and t/rðtÞ=t is non-increasing positive function
on ð0;NÞ).
If jAF; then the function j� is defined by j�ðs; tÞ ¼ 1=jð1=s; 1=tÞ for s; t40:
The subset of all jAF for which jðs; 1Þ-0 and jð1; tÞ-0 as s-0 and t-0 is

denoted by F0:
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A function jAF is called non-degenerate if the ranges of the functions t/jð1; tÞ
and t/jðt; 1Þ where t40; coincide with ð0;NÞ:
A quasi-concave function r is called a quasi-power function if the dilatation indices

dr and gr of the function r satisfy 0odrpgro1 (see, e.g., [16] or [15]). If jAF and

r ¼ jð1; �Þ is a quasi-power function, we write in short that jAFþ
:
We will deal with vector-valued Banach sequence spaces. Let E be a Banach

sequence lattice on J and let X be a Banach space. The vector sequence x ¼ fxngnAJ

in X is called strongly E-summable if the corresponding scalar sequence fjjxnjjXg is in
E: We denote by EðXÞ the set of all such sequences in X : This is a Banach space
under pointwise operations and a natural norm given by

jjxjjEðX Þ :¼ jjfjjxnjjXgjjE :

Throughout the paper, for any scalar vector-valued sequence fxngnAZ the series with

unspecified range of summation
P

nAZxn will always be interpreted asX
nAZ

xn ¼ lim
M;N-N

XM
k¼
N

xk;

where the double limit exists in the Pringsheim sense.
Let ðX0;X1Þ be any Banach couple, r a given quasi-power function and 1ppjpN

with j ¼ 0; 1: We denote by ðX0;X1Þr;p0;p1 the Banach space of all xAX0 þ X1 which

can be represented in the form

x ¼
X
nAZ

un ðconvergence in X0 þ X1Þ

with fun=rð2nÞgAcp0ðX0Þ and f2nun=rð2nÞgAcp1ðX1Þ: This space is equipped with the
norm

jjxjj ¼ inf maxfjjfun=rð2nÞgjjcp0
ðX0Þ; jjf2

nun=rð2nÞgjjcp1
ðX1Þg;

where the infimum is taken over all the above representations of x as in above.

If jAFþ
 and r ¼ jð1; �Þ; we also write jðX0;X1Þp0;p1
instead of ðX0;X1Þr;p0;p1 :

Note that in the case when rðsÞ ¼ sy and 0oyo1 these spaces were introduced by
Lions and Peetre and were called the spaces of means (see [21]).
We will use the following theorem (see [24,26]).

Theorem 2.1. If ðX0;X1Þ is a Banach couple and jAFþ
 and 1ppjpN for j ¼ 0; 1;

then

jðX0;X1Þp0;p1
¼ ðX0;X1Þjðcp0

;cp1
ð2
nÞÞ:

In particular, if ðLp0ðw0Þ;Lp1ðw1ÞÞ is any couple of the weighted spaces Lp-spaces,

then

ðLp0ðw0Þ;Lp1ðw1ÞÞj;p0;p1 ¼ jðLp0ðw0Þ;Lp1ðw1ÞÞ:
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Here, as usual, if %E ¼ ðE0;E1Þ is a couple of Banach lattices on ðO; mÞ and
jAF is a concave function (in each variable). Then the Calderón–Lozanovsky

space jð %EÞ ¼ jðE0;E1Þ consists of all xAL0ðmÞ such that jxj ¼ jðjx0j; jx1jÞ for
some xjAEj; j ¼ 0; 1: The space jð %EÞ is a Banach lattice equipped with the norm
(see [22])

jjxjj :¼ inffmaxfjjx0jjE0 ; jjx1jjE1g; jxj ¼ jðjx0j; jx1jÞ; x0AE0; x1AE1g:

Here and throughout the paper for positive functions f and g; we write f^g

whenever f!g and g!f ; where f!g means that there is some c40 such that
fpc g:
Let frkg be the sequence of Rademacher functions, and assume that

1ppp2pqoN: A Banach space X is said to have (Rademacher) type p (resp.,
(Rademacher) cotype q) if there exists a constant C40 such that, for any choice of
mAN and x1;y; xmAX ;

Z 1

0

Xm

k¼1
rkðtÞxk

�����
�����

�����
�����
X

dtpC
Xm

k¼1
jjxkjjpX

 !1=p

(resp.,
R 1
0 jj
Pm

k¼1 rkðtÞxkjjX dtXC
1ð
Pm

k¼1 jjxkjjqX Þ
1=q). We denote by TpðXÞ (resp.,

CqðXÞ) the smallest constant C for which this holds.

Let 2pqoN and fongnAZ be the sequence of functions defined on T :¼ ½0; 2p

by onðtÞ ¼ eint for any tAT and nAZ: A (complex) Banach space X is said to
have the periodic Fourier cotype q (cf. [12]) if there exists a constant K40 such
that for all sequences fxngnAZ of elements in X with only finitely many non-zero

elements,

X
nAZ

jjxnjjqX

 !1=q

pK
1

2p

Z
T

X
nAZ

onðtÞxn

�����
�����

�����
�����
q0

X

dt

0
@

1
A
1=q0

;

where as usual q0 is the conjugate exponent to q defined by 1=q þ 1=q0 ¼ 1: We
denote KqðXÞ the smallest constant K for which the above holds.

Let us recall that if 1opp2; then the notion of the periodic Fourier cotype p0 of
the Banach space X coincides with the well-known notion of Fourier type p which is
equivalent to the validity of an X -valued Hausdorff–Young inequality. For details
we refer to the interesting survey paper [12].
Let us note that on the basis of Contraction Principle (see, e.g., [11, p. 231]) the

periodic Fourier cotype q implies the Rademacher cotype q: It is also well-known
that the periodic Fourier cotype q implies the Rademacher type q0 (see, e.g., [5]).
Thus, the result due to Kwapień [18], implies that any Banach space which has the
periodic Fourier cotype 2 is isomorphic to a Hilbert space. We see immediately that
any Hilbert space H has the periodic Fourier cotype 2 with K2ðHÞ ¼ 1:We note that
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Bourgain [6] proved that if a Banach space X is of type p for some p41; then it has

the periodic Fourier cotype q with q ¼ 18 TpðXÞp0 :

In the sequel we will need the following lemma. Before proving it we recall that the
series

P
nAZxn of elements of a Banach space is said to be weakly conditionally

convergent (resp., unconditionally convergent) if for every functional x�AX � the seriesP
nAZjx�ðxnÞj is convergent (resp., the series

P
nAZenxn converges for all en with

en ¼ 71 for nAZ).
For the basic properties of weakly conditionally and unconditionally convergent

series we refer to [11] or [20]. As usual, let fengJ be the standard unit vector basis in
c0ðJÞ defined on the set J:

Lemma 2.1. Let X be a Banach space. Then, for any bounded bilinear operator

T : c0ðZÞ � c0ðZÞ-X the following statements are true:

(i) If X does not contain an isomorphic copy of c0; then
P

kAZTðek; em
kÞ is

unconditionally convergent series in X for every mAZ:
(ii) If X has the periodic Fourier cotype q for some 2pqoN; then fxmgmAZAcqðXÞ

where xm ¼
P

kAZTðek; em
kÞ for mAZ:

Proof. (i) Fix x�AX � and define a bounded bilinear form A : c0ðZÞ � c0ðZÞ-K by
A :¼ x�

3T : Then by Aron et al. [2], we conclude that

X
kAZ

jAðek; em
kÞjoN;

i.e., the series
P

kAZTðek; em
kÞ is weakly conditionally convergent in X : If X does

not contain an isomorphic copy of c0; it follows by the well-known result of Bessaga–
Pe"czyński (see [4]) that every weakly conditionally convergent series is uncondi-
tionally convergent. As a consequence, it follows that the series

X
kAZ

Tðek; em
kÞ

is unconditionally convergent in X for every mAZ:
(ii) Assume that X has the periodic Fourier cotype q for some 2pqoN:We have

already mentioned that this implies that X has cotype q:Hence, X does not contain a
copy of c0: Further, we note that as an easy consequence of the Orlicz–Pettis
Theorem (see, e.g., [11]) every weakly compact operator acting between Banach
spaces is unconditionally convergent, i.e., it maps every weakly conditionally
convergent series into unconditionally convergent series. By the well-known result of
Pe"czyński that every bounded linear operator from c0 into a Banach space X

containing no isomorphic copy of c0 is compact, it follows that Ak ¼
Tðek; �Þ : c0ðZÞ-X is a compact operator. Since the series

P
mAZem
k converges
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weakly conditionally in c0ðZÞ; the seriesX
mAZ

Tðek; em
kÞ

converges unconditionally in X for every kAZ:
If we combine the above remarks with the equalityX

mAZ

omðtÞ Tðek; em
kÞ ¼
X
mAZ

okþmðtÞ Tðek; emÞ

which holds for any tAT and kAZ; we obtain that the following series converge
unconditionally in X for any NAN and tAT:

X
mAZ

omðtÞ
X
jkjpN

Tðek; em
kÞ

0
@

1
A ¼

X
jkjpN

X
mAZ

omðtÞ Tðek; em
kÞ
 !

¼
X
jkjpN

X
mAZ

okþmðtÞ Tðek; emÞ
 !

:

Since okþmðtÞ ¼ okðtÞomðtÞ for any tAT; it follows that

X
jkjpN

X
jmjpM

okþmðtÞ Tðek; emÞ

0
@

1
A

������
������

������
������
X

p sup
tAT

sup
M;NX1

T
X
jkjpN

okðtÞek;
X

jmjpM

omðtÞem

0
@

1
A

������
������

������
������
X

pjjT jjc0ðZÞ�c0ðZÞ-X

for any positive integers M and N:
Now fixing NAN and combining the previous relations with the Dominated

Convergence Theorem yields

X
mAZ

X
jkjpN

Tðek; em
kÞ

������
������

������
������
q

X

0
@

1
A
1=q

pKqðXÞ lim
M-N

1

2p

Z
T

X
jmjpM

omðtÞ
X
jkjpN

Tðek; em
kÞ

0
@

1
A

������
������

������
������
q0

X

dt

0
B@

1
CA
1=q0

¼ KqðXÞ 1

2p

Z
T

lim
M-N

X
jmjpM

omðtÞ
X
jkjpN

Tðek; em
kÞ

0
@

1
A

������
������

������
������
q0

X

dt

0
B@

1
CA
1=q0
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¼ KqðX Þ 1

2p

Z
T

lim
M-N

X
jkjpN

X
jmjpM

okþmðtÞ Tðek; em
kÞ

0
@

1
A

������
������

������
������
q0

X

dt

0
B@

1
CA
1=q0

pKqðX Þ jjT jjc0ðZÞ�c0ðZÞ-X

for any NAN: Since the series
P

kAZ Tðek; em
kÞ converges for every mAZ; we

immediately deduce that

X
mAZ

jjxmjjqX

 !1=q

pKqðXÞ jjT jjc0ðZÞ�c0ðZÞ-X

and the result follows. &

We will need one further preliminary technical lemma.

Lemma 2.2. Let X be a Banach space and let fxk;mg be an infinite matrix in X with

k;mAZ: If the series
P

kAZ xk;m
k is unconditionally convergent for every m in Z andP
mAZjj

P
kAZ xk;m
kjjXoN; then the double limit limM;N-N

P
jkjpM

P
j jjpNxk;j exists

in X and

lim
M;N-N

X
jkjpM

X
j jjpN

xk;j ¼
X
mAZ

X
kAZ

xk;m
k

 !
:

Proof. Let um :¼
P

kAZ xk;m
k for mAZ: Fix e40: Since
P

mAZ jjumjjXoN and the

series
P

kAZ xk;m
k converges unconditionally, there exists m0AN such that

X
jmjpm0

um 

X
mAZ

X
kAZ

xk;m
k

 !������
������

������
������
X

oe=2

and

X
jmj4m0

X
kAFm

xk;m
k

�����
�����

�����
�����
X

oe=4;

where Fm is any finite subset of Z: Further, there exists k0AN such that for any
kmXk0 with jmjpm0; we have

X
jmjpm0

X
jkj4km

xk;m
k

������
������

������
������
X

oe=4:
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Let M and N be positive integers with M4k0 and N4m0 þ k0: Let us define two
subsets A and B of Z� Z by

A ¼ fðk; jÞ; jkjpM; j jjpNg

and

B ¼ fðk; jÞ; jkjpk0; j j þ kjpm0g:

For mAZ we let Fm ¼ fkAZ; ðk;m 
 kÞAAg and km ¼ maxfkAZ; kAFmg: Since
BCA; we conclude that kmXk0; whenever jmjpm0: This implies that the above
inequalities hold for Fm and km defined as in above. It is easy to verify thatX

jkjpM

X
j jjpN

xk; j ¼
X

jmjpm0

um 

X

jmjpm0

X
jkj4km

xk;m
k þ
X

jmj4m0

X
kAFm

xk;m
k:

If we combine this equality with the three inequalities above, we obtain

X
jkjpM

X
j jjpN

xk;j 

X
mAZ

X
kAZ

xk;m
k

 !������
������

������
������
X

oe

for M4k0 and N4m0 þ k0: This proves the assertion. &

Theorem 2.2. Let ðX0;X1Þ be a couple of Banach spaces such that Xj for j ¼ 0; 1 has

the periodic Fourier cotype for some 2pqjoN: Assume that the quasi-concave

functions r0; r1 and r with r a quasi-power function are such that for some C40; we

have CrðstÞXr0ðsÞ r1ðtÞ for all s; t40: If T0 : c0 � c0-X0 and T1 : c0ð2
nÞ �
c0ð2
nÞ-X1 are bounded bilinear operators such that T0ðx; yÞ ¼ T1ðx; yÞ for any

finitely supported sequences x and y on Z; then for any x ¼ fxngnAZAcNð1=r0ð2nÞÞ and

y ¼ fZngnAZAcNð1=r1ð2nÞÞ there exists a double limit

Sðx; yÞ :¼ lim
M;N-N

X
jkjpN

X
jmjpM

xk Zm T0ðek; emÞ

in X0 þ X1 and it defines a bounded bilinear operator S from cNð1=r0ð2nÞÞ �
cNð1=r1ð2nÞÞ into ðX0;X1Þr;q0;q1 with the norm

jjSjjpC maxfKq0ðX0ÞjjT0jjc0�c0-X0
;Kq1ðX1ÞjjT1jjc0ð2
nÞ�c0ð2
nÞ-X1

g:

Proof. Fix norm one elements x ¼ fxngAE0 :¼ cNð1=r0ð2nÞÞ and y ¼ fZngAE1 :¼
cNð1=r1ð2nÞÞ: We prove that the double limit

lim
M;N-N

X
jkjpN

X
j jjpM

xk Zj T0ðek; ejÞ
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exists in X0 þ X1: First, we show that

X
mAZ

X
kAZ

xk Zm
k T0ðek; em
kÞ
�����

�����
�����

�����
X0þX1

oN:

To see this, we first observe that for every mAZ the series

X
kAZ

xk Zm
k T0ðek; em
kÞ

converges in both X0 and X1: In fact, it follows immediately from jjxjjE0p1;
jjyjjE1p1 and our hypothesis CrðstÞXr0ðsÞr1ðtÞ for s; t40; that jck;mjpC where

ck;m :¼ xkZm
k

rð2mÞ for any ðk;mÞAZ2;

while we can apply Lemma 2.1 to obtain that the series
P

kAZT0ðek; em
kÞ is
unconditionally convergent in X0 for every mAZ: Since

1

rð2mÞ
X
kAZ

xkZm
kT0ðek; em
kÞ ¼
X
kAZ

ck;mT0ðek; em
kÞ;

we get the required assertion. Combining the above remarks with Lemma 2.1(ii)
yields

X
mAZ

1

rð2mÞ
X
kAZ

xkZm
kT0ðek; em
kÞ
�����

�����
�����

�����
X0

0
@

1
A

q0
0
@

1
A
1=q0

¼
X
mAZ

X
kAZ

ck;mT0ðek; em
kÞ
�����

�����
�����

�����
q0

X0

0
@

1
A
1=q0

pC
X
mAZ

X
kAZ

T0ðek; em
kÞ
�����

�����
�����

�����
q0

X0

0
@

1
A
1=q0

pCKq0ðX0ÞjjT0jjc0�c0-X0
:

Further, we note that a bounded bilinear operator U : c0 � c0-X1 defined by

Uðfxng; fZngÞ :¼ T1ðf2nxng; f2nZngÞ

for ðfxng; fZngÞAc0 � c0 satisfies

jjU jjc0�c0-X1
pjjT1jjc0ð2
nÞ�c0ð2
nÞ-X1

:
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Thus repeated use the above arguments gives the following estimates:

X
mAZ

2m

rð2mÞ
X
kAZ

xkZm
kT1ðek; em
kÞ
�����

�����
�����

�����
X1

0
@

1
A

q1
0
@

1
A
1=q1

p
X
mAZ

X
kAZ

ck;mT1ð2kek; 2
m
kem
kÞ

�����
�����

�����
�����
q1

X1

0
@

1
A
1=q1

pC
X
mAZ

X
kAZ

Uðek; em
kÞ
�����

�����
�����

�����
q1

X1

0
@

1
A
1=q1

pCKq1ðX1ÞjjT1jjc0ð2
nÞ�c0ð2
nÞ-X1
:

Since T0ðek; em
kÞ ¼ T1ðek; em
kÞ for all ðk;mÞAZ2; the above estimates show that
the sequence fumgmAZ with um :¼

P
kAZxkZm
k T0ðek; em
kÞ satisfies the following

inequalities:

jjfum=rð2mÞgjjcq0
ðX0ÞpC0

and

jjf2m um=rð2mÞgjjcq1
ðX1ÞpC1;

where Cj :¼ C Kqj
ðXjÞjjTjjjc0ð2
jnÞ�c0ð2
jnÞ-Xj

for j ¼ 0; 1: Our hypothesis that r is a
quasi-power function easily implies that

X
mAZ

jjumjjX0þX1
oN:

Recall that for any mAZ the series
P

kAZxkZm
kT0ðek; em
kÞ converges uncondi-
tionally in both X0 and X1; and thus also in X0 þ X1: Applying Lemma 2.2, we
conclude that the double limit

Sðx; yÞ :¼ lim
M;N-N

X
jkjpM

X
j jjpN

xk Zj T0ðek; ejÞ

exists in X0 þ X1: This immediately implies that S is a bilinear map from E0 � E1
into X0 þ X1: Since

Sðx; yÞ ¼
X
mAZ

um ðconvergence in X0 þ X1Þ;
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we obtain by the above obtained estimates that Sðx; yÞAðX0;X1Þr;q0;q1 for any
ðx; yÞAE0 � E1 with jjxjjE0p1 and jjyjjE1p1: In consequence, we have proved

that

S: cNð1=r0ð2nÞÞ � cNð1=r1ð2nÞÞ-ðX0;X1Þr;q0;q1

is a bounded bilinear operator with jjT jjpmaxfC0;C1g: This finishes the proof. &

3. Abstract bilinear interpolation

In this section we prove general results on interpolation of bilinear operators. We
will need some further interpolation space concepts. Recall that the mapping F from
the category of all couples of Banach spaces into the category of all Banach spaces is

said to be an interpolation functor if for any Banach couple %X; Fð %XÞ is an
intermediate Banach space with respect to %X; and for any TALð %X; %YÞ it follows that
T : Fð %XÞ-Fð %YÞ: If additionally

jjT jjFð %XÞ-Fð %YÞpmaxfjjT jjX0-Y0
; jjT jjX1-Y1

g

holds, then F is called an exact interpolation functor.
We will consider particular cases of the following two constructions by Aronszajn

and Gagliardo [1] of exact interpolation functors. Given A and %A; such that A is an

intermediate space with respect to the couple %A; two interpolation functors are
defined by

Gð %XÞ ¼ G
%A

Að %XÞ :¼
XN
n¼1

Tnan;
XN
n¼1

jjTnjj %A- %XjjajjAoN

( )

and

Hð %XÞ ¼ H
%A

A ð %XÞ :¼ xAX0 þ X1; TxAA for every T : %X- %A
� �

:

The norms are given by

jjxjjGð %XÞ ¼ inf
XN
n¼1

jjTnjj %A- %X jjajjA; x ¼
XN
n¼1

Tnan

( )

and, respectively,

jjxjjHð %XÞ ¼ supfjjTxjjA; jjT jj %X- %Ap1g:

Note that G is the minimal interpolation functor satisfying A+Gð %AÞ and H is the

maximal interpolation functor satisfying Hð %AÞ+A:
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The interpolation functor G
%A

A is called approximable (cf. [15]) on a Banach couple
%X with a constant c40 if for any xAX0-X1; we have

x ¼
XN

n¼1
Snan

for some positive integer N; anAA0-A1; n ¼ 1;y;N and Sn : %A- %X satisfying

XN

n¼1
jjSnjj %A- %XjjanjjApcjjxjj

G
%A

A
ð %XÞ:

For a study of approximable interpolation functor we refer to [17].

In what follows, we need a definition of interpolation bilinear theorems. Let %X ¼
ðX0;X1Þ; %Y ¼ ðY0;Y1Þ and %Z ¼ ðZ0;Z1Þ be Banach couples. We will say that ðT0;T1Þ
is a bilinear operator from %X � %Y into %Z; and write T ¼ ðT0;T1ÞABð %X; %Y; %ZÞ if
Tj : Xj � Yj-Zj is a bounded bilinear operator ð j ¼ 0; 1Þ and T0ðx; yÞ ¼ T1ðx; yÞ for
any xAX0-X1 and yAY0-Y1:

It is easy to check that Bð %X; %Y; %ZÞ is a Banach space equipped with the norm

jjðT0;T1Þjj %X� %Y- %Z :¼ max
j¼0;1

jjTjjjXj�Yj-Zj
:

Note that any ðT0;T1ÞABð %X; %Y; %ZÞ defines a bilinear map T which is called in the

sequel a natural bounded bilinear extension of ðT0;T1Þ from Dð %XÞ � Sð %YÞ-Sð %ZÞ by

Tðx; yÞ :¼ T0ðx; y0Þ þ T1ðx; y1Þ

for any xADð %XÞ and y ¼ y0 þ y1ASð %YÞ with y0AY0 and y1AY1: It is easy to see that

T does not depend on the representation of yASð %YÞ and T is bounded with

jjT jjDð %XÞ�Sð %YÞ-Sð %ZÞpjjðT0;T1Þjj %X� %Y- %Z:

Assume that X ; Y and Z are Banach spaces intermediate with respect to the couples
%X; %Y and %Z: We say that a triple of Banach spaces ðX ;Y ;ZÞ is a bilinear

interpolation with respect to ð %X; %Y; %ZÞ; and write ðX ;Y ;ZÞAIntð %X; %Y; %ZÞ if for every
ðT0;T1ÞABð %X; %Y; %ZÞ there is a constant CT such that a natural bounded bilinear
extension T of ðT0;T1Þ satisfies

jjTðx; yÞjjZpCT jjxjjX jjyjjY

for any ðx; yÞADð %XÞ � Y : If CT ¼ C does not depend on T ; we write

ðX ;Y ;ZÞAIntCð %X; %Y; %ZÞ and say that C is a constant of the bilinear interpolation.

It is shown in [25] that if ðX ;Y ;ZÞAIntð %X; %Y; %ZÞ; then there is a constant C40
such that ðX ;Y ;ZÞAIntCð %X; %Y; %ZÞ:
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For simplicity, we shall use the following notation for interpolation functors F0; F1
and F2:

F0ð %XÞ#F1ð %YÞ-F2ð %ZÞ;

and say that a bilinear interpolation theorem holds, provided that

ðF0ð %XÞ;F1ð %YÞ;F2ð %ZÞÞAIntð %X; %Y; %ZÞ:

If the above relation holds for all Banach couples %X; %Y and %Z; we write in short

F0#F1-F2:

We are now ready to prove the following general theorem. We note that a variant of
multilinear result holds (for details we refer to [25]).

Theorem 3.1. Assume that ðA;B;CÞAIntMð %A; %B; %CÞ: If the interpolation functor G
%A

A is

approximable on a Banach couple %X with a constant c40; then the following bilinear

interpolation theorem:

G
%A

Að %XÞ#G
%B

Bð %YÞ-H
%C

C ð %ZÞ

with the constant equals cM holds for any Banach couples %Y and %Z:

Proof. Assume that ðT0;T1ÞABð %X; %Y; %ZÞ with jjðT0;T1Þjj %X� %Y- %Zp1: Fix

operators S0 : %A- %X; S1 : %B- %Y and R : %Z- %C with jjRjj %Z- %Cp1: Define operators
Uj by

Ujða; bÞ :¼ RTjðS0a;S1bÞ

for ða; bÞAAj � Bj and j ¼ 0; 1: We have ðU0;U1ÞABð %A; %B; %CÞ with

jjðU0;U1Þjj %A� %B- %CpjjS0jj %A- %X jjS1jj %B- %Y:

Let U : Dð %AÞ � Sð %BÞ-Sð %CÞ be a natural bounded bilinear extension of ðU0;U1Þ: It
is easy to see that

Uða; bÞ ¼ RTðS0a;S1bÞ

for any ða; bÞADð %AÞ � Sð %BÞ; where T : Dð %XÞ � Sð %YÞ-Sð %ZÞ is a natural bounded
bilinear extension of ðT0;T1Þ: Since ðA;B;CÞAIntMð %A; %B; %CÞ; we have

jjUða; bÞjjCpMjjS0jj %A- %XjjS1jj %B- %YjjajjAjjbjjB

for any ða; bÞAðA0-A1Þ � B:
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Fix e40: Then, by our hypothesis on G
%A

A it follows that for any xAX0-X1 and

yAG
%B

Bð %YÞ we have

x ¼
XN

n¼1
S0nan; y ¼

XN
m¼1

S1mbm

for some positive integer N and anAA0-A1; n ¼ 1;y;N and, bmAB; S0n : %A- %X;

S1m : %B- %Y satisfying

XN

n¼1
jjS0njj %A- %XjjanjjApcjjxjj

G
%A

A
ð %XÞ

and

XN
m¼1

jjS0mjj %B- %YjjbmjjBpð1þ eÞjjyjj
G

%B
B
ð %YÞ:

This implies that for any R : %Z- %C with jjRjj %Z- %Cp1; we have

RTðx; yÞ ¼
XN

n¼1

XN
m¼1

RTðS0nan;S1mbmÞ ¼
XN

n¼1

XN
m¼1

Unmðan; bmÞ;

where Unm :Dð %AÞ � Sð %BÞ-Sð %CÞ is a natural bounded bilinear extension of
ðU0n;U1mÞ (defined in a similar way as U in above) satisfying

jjUnmða; bÞjjCpMjjajjAjjbjjB

for any aAA0-A1 and bAB:
In consequence, the above remarks and estimates implies

jjRTðx; yÞjjCp
XN

n¼1

XN
m¼1

jjUnmðan; bmÞjjC

pð1þ eÞM
XN

n¼1

XN
m¼1

jjS0njj %A- %XjjanjjAjjS1mjj %B- %YjjbmjjB

¼ ð1þ eÞM
XN

n¼1

XN
m¼1

jjS0njj %A- %X jjanjjA

 ! XN
m¼1

jjS1mjj %B- %Y jjbmjjB

 !

pð1þ eÞcMjjxjj
G

%A
A
ð %XÞjjyjjG %B

B
ð %YÞ:
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Since e40 is arbitrary, we get

jjTðx; yÞjj
H

%C
C
ð %ZÞ ¼ supfjjRðTðx; yÞÞjjC ; jjRjj %Z- %Cp1g

p cMjjxjj
G

%A
A
ð %XÞjjyjjG %B

B
ð %YÞ

for xAX0-X1 and yAG
%B

Bð %YÞ: This completes the proof. &

We present some applications of the obtained results for special interpolations

functors. Throughout the rest of the paper, for a given function jAF0 we let Gj :

¼ G
%A

A with A :¼ cNðj�ð1; 2
nÞÞ and %A :¼ ðc0; c0ð2
nÞÞ defined on the set of integers
Z: We note that Gj coincides with the so called 7 method of interpolation

introduced by Gustavsson–Peetre [14] (see [15] or [28, p. 468]).
In the sequel, we write that the functions j0; j1 and j in F satisfy the (generalized

super-multiplicativity) condition (SM) if there exists a constant C40 such that

j0ð1; sÞ j1ð1; tÞpCjð1; stÞ

holds for all s40 and t40: If the above condition (SM) holds with j ¼ j0 ¼ j1;
then j is called super-multiplicative.

Theorem 3.2. Let the functions j0; j1 and j in F0 with j0 being non-degenerate and

jAFþ
 being a concave function satisfy condition (SM). Assume that %Z ¼ ðZ0;Z1Þ is

a Banach couple such that Zj has the periodic Fourier cotype qj for some 2pqjoN;

j ¼ 0; 1: Then the following bilinear interpolation theorem:

Gj0ð %XÞ#Gj1ð %YÞ-ðZ0;Z1Þjðcq0
;cq1

ð2
nÞÞ

holds for any Banach couples %X and %Y:

Proof. An immediate consequence of Theorem 2.2 is that the triple

ðcNðj�
0ð1; 2
nÞÞ; cNðj�

1ð1; 2
nÞÞ; %Zjðcq0
;cq1

ð2
nÞÞÞ

is a bilinear interpolation with respect to

ððc0; c0ð2
nÞÞ; ðc0; c0ð2
nÞÞ; %ZÞ:

Further, under our hypothesis on j0; the functor Gj0 is approximable on any

Banach couple (see [15] or [28, pp. 451–452] or [17]). By Theorems 2.2 and 3.1, this
completes the proof. &

In what follows, for any jAF and 1ppoN we let Hj;p be the maximal

interpolation functor H
%A

A with %A :¼ ðcp; cpð2nÞÞ and A :¼ cpðj�ð1; 2nÞÞ defined on Z:
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If p ¼ 1; then Hj;1 is the upper Ovchinnikov functor ju (see [28]) which is denoted in

short by Hj:

Theorem 3.3. Assume that the functions j0; j1 and j in F0 with j0 being non-

degenerate and jAFþ
 satisfy the condition (SM). Then the following bilinear

interpolation theorem holds:

Gj0#Gj1-Hj;2:

Proof. It follows by Theorem 2.1 that for any jAFþ
;

ðc2; c2ð2nÞÞj;2;2 ¼ jðc2; c2ð2nÞÞ ¼ c2ðj�ð1; 2nÞÞ:

Since any Hilbert space has the periodic Fourier cotype 2; the argumentation used in
the prove of the Theorem 3.2 completes the proof. &

In order to present more general applications, we will need first a preparatory
theorem which is probably of independent interest.

Theorem 3.4. Assume that %X ¼ ðX0;X1Þ is a Banach couple and jAF: Then the

following statements are true:

(i) Hjð %XÞ+Hj;2ð %XÞ:
(ii) If jAF0 and both X �

0 and X �
1 have cotype 2, then Hj;2ð %XÞ+Hjð %XÞ with the

constant of embedding depending only on the cotype 2-constants of X �
0 and X �

1 :

Proof. (i) Since Hj;2 is a maximal interpolation functor and

Hjðc2; c2ð2nÞÞ ¼ jðc2; c2ð2nÞÞ ¼ c2ðj�ð1; 2nÞÞ;

the required continuous inclusion follows.
(ii) We use the abstract Grothendieck theorem of Pisier. It states (see [29,

Theorem 4.1]) that if X ; Y are Banach spaces, X � and Y have cotype 2 and
T :X-Y is approximable operator, then for a given e40 there is a Hilbert spaceH
and operators V :X-H; U :H-Y such that T ¼ UV ; and

jjU jj jjV jjpð1þ eÞð2C2ðX �ÞC2ðYÞÞ3=2:

Fix xAHj;2ð %XÞ: To show that xAHjð %XÞ we need to prove that for any operator
T : %X-ðc1; c1ð2nÞÞ; we have TxAc1ðj�ð1; 2nÞÞ: Since both spaces c1 and c1ð2nÞ with
bases have cotype 2; T :Xj-c1ð2jnÞ is an approximable operator ð j ¼ 0; 1Þ: Thus,
combining the abstract Grothendieck theorem of Pisier with Lemma 11.1.1 in [28],

we conclude that there exist a Hilbert couple %H ¼ ðH0;H1Þ and operators

V : ðX0;X1Þ-ðH0;H1Þ and U : ðH0;H1Þ-ðc1; c1ð2nÞÞ
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such that T ¼ UV : Since xAHj;2ð %XÞ; Kðt; x; %XÞ^jð1; tÞ for any t40;
Kðs; t; x; %XÞAF0 by jAF0: In consequence Kðs; t;Vx; %HÞAF0: This yields that there
exists xAc2 þ c2ð2nÞ such that

Kðt; x; c2; c2ð2nÞÞ^Kðt;Vx; %HÞ:

By Sedaev’s result [31], we know that interpolation between Hilbert couples is
described by the K-method of interpolation. Thus, we can construct operators

S1 : ðH0;H1Þ-ðc2; c2ð2nÞÞ and S2 : ðc2; c2ð2nÞÞ-ðH0;H1Þ

such that jjSjjjp
ffiffiffi
2

p
for j ¼ 0; 1 and

Vx ¼ S2 S1ðVxÞ:

Since S1V : ðX0;X1Þ-ðc2; c2ð2nÞÞ and xAHj;2ð %XÞ;

S1ðVxÞAc2ðj�ð1; 2nÞÞ ¼ Hjðc2; c2ð2nÞÞ:

Further, US2 : ðc2; c2ð2nÞÞ-ðc1; c1ð2nÞÞ implies by interpolation property that

US2 :Hjðc2; c2ð2nÞÞ-Hjðc1; c1ð2nÞÞ ¼ c1ðj�ð1; 2nÞÞ:

Combining the above relations, we obtain

Tx ¼ US2ðS1VxÞAc1ðj�ð1; 2nÞÞ

and in consequence xAHjð %XÞ: &

We can now state main applications of Theorems 3.3 and 3.4.

Theorem 3.5. Assume that the functions j0; j1 and j in F0 with j0 non-degenerate

and jAFþ
 satisfy condition (SM). Assume that %Z ¼ ðZ0;Z1Þ is a Banach couple such

that both Z�
0 and Z�

1 have cotype 2: Then the following bilinear interpolation theorem:

Gj0ð %XÞ#Gj1ð %YÞ-Hjð %ZÞ

holds for any Banach couples %X and %Y:

Let us show an application of this result for Calderón–Lozanovsky spaces. We do
not discuss here applications to concrete bilinear operators. The interested reader
may consult the results on boundedness of a large class of bilinear operators on a
product of Lp-spaces presented, e.g. in [8] or [13] in order to get via the bilinear

interpolation Theorem 3.7 the results on boundedness of these operators on a
product of Orlicz spaces.

ARTICLE IN PRESS
M. Masty!o / Journal of Functional Analysis 214 (2004) 260–283 277



Theorem 3.6. Assume that the concave functions j0; j1 and j in F0 with j0 being non-

degenerate and jAFþ
 satisfy condition (SM). Assume that %Z ¼ ðZ0;Z1Þ is a couple

of maximal Banach lattices such that both Z� and Z�
1 have cotype 2: Then the following

bilinear interpolation theorem:

j0ð %XÞ#j1ð %YÞ-jð %ZÞ

holds for any Banach couples of lattices %X and %Y:

Proof. It is well-known that if jAF0 is a concave function, then

jðE0;E1Þ+GjðE0;E1Þ

for any couple ðE0;E1Þ of Banach lattices (see [27] or [28, p. 453]). Since Hjð %ZÞ ¼
jð %ZÞ whenever Zj is maximal ð j ¼ 0; 1Þ (see [28, pp. 474–475]), Theorem 3.5

applies. &

We note that by the well-known description of Calderón–Lozanovsky construc-
tion for any weighted Lp spaces (see, e.g., [27]) the application of the above theorem

yields a bilinear interpolation theorem for the products of Musielak–Orlicz spaces
with respect to the products of weighted Lp spaces. For the sake of completeness we

recall that if 1pp0op1pN and ðLp0ðw0Þ;Lp1ðw1ÞÞ is a Banach couple of weighted
Lp spaces on a measure space ðO; mÞ; then for any concave jAF; we have

jðLp0ðw0Þ;Lp1ðw1ÞÞ ¼ LM;

where LM is the Musielak–Orlicz space generated by the function

Mðu; tÞ :¼ Mððw1ðtÞ1=p0w0ðtÞ
1=p1Þq
uÞðw0ðtÞ=w1ðtÞÞq

for uX0 and tAO with 1=q ¼ 1=p0 
 1=p1 and M
1ðsÞ ¼ jðs1=p0 ; s1=p1Þ for sX0
(see [27]) equipped with the norm

jjxjj :¼ inf l40;
Z
O
MðjxðtÞj=l; tÞ dmp1

� �
:

Combining the above remarks with the well-known fact that any Lp-space with

1ppp2 has cotype 2 (see, e.g., [20]), we obtain the following bilinear theorem for
Orlicz spaces.

Theorem 3.7. Assume that the concave functions j0; j1 and j in F0 with j0 being non-

degenerate and jAFþ
 satisfy condition (SM). Let 1pp0op1pN; 1pq0oq1pN

and 2pr0or1oN and let M0; M1 and M be Orlicz functions defined by M
1
0 ðsÞ ¼

j0ðs1=p0 ; s1=p1Þ; M
1
1 ðsÞ ¼ j1ðs1=q0 ; s1=q1Þ and M
1ðsÞ ¼ jðs1=r0 ; s1=r1Þ for any sX0:

Then the triple of spaces ðLM0
;LM0

;LMÞ is bilinear interpolation with respect to the
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triple ððLp0 ;Lp1Þ; ðLq0 ;Lq1Þ; ðLr0 ;Lr1ÞÞ of couples of Lp-spaces defined on any measure

spaces.

4. Interpolation spaces of operators

In this section we present certain applications of the obtained results. We first
present a result which shows that bilinear interpolation theorem yields an
information on relations about spaces of operators between interpolation spaces
and interpolation spaces with respect to couples of operator spaces. To be more

precise, let %X ¼ ðX0;X1Þ; %Y ¼ ðY0;Y1Þ be Banach couples. It is clear that we have the
following continuous inclusion:

LðXjD;YjÞ+LðX0-X1;Y0 þ Y1Þ

for j ¼ 0; 1; where for a Banach space X intermediate with respect to ðX0;X1Þ; XD

(resp., X �) denotes a normed space ðX0-X1; jj � jjX Þ (resp., the closed hull of X0-X1

in X ). In consequence ðLðX0D;Y0Þ;LðX1D;Y1ÞÞ forms a Banach couple denoted for
simplicity by ðLðX0;Y0Þ;LðX1;Y1ÞÞ:

Theorem 4.1. Let F0; F1 and F2 be interpolation functors such that the bilinear

interpolation theorem F0#F1-F2 holds with a constant C40: Then for any Banach

couples %X and %Y the following continuous inclusion holds

F1ðLðX0;Y0Þ;LðX1;Y1ÞÞ+LðF0ð %X�ÞD;F2ð %YÞÞ:

Proof. Assume that a bilinear interpolation theorem F0#F1-F2 holds with a
constant C40: Let Pj :X

�
j �LðXj;YjÞ-Yj be a bilinear operator defined by

Pjðx;TjÞ :¼ %Tjx for ðx;TjÞAX �
j �LðXj;YjÞ;

where %Tj :X
�
j -Yj is a norm preserving the extension of Tj :XjD-Yj: Since

jjPjðx;TjÞjjYj
¼ jj %TxjjZj

pjj %TjjX�
j
-Yj

jjxjjX�
j
¼ jjxjjX�

j
jjT jjXjD-Yj

;

Pj is a bounded bilinear operator. Further, for any xAX �
0-X �

1 ¼ X0-X1 and

TALðX0;Y0Þ-LðX1;Y1Þ; we have

P0ðx;TÞ ¼ %Tx ¼ Tx ¼ P1ðx;TÞ:

Hence, ðP0;P1Þ is a bounded bilinear operator from the product ðX �
0 ;X �

1 Þ �
ðLðX0;Y0Þ;LðX1;Y1ÞÞ into ðY0;Y1Þ: Let

P : Dð %XÞ � ðLðX0;Y0Þ þLðX1;Y1ÞÞ-Y0 þ Y1
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be a bounded bilinear extension of ðP0;P1Þ: Note that Pðx;TÞ ¼ Tx for any xADð %XÞ
and TALðX0;Y0Þ þLðX1;Y1Þ: In fact, it follows by definition of P that

Pðx;TÞ ¼ P0ðx;T0Þ þ P1ðx;T1Þ

for any xADð %XÞ; T ¼ T0 þ T1ALðX0;Y0Þ þLðX1;Y1Þ; where TjALðXj;YjÞ for
j ¼ 0; 1: Hence

Pðx;TÞ ¼ %T0x þ %T1x ¼ T0x þ T1x ¼ Tx:

By our hypothesis the bilinear interpolation theorem F0#F1-F2 holds with a
constant C40: Thus

P : F0ð %X�ÞD � F1ðLðX0;Y0Þ;LðX1;Y1ÞÞ-F2ð %YÞ

is a bounded bilinear operator with a norm less or equal to C: This implies that for

any xADð %XÞ and TAF1ðLðX0;Y0Þ;LðX1;Y1ÞÞ; we have

jjTxjjF2ð %YÞ ¼ jjPðx;TÞjjF2ð %YÞpCjjxjjF0ð %X�ÞjjT jjF1ðLðX0;Y0Þ;LðX1;Y1ÞÞ:

In consequence

jjT jjF0ð %X�ÞD-F2ð %YÞ ¼ supfjjTxjjF2ð %YÞ; jjxjjF0ð %X�Þp1; jjxjjDð %XÞp1g

pCjjT jjF1ðLðX0;Y0Þ;LðX1;Y1ÞÞ;

which completes the proof. &

We conclude the paper with a result concerning the Banach operator ideal of
ðE; pÞ-summing operators. We recall, following [9], that if 1ppoN and E is a
Banach sequence space on N such that cp+E; then an operator T :X-Y between

Banach spaces is said to be ðE; pÞ-summing if there is a constant C40 such that for
all finite sequences fx1;y; xng in X ; we have

Xn

k¼1
jjTðxkÞjjY ek

�����
�����

�����
�����
E

pC sup
Xn

k¼1
jx�ðxkÞjp

 !1=p

; jjx�jjX �p1

8<
:

9=
;:

We denote by pE;pðTÞ the smallest constant C satisfying this property, and by

PE;pðX ;Y Þ the space of ðE; pÞ-summing operators from X into Y : Then ðPE;p; pE;pÞ
is a Banach operator ideal in the sense of Pietsch provided that jjenjjE ¼ 1: In
particular, if E ¼ cp; we obtain the Banach ideal of p-summing operators (see [29]).

In what follows, Mn;m :¼ Mn;mðKÞ denotes the space of n � m matrices on K:
A matrix TAMn;m will be identified with a linear operator from Km into Kn built

by using the canonical bases.
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Theorem 4.2. Let ðX0;X1Þ and ðY0;Y1Þ be two couples of finite-dimensional Banach

spaces with dimX0 ¼ dimX1 ¼ m; dimY0 ¼ dimY1 ¼ n and assume that X0; X1 are

2-concave lattices and Y �
0 ; Y �

1 have cotype 2. Then, for any super-multiplicative

function jAFþ
; 1ppp2 and 2-convex maximal separable Banach sequence space E

such that cp+E the following holds:

GjðPE;pðX0;Y0Þ;PE;pðX1;Y1ÞÞ+PE;pðGjðX0;X1Þ;HjðY0;Y1ÞÞ

with a norm of the continuous inclusion not depending on m and n:

Proof. We observe that an operator T :X-Y is ðE; pÞ-summing if and only if

sup
kX1

jjT̂kjjLðck
p0 ;X Þ-EðY ÞoN;

where T̂k : Lðck
p0 ;X Þ-EðY Þ is defined by

T̂kðSÞ ¼
Xk

i¼1
ðTSeiÞei for SALðck

p0 ;XÞ:

Now we follow the method of Pisier [30] for the complex method of interpolation.
Fix a positive integer k and consider the bilinear operator

Uj :Lðck
p0 ;XjÞ �PE;pðXj ;YjÞ-EðYjÞ;

defined by UjðS;TÞ :¼
Pk

i¼1ðTSeiÞei for j ¼ 0; 1: Then we have

jjUj jjLðck
p0 ;XjÞ�PE;pðXj ;YjÞ-EðYjÞp1:

It is easy to check that if F is a 2-concave Banach sequence space and a Banach

space X has cotype 2, then FðXÞ has cotype 2: Since E is separable, EðYjÞ� is
isometrically isomorphic to E0ðY �

j Þ: Thus, our hypothesis implies that EðYjÞ� has
cotype 2 for j ¼ 0; 1 (by 2-convexity of E it follows that E0 has cotype 2, see [20]).
Now, the bilinear interpolation Theorem 3.5 gives that there is a constant C40
such that

Xk

i¼1
ðTSeiÞei

�����
�����

�����
�����
HjðEðY0Þ;EðY1ÞÞ

pCjjSjjGjðLðck
p0 ;X0Þ;Lðck

p0 ;X1ÞÞ
jjT jjGjðPE;pðX0;Y0Þ;PE;pðX1;Y1ÞÞ

for all TAMm;k and SAMn;m: Since E is a maximal Banach sequence space, the

following continuous inclusion holds (see [23])

HjðEðY0Þ;EðY1ÞÞ+EðHjðY0;Y1ÞÞ:
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To complete the proof, we use the following result (which follows from the proof of
Proposition 4 in [10]): if jAF is a non-degenerate function, then for any finite-
dimensional Banach space N of cotype 2 and any couple ðM0;M1Þ of finite-
dimensional 2-concave Banach lattices with dimðM0Þ ¼ dimðM1Þ;

LðN�;GjðM0;M1ÞÞ+GjðLðN�;M0Þ;LðN�;M1ÞÞ

with a norm of the continuous inclusion depending only on the 2-concavity constants
of M0 and M1 and a cotype 2 constant of N:

Combining the above with the fact that ck
p has cotype 2 for any 1ppp2; we obtain

that

Xk

i¼1
jjðTSeiÞjjHjð %YÞei

�����
�����

�����
�����
E

pCjjSjjLðck
p0 ;GjðX0;X1ÞÞjjT jjGjðPE;pðX0;Y0Þ;PE;pðX1;Y1ÞÞ

for all TAMm;k and SAMn;m: This shows that the sequence fT̂kgNk¼1 of operators
with

T̂k :Lðck
p0 ;GjðX0;X1ÞÞ-EðHjðY0;Y1ÞÞ

is uniformly bounded, which yields the desired continuous inclusion. &
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