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1. Introduction

Multilinear operators arise naturally in many areas of classical, harmonic analysis
as well as functional analysis, including the theory of Banach operator ideals.
Fundamental multilinear operators arising in Euclidean harmonic analysis include
convolutions, paraproducts as well as multilinear Fourier multiplier operators. For
an extended discussion of important multilinear operators and their interesting
applications, one may consult [8] and references therein. Recently, various singular
multilinear operators have been investigated intensively. The latest progress (see [19])
in the study of the bilinear Hilbert transform has stimulated the need of the
development of a systematic analysis of bilinear operators. It should be noticed that
in the last few years, the attention to L, analysis of certain bilinear extensions of
standard linear operators increased. We mention here only the remarkable paper of
Grafakos and Kalton [13] in which bilinear multipliers of Marcinkiewicz type are
studied. A natural question that arises is whether one could extend those results for
operators between general spaces using interpolation techniques. We note that
interpolation of bilinear operators is a classical problem in interpolation theory. The
situation for the real and complex method of interpolation is well understood
however few results are known for other interpolation methods.

The purpose of this article is to prove some new abstract results on interpolation
of bilinear operators that involve minimal and maximal interpolation construction in
the sense of Aronszajn and Gagliardo [1] (see also [7]).

We now describe the main results of this paper. In Section 2 we fix the
notation and recall basic facts that will be needed in this paper. In Section 3 we prove
some vector-valued preliminary results related to double sequences and series
generated by bounded bilinear operators defined on the product ¢y x ¢y with values
in Banach spaces with nontrivial Fourier cotype. Then, via abstract interpolation,
these results are used to state and prove the key bilinear interpolation Theorem 2.2
of the paper.

In Section 3 we discuss the abstract interpolation of bilinear interpolation between
Banach couples. The general results are shown for minimal and maximal methods of
interpolation in the sense of Aronszajn and Gagliardo. Using these results and the
main result of Section 2, we prove a general result on interpolation of bilinear
operators involving the well-known interpolation methods of interpolation
determined by quasi-concave functions. We should point out here that using the
abstract Grothendieck theorem of Pisier, we prove a theorem which seems to be
interesting on its own. Applications of this result are shown to Calderén—
Lozanovsky spaces. Applying this result to bilinear operators between products of
L, spaces, we obtain new bilinear interpolation theorems for Orlicz spaces.

Finally, in Section 4, we present applications to the problem of interpolation of
spaces of operators. We use the bilinear interpolation theorems proved in the paper
to show certain continuous inclusions for interpolation spaces between spaces of
operators. For the finite-dimensional couples satisfying geometrical assumptions
involving cotype 2 and 2-concavity, we show similar inclusions for certain Banach
operator ideals. In particular, for 2-summing operators, we obtain a variant of Pisier
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result for the complex method of interpolation for the Gustavsson—Peetre method
(+method) of interpolation.

2. Preliminaries

This section contains notation, most notions and basic facts necessary in the whole
paper.

We shall use standard notation and notions from interpolation theory, as
presented, e.g. in [3,7,28]. Throughout the paper we will let (2, 2, u) be a complete -
finite measure space. Let Ly(u) denote, as usual, the space of equivalence classes of
real-valued measurable functions on @, equipped with the topology of convergence
in measure y on sets of finite measure. By a Banach lattice on Q2 we mean a Banach
space X which is a subspace of Ly(u) such that there exists ue X’ with u>0 and if
|f1<lg| a.e., where ge X and f'e Lo(p), then fe X and || f]]y <||g]ly-

In the special case when 2 = J and u is the counting measure, where J = Z (resp.,
J = N) denote the set of all integers (resp., the set of all positive integers), a Banach
lattice on Q is called a Banach sequence space on J.

If X is a Banach lattice on (€, 1) and we L°(u) with w>0 a.e., then the weighted
Banach lattice X (w) is defined by ||x|[y(, = [[xw|[y < o0.

If X = (Xy, X;) and ¥ = (Yy, Y;) are couples of Banach spaces, we let (X, ¥) be
the Banach space of all linear operators T : X— Y (which means, as usual, that
T:Xo+ X1— Yy + Y, is linear and the restrictions 7| x; are bounded operators from
Xj to Y; for j = 0,1). This space is equipped with the norm

15 7 = max{||T|y, - v, I Tllx, - v, }-
The K-functional is defined on X, + X; by
K(s,t,x; X) = inf{s||xo|[ y, + tl[x1][x,; x = x0 +x1}, s,0>0.

In what follows, we write in short K(z, x; X) instead of K(1,¢, x; X).

Let (Xp, X;) be any Banach couple, E a Banach sequence space on Z which is an
intermediate space with respect to (/.,/«(27")). We denote by (Xp,X;), the
Banach space of all xe Xy + X; such that {K(2",x; X)} € E equipped with the norm

[1xll = [{K (2", x; )} -

Let @ denote the set of all functions ¢:[0, ) x [0, 00)—[0, c0) such that ¢ is
homogeneous of degree one and p = ¢(1,-) is a quasi-concave function on (0, c0)
(i.e., t—p(?) is a non-decreasing and ¢+ p(¢)/¢ is non-increasing positive function
on (0, 00)).
If g e @, then the function ¢* is defined by ¢*(s,¢) = 1/¢(1/s,1/t) for s,¢>0.
The subset of all ¢ e ® for which ¢(s,1)—0 and ¢(1,7)—>0 as s—0 and t—0 is
denoted by .
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A function @€ @ is called non-degenerate if the ranges of the functions t+— ¢(1,¢)
and 7+ ¢(t,1) where >0, coincide with (0, 00).

A quasi-concave function p is called a quasi-power function if the dilatation indices
0, and 7y, of the function p satisfy 0<d, <y, <1 (see, e.g., [16] or [15]). If pe® and
p = ¢(1,-) is a quasi-power function, we write in short that pe ®*~.

We will deal with vector-valued Banach sequence spaces. Let £ be a Banach
sequence lattice on J and let X be a Banach space. The vector sequence x = {x,}, .,
in X is called strongly E-summable if the corresponding scalar sequence {||x,||} is in
E. We denote by E(X) the set of all such sequences in X. This is a Banach space
under pointwise operations and a natural norm given by

Xl ey = Il x 3 -

Throughout the paper, for any scalar vector-valued sequence {x,}, ., the series with
unspecified range of summation ), _,x, will always be interpreted as

M
E X, = lim E Xy
M N — P

neZ

where the double limit exists in the Pringsheim sense.
Let (Xo, X1) be any Banach couple, p a given quasi-power function and 1 <p; < oo
with j = 0, 1. We denote by (X, X)) the Banach space of all xe X + X; which

can be represented in the form

P:P0:P1

X = Z u, (convergence in Xy + X))

nez

with {u,/p(2")} €,,(Xo) and {2"u,/p(2")} €/,,(X1). This space is equipped with the
norm

el = inf max{[[{us/p (")}, - 14200/ 0@}, 00

where the infimum is taken over all the above representations of x as in above.
If e @™ and p = ¢(1,-), we also write ¢(Xo, X1),,, , instead of (Xo, X1), , , -

Note that in the case when p(s) = s’ and 0<60 <1 these spaces were introduced by
Lions and Peetre and were called the spaces of means (see [21]).
We will use the following theorem (see [24,26]).

Theorem 2.1. If (Xo, X1) is a Banach couple and ¢ € @~ and 1 <p;< oo for j=0,1,
then

P(X0, X1)y p, = (X0, X1) 4,0 1, (27

In particular, if (Lp,(wo), L, (w1)) is any couple of the weighted spaces Ly-spaces,
then

(Lpy (w0)s Lpy (W1)) gy po oy = @ (Lpy (W0) Ly, (w1)).
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Here, as usual, if E= (Ey, E;) is a couple of Banach lattices on (Q,u) and
@e® is a concave function (in each variable). Then the Calderon-Lozanovsky
space ¢@(E) = @(Ey, E;) consists of all xel®(u) such that |x| = ¢@(|xol, |x1|) for
some x;€E;, j =0,1. The space ¢(E) is a Banach lattice equipped with the norm
(see [22])

|[[| = inf{max{||xo|[g,, |[*1llf }; [x] = @(Ixol, [x1]); xo€Eo, x1€E1}.

Here and throughout the paper for positive functions f and g, we write f=g
whenever f<g¢g and g<f, where f<g means that there is some ¢>0 such that
f<cy.

Let {r;} be the sequence of Rademacher functions, and assume that
I<p<2<g<oo. A Banach space X is said to have (Rademacher) type p (resp.,
(Rademacher) cotype q) if there exists a constant C >0 such that, for any choice of
meN and xi,...,x,€X,

rk(t)xk

m p
dr< C(Z |IXk||§(>
X k=1

(resp., [y |10, re(0)xe] |y dr=CH (S0, |1xkll%)9). We denote by T, (X) (resp.,
C,(X)) the smallest constant C for which this holds.

Let 2<g< oo and {w,},.7 be the sequence of functions defined on T = [0, 27]
by w,(t) =™ for any teT and neZ. A (complex) Banach space X is said to
have the periodic Fourier cotype ¢ (cf. [12]) if there exists a constant K >0 such
that for all sequences {x,},., of elements in X with only finitely many non-zero

elements,
1/q |
X, |4 <K —/
(z ! ||X) |

where as usual ¢ is the conjugate exponent to ¢ defined by 1/¢+1/¢ = 1. We
denote K,(X) the smallest constant K for which the above holds.

Let us recall that if 1 <p<2, then the notion of the periodic Fourier cotype p’ of
the Banach space X coincides with the well-known notion of Fourier type p which is
equivalent to the validity of an X-valued Hausdorff~Young inequality. For details
we refer to the interesting survey paper [12].

Let us note that on the basis of Contraction Principle (see, e.g., [11, p. 231]) the
periodic Fourier cotype ¢ implies the Rademacher cotype ¢. It is also well-known
that the periodic Fourier cotype ¢ implies the Rademacher type ¢ (see, e.g., [5]).
Thus, the result due to Kwapien [18], implies that any Banach space which has the
periodic Fourier cotype 2 is isomorphic to a Hilbert space. We see immediately that
any Hilbert space H has the periodic Fourier cotype 2 with K>(H) = 1. We note that

q 1/q

dt
X

Z @y (1) xy,

nez

3
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Bourgain [6] proved that if a Banach space X is of type p for some p> 1, then it has
the periodic Fourier cotype ¢ with ¢ = 18 Tp(X)p/.

In the sequel we will need the following lemma. Before proving it we recall that the
series >, _,X, of elements of a Banach space is said to be weakly conditionally
convergent (resp., unconditionally convergent) if for every functional x* € X* the series
Y wez|x (xn)| is convergent (resp., the series >, _,&,x, converges for all g, with
g, = +1 for ne?).

For the basic properties of weakly conditionally and unconditionally convergent
series we refer to [11] or [20]. As usual, let {e,},; be the standard unit vector basis in
¢o(J) defined on the set J.

Lemma 2.1. Let X be a Banach space. Then, for any bounded bilinear operator
T :co(Z) x co(Z)— X the following statements are true:

(i) If X does not contain an isomorphic copy of co, then Y, _,T(ex,em_i) is
unconditionally convergent series in X for every meZ.

(i) If X has the periodic Fourier cotype q for some 2<q< oo, then {Xu},,.7€¢4(X)
where X =Y ;.7 T (e, em_i) for meZ.

Proof. (i) Fix x*€ X* and define a bounded bilinear form 4 : ¢y(Z) x ¢y(Z) - K by
A = x*T. Then by Aron et al. [2], we conclude that

Z |A(€k,€m,k)| <0,

keZ

i.e., the series Y, _, T (ex,em—i) is weakly conditionally convergent in X. If X does
not contain an isomorphic copy of ¢y, it follows by the well-known result of Bessaga—
Petczynski (see [4]) that every weakly conditionally convergent series is uncondi-
tionally convergent. As a consequence, it follows that the series

Z T<ek7 em#{)

keZ

is unconditionally convergent in X for every meZ.

(i1) Assume that X has the periodic Fourier cotype ¢ for some 2<g< co. We have
already mentioned that this implies that X has cotype ¢. Hence, X does not contain a
copy of c¢g. Further, we note that as an easy consequence of the Orlicz—Pettis
Theorem (see, e.g., [11]) every weakly compact operator acting between Banach
spaces is unconditionally convergent, i.e., it maps every weakly conditionally
convergent series into unconditionally convergent series. By the well-known result of
Petczynski that every bounded linear operator from ¢y into a Banach space X
containing no isomorphic copy of ¢y is compact, it follows that A; =
T(ex,-):co(Z)—X is a compact operator. Since the series ), _,e,_, converges
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weakly conditionally in ¢y(Z), the series

Z T(€k7 emfk)

meZ

converges unconditionally in X for every ke Z.
If we combine the above remarks with the equality

Z wm([) T(ekaem—k) = Z wk+n1(t) T(ek; em)

meZ meZ

which holds for any reT and keZ, we obtain that the following series converge
unconditionally in X for any NeN and teT:

Z wm([) Z T(ekvem*k) = Z <Z wm(t) T(ekaemk)>
meZ |k|<N |k|<N \meZ
= Z (Z warm(t) T((:'k, em)) .
k[<N

meZ

Since @y, (t) = wp(t) w,(t) for any teT, it follows that

Z (Uk+m(l) T(ek’er)

(< <
k|<N \|m[<M v

<sup sup [|T Z o (t)ex, Z @ (t)en

teT M.N>1 k| <N lm|<M v

STy 2)xeo(@) > x
for any positive integers M and N.

Now fixing NeN and combining the previous relations with the Dominated
Convergence Theorem yields

ay\ U4
Yo >C e ems)
meZ |||k|<N X
q /¢
. 1
<k,x) Jim |5 [ |12 on0| 3 Tlewen || at
|m|<M [k|<N X
q 1/q'
1 .
= K,(X) 2—/ A}lm Z (1) Z T (ex,em—k) dt
Ty M=o <y [k|<N

X
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q/ l/q’

= K, (X) % /T im (| > okm(0) Tl emi) dt

M-
|k|<N \ |m|lsM X

<Ky (X) IT] 2y xco(2)— x

for any NeN. Since the series > .., T(ex,en—k) converges for every meZ, we
immediately deduce that

1/q
(Z ||xm||‘§(> <Ky (X) T o(2)xeo(2)» x
meZ

and the result follows. [
We will need one further preliminary technical lemma.

Lemma 2.2. Let X be a Banach space and let {xy,,} be an infinite matrix in X with
k,meZ. If the series Y ;.7 Xim—k s unconditionally convergent for every m in Z and

> omez|2kez Xem—rllxy < o0, then the double limit My N - o Y0y < a2 jj< N Xk €Xists
in X and

Jm > Y xw:z(z )

|k|<M |jI<N meZ \keZ

Proof. Let u,, =) 7 Xim—i for meZ. Fix ¢>0. Since ), _, ||[um||y < oo and the
series » . .y Xk,m—k converges unconditionally, there exists n1€N such that

PETEDY (Z xk,m—k) <e/2

< z Z
|m| <mq meZ \ke X
and
E E Xkm—k <8/4,
|m|>my| |keFy X

where F,, is any finite subset of Z. Further, there exists kyeN such that for any
ki =ko with |m|<myg, we have

Z Xk,m—k <8/4.

|m|<mqg | ||k|>kn X
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Let M and N be positive integers with M >ky and N >my + ko. Let us define two
subsets 4 and B of Z x Z by

A={(k.j); |kI<M, |jI<N}
and
B ={(k,j); |kl<ko, |j+ k|<mo}.

For meZ we let F,, ={keZ; (k,m —k)eA} and k,, = max{keZ; keF,}. Since
Bc A, we conclude that k,, >ky, whenever |m|<my. This implies that the above
inequalities hold for F,,, and k,, defined as in above. It is easy to verify that

Z Xk, j = Z Uy — Z Z xk,m—k+ Z Z Xie,m—k -

k<M |jI<N || <my lm|<mq k| >k lm|>my keFp

If we combine this equality with the three inequalities above, we obtain

DD SRTED 3] popeey (%

|k|<M |jI<N meZ \keZ Y
for M >ky and N >my + ko. This proves the assertion. [

Theorem 2.2. Let (Xo, X1) be a couple of Banach spaces such that X; for j =0, 1 has
the periodic Fourier cotype for some 2<q;<oo. Assume that the quasi-concave
Sfunctions py, p, and p with p a quasi-power function are such that for some C>0, we
have Cp(st)=py(s) pi(t) for all s,t>0. If Ty:cox co—>Xo and Ty:co(27") x
co(27") > X, are bounded bilinear operators such that Ty(x,y) = Ti(x,y) for any
Sfinitely supported sequences x andy on Z, then for any x = {&,},.7€¢ « (1/py(2")) and
Vy=An}nez €00 (1/p(2")) there exists a double limit

S(xvy) = MII%/rLlUV Z Z ik Nm TO(ekaem)

|k|<N |m|<M

in Xo+ Xy and it defines a bounded bilinear operator S from ¢, (1/py(2")) x
£ (1/p1(2")) into (Xo, X1), 4 4 With the norm

||S| ‘ < CmaX{K‘IO (XO)||T0||CO><CO—>X0’K‘II (XI)HTI | |co(2*”)><co(2*”)—>X1 }

Proof. Fix norm one elements x = {&,} e Ey = (1/py(2")) and y = {5,} € E| =
/% (1/p;(2")). We prove that the double limit

M%{lw S Gony Tolewe)

Kl<N |j]<M
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exists in Xy + X;. First, we show that

D

me”Z

Z ék N—k T(](ek, em—k)

kez

< 0.
Xo+X,

To see this, we first observe that for every meZ the series

Z ik Mn—k TQ(Ek, em*k)

kez

converges in both Xy and X;. In fact, it follows immediately from ||x|[ <1
|[¥/|g, <1 and our hypothesis Cp(st) = py(s)p;(2) for s,>0, that |c | < C where

Clom = 5/(’7";1 k' for any (k,m)eZ?,

p(2m)
while we can apply Lemma 2.1 to obtain that the series Y ,_,To(ek,em—k) is
unconditionally convergent in X, for every meZ. Since

<2m Z ettt To(ex emk) =Y ckmTo(ex, em k),
kez kez

we get the required assertion. Combining the above remarks with Lemma 2.1(ii)
yields

a0\ /90
Z 2m Z ék’?m kTO(elwem k)
22 \p 2 .
q0 1/90
= | 2 |[22 cenTolew ems)
meZ |\keZ X,
q0 1/q0
SIS Tolewsems) < CKyy (X))ol ey,
meZ ||\keZ X,

Further, we note that a bounded bilinear operator U : ¢y x ¢y — X defined by

U{&u}: {m}) = Ti({2°Cu}, {2"n,3)
for ({&,},{n,})€co x ¢y satisfies

U llegxco - x0 STl eg2-myxco@m) - x1-
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Thus repeated use the above arguments gives the following estimates:

qi\ Vi
2m
Z (2111 z : gk”m le(ekvem k)
meZ P X,
Al 1/q1
j : z : Ckal €k 2" em k)
meZ |\keZ X
q1 1/q1
§ : E U ekyem k
meZ |\keZ X

C QI(X])HTIHCO ><co(2 ’1)_>X1~

Since To(ex,em i) = Ti(ex,emx) for all (k,m)eZ?, the above estimates show that
the sequence {uy},,.; With wuy, =, &0, Tolex, em—i) satisfies the following
inequalities:

||{um/p(2m)}||/qo(Xo) <G
and
K27 tm/p(2") }ls,, (x) < 1,

where G = C Ky, (X;)[| Tl oy 2-)xeo(2-im)— x, for j =0, 1. Our hypothesis that p is a
quasi-power function easily implies that

Z ||u’"||Xo+X1 < %.

meZ

Recall that for any meZ the series Y ; ;&M To(ek, em—k) converges uncondi-
tionally in both X, and Xj, and thus also in Xy + X;. Applying Lemma 2.2, we
conclude that the double limit

S(X,y) = lim Z Z fk 7]/’ TO(ek7ej)

M.,N— o .
|k|<M |jISN

exists in Xy + X;. This immediately implies that S is a bilinear map from Ej x E)
into Xy + X;. Since

y) = Z u, (convergence in Xy + Xj),

meZ
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we obtain by the above obtained estimates that S(x,y)e (X, X7) for any

P-q0-91
(x,y)eEq x Ey with [|x|[g <1 and [[y[|g <1. In consequence, we have proved

that
S: 4o (1/pg(2")) X Lo (1/p1(27)) = (X0, X1) 5 4 4,

is a bounded bilinear operator with ||T'|| <max{Cy, C;}. This finishes the proof. [

3. Abstract bilinear interpolation

In this section we prove general results on interpolation of bilinear operators. We
will need some further interpolation space concepts. Recall that the mapping F from
the category of all couples of Banach spaces into the category of all Banach spaces is
said to be an interpolation functor if for any Banach couple X, F(X) is an
intermediate Banach space with respect to X, and for any T e Z (X, ) it follows that
T:F(X)— F(Y). If additionally

HTHF()_OAF(Y) <max{||T||X0aYo> ||THXHY,}

holds, then F is called an exact interpolation functor.
We will consider particular cases of the following two constructions by Aronszajn
and Gagliardo [1] of exact interpolation functors. Given 4 and A, such that 4 is an

intermediate space with respect to the couple A, two interpolation functors are
defined by

G(X) =G{(X) = {Z Tay; Z Tl 12 ¢llall, < OO}
n=1 n=1

and
H(X) = Hj()_() = {xeXo+ X,; TxeA for every T: X—A}.

The norms are given by

0 0
¥l ges) = mf{z [ Tallieg llall =" T}
n=1 n=1
and, respectively,
Xl ) = sup{lI Tx[Lg [Tz a<1}-

Note that G is the minimal interpolation functor satisfying 4 < G(A4) and H is the

maximal interpolation functor satisfying H(A4) < A.
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The interpolation functor Gj} is called approximable (cf. [15]) on a Banach couple
X with a constant ¢>0 if for any xe Xy X;, we have

N
X = E Snan
n=1

for some positive integer N, a,e Agn A, n=1,...,N and S, : 4— X satisfying

N
S 1Sulli-llanlla <elixllgs

n=1

For a study of approximable interpolation functor we refer to [17].

In what follows, we need a definition of interpolation bilinear theorems. Let X =
(Xo, X1), Y = (Yo, Y1) and Z = (Zy, Z;) be Banach couples. We will say that (7p, T})
is a bilinear operator from X x ¥ into Z, and write T = (T,,T1)e %4(X, Y;Z) if
T; : Xj x Y;—> Z; is a bounded bilinear operator (j =0, 1) and Ty(x,y) = Ti(x,y) for
any xe Xon X and ye Yo Y.

It is easy to check that #(X, ¥; Z) is a Banach space equipped with the norm

H(T07 Tl)”)?xl_/—vz = @ax H]}||X-><Y-—>Z"
=01 jXAj L

Note that any (7y, T)) e #(X, ¥; Z) defines a bilinear map T which is called in the
sequel a natural bounded bilinear extension of (Ty, T}) from A(X) x X(Y)— 2 (Z) by

T(x,y) = To(x,»0) + T1(x, 1)

for any xe A(X) and y = yo + y1 € 2(Y) with yoe Yy and y; € Y. It is easy to see that
T does not depend on the representation of ye X(¥) and T is bounded with

T |acoywzr) -z <I(To, Tl w7 2-

Assume that X, Y and Z are Banach spaces intermediate with respect to the couples
X, Y and Z. We say that a triple of Banach spaces (X,Y;Z) is a bilinear
interpolation with respect to (X, ¥; Z), and write (X, Y; Z) eInt(X, ¥; Z) if for every
(To, T1)e#(X, ¥; Z) there is a constant Cr such that a natural bounded bilinear
extension T of (T, T}) satisfies

T Ce )|z < Crllx[ [yl y

for any (x,y)ed(X)x Y. If Cr=C does not depend on T, we write
(X, Y;Z)elntc(X, ¥; Z) and say that C is a constant of the bilinear interpolation.

It is shown in [25] that if (X, Y;Z)elInt(X, ¥; Z), then there is a constant C>0
such that (X, Y;Z)elntc(X, Y, Z).
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For simplicity, we shall use the following notation for interpolation functors Fy, F}
and F»:

Fy(X)QF\(Y)->F(2),
and say that a bilinear interpolation theorem holds, provided that
(Fo(X),F1(Y); F,(Z2))elnt(X, Y; Z).
If the above relation holds for all Banach couples X, Y and Z, we write in short
Fo®F, — F».

We are now ready to prove the following general theorem. We note that a variant of
multilinear result holds (for details we refer to [25]).

Theorem 3.1. Assume that (A, B; C)elInty (A, B; C). If the interpolation functor Gj is
approximable on a Banach couple X with a constant ¢>0, then the following bilinear
interpolation theorem:

Gi(X) ®GH(7)~ HE(Z)
with the constant equals ¢cM holds for any Banach couples Y and Z.

Proof. Assume that (7o, Th)e#(X,Y;Z) with |[(To, Th)||g. 5. 2<1. Fix
Z-

operators So: A—X, S;: B—Y and R: C with ||R||z_, #<1. Define operators
U; by

U,-(a, b) = RT,‘(S()Q,S]b)
for (a,b)eA; x B; and j = 0,1. We have (Uy, U) e #(4, B; C) with
(U0, Uiz e<I[Soll1 2 [IS1]15- 7-

Let U: 4(A) x £(B)— X(C) be a natural bounded bilinear extension of (U, U). It
is easy to see that

(J(Cl7 b) = RT(S()CI, Slb)

for any (a,b)eA(A) x Z(B), where T:A(X) x X(Y)—2(Z) is a natural bounded
bilinear extension of (7, T}). Since (A4, B; C)elnty (A4, B; C), we have

WU (@, b)l|c < M||Soll - xl[S1[] 5 7llal]l 0] 5

for any (a,b)e (49N A;) X B.
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Fix ¢>0. Then, by our hypothesis on Gf; it follows that for any xe Xy n X and
yeGB(¥) we have

N 0
X = § SOnam y= E Slmbm
n=1 m=1

for some positive integer N and a,e4gnAy, n=1,...,N and, b, €B, Sp,: A— X,
Sim : B— Y satisfying

N
S ISonl- gllanlly <el il g3,

n=1

and

0
D 1Sl 511wl < (1 + 2)llgy s,

m=1
This implies that for any R: Z— C with ||R||;_ #<1, we have

N 0

T(X,y) = Z

n=1

N
RT(SQnan,Slmbm) - Z i (]nm am m

m=1 m=1

where Uy, : A(A) x X(B)—»2(C) is a natural bounded bilinear extension of
(Uon, Ur) (defined in a similar way as U in above) satisfying

HUnm(a»b)||C<M||a||AHbHB

for any ae Agn A; and be B.
In consequence, the above remarks and estimates implies

N 0
||RT X,y ||C Z ||Unm ap, b )HC
n=1 m=l1
N 0
<U+e)M D > ISonlla gllanlLal|Suml 5 #l1bml 15

n=1

m=1
N 0 0
M(Z > ||S0'l||/_14)_(||an||A> (Z |S1m||1§af’|bm||B>

n=1 m=1 m=1

<(1+&)eM 1l gi g Wl g
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Since ¢>0 is arbitrary, we get

1T ez = supllIR(T (x, )3 [IRllz- o< 1}

< Ml g7 Wl gz,

for xe Xon X; and ye GE(Y). This completes the proof. [

We present some applications of the obtained results for special interpolations
functors. Throughout the rest of the paper, for a given function ¢ e ®y we let G, :
= Gj with 4 =/ (¢*(1,27")) and 4 = (o, co(27")) defined on the set of integers
Z. We note that G, coincides with the so called + method of interpolation
introduced by Gustavsson—Peetre [14] (see [15] or [28, p. 468]).

In the sequel, we write that the functions ¢, ¢, and ¢ in @ satisfy the (generalized
super-multiplicativity) condition (SM) if there exists a constant C >0 such that

(p0(17S) (p1(17t)<C(p(17St)

holds for all >0 and ¢>0. If the above condition (SM) holds with ¢ = ¢, = ¢y,
then ¢ is called super-multiplicative.

Theorem 3.2. Let the functions ¢4, ¢, and ¢ in @y with ¢, being non-degenerate and
pe® being a concave function satisfy condition (SM). Assume that Z = (Zy,Z,) is
a Banach couple such that Z; has the periodic Fourier cotype q; for some 2<q;< 0,
j=0,1. Then the following bilinear interpolation theorem:

Gy, (e G, ( Y)~ (2o, 2y )(p(/qo Lg (27m)

holds for any Banach couples X and Y.

Proof. An immediate consequence of Theorem 2.2 is that the triple
(¢ (05(1,27")), 4o (@7(1,27"): Zo(t, 1 (277))

is a bilinear interpolation with respect to

((co,€0(27")); (o, c0(27")); Z).-

Further, under our hypothesis on ¢,, the functor G, is approximable on any
Banach couple (see [15] or [28, pp. 451-452] or [17]). By Theorems 2.2 and 3.1, this
completes the proof. [

In what follows, for any ¢e® and 1<p<oo we let H,, be the maximal
interpolation functor H4 with 4 == (£,,/,(2")) and 4 = /,(¢*(1,2")) defined on Z.
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If p =1, then H,,; is the upper Ovchinnikov functor ¢, (see [28]) which is denoted in
short by H,.

Theorem 3.3. Assume that the functions ¢, ¢, and ¢ in &y with ¢, being non-
degenerate and e ®' satisfy the condition (SM). Then the following bilinear
interpolation theorem holds:

Gy ® Gy, > Hyp .

Proof. It follows by Theorem 2.1 that for any e @',
(42,02(2")) p2n = @((2,42(2")) = £2(07(1,27)).

Since any Hilbert space has the periodic Fourier cotype 2, the argumentation used in
the prove of the Theorem 3.2 completes the proof. [

In order to present more general applications, we will need first a preparatory
theorem which is probably of independent interest.

Theorem 3.4. Assume that X = (Xy, X)) is a Banach couple and ¢pe®. Then the
following statements are true:

() Hy(X) S Hoo(X).
(i) If pe®y and both X; and X} have cotype 2, then H,>(X)< H,(X) with the
constant of embedding depending only on the cotype 2-constants of X and X7 .

Proof. (i) Since H,, is a maximal interpolation functor and
H,({2,0,(2") = o(£2,42(2")) = (2(@"(1,2")),

the required continuous inclusion follows.

(1) We use the abstract Grothendieck theorem of Pisier. It states (see [29,
Theorem 4.1]) that if X, Y are Banach spaces, X* and Y have cotype 2 and
T : X — Y is approximable operator, then for a given ¢ >0 there is a Hilbert space #
and operators V: X —»#, U:# — Y such that T = UV, and

UV (1 + &) (2C(X*)Co(Y))*2.

Fix xe H,,(X). To show that xe H,(X) we need to prove that for any operator
T:X—((1,/1(2")), we have Txe/ (¢*(1,2")). Since both spaces /; and #;(2") with
bases have cotype 2, T: X;—/1(2") is an approximable operator (j = 0,1). Thus,
combining the abstract Grothendieck theorem of Pisier with Lemma 11.1.1 in [2§],
we conclude that there exist a Hilbert couple H = (#, #) and operators

V: (Xo,X])%(%o,cfl) and U: (Jfo,%l)a(fl,fl(f))
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such that T =UV. Since xeH,»(X), K(t,x;X)=<e¢(l,7) for any >0,
K(s,t,x; X) ey by pe®y. In consequence K(s, 1, Vx; #) e @y. This yields that there
exists €/, + /2(2") such that

K(t,&42,02(2") = K(t, Vx; H).

By Sedaev’s result [31], we know that interpolation between Hilbert couples is
described by the K-method of interpolation. Thus, we can construct operators

S1:(Ho, H1)> ((2,02(2")) and Sy :(£2,02(27)) = (H o, H# 1)

such that ||Sj||<V/2 for j = 0,1 and

Vx =8 S1(Vx).
Since SiV 1 (Xo, X1)— (/2,72(2")) and xe H,(X),

S1(Vx)el2(@™(1,2") = Hy(£2,£2(2")).
Further, US, : (¢2,/2(2"))— (£1,/1(2")) implies by interpolation property that
US> Hy(2,02(2")) > Hy(41,41(2") = 1(97(1,2")).
Combining the above relations, we obtain
Tx = USy(S1Vx)el1(9*(1,2"))
and in consequence xe H,(X). O
We can now state main applications of Theorems 3.3 and 3.4.

Theorem 3.5. Assume that the functions ¢, ¢, and ¢ in @y with ¢, non-degenerate

and o e @+~ satisfy condition (SM). Assume that Z = (Zy, Z,) is a Banach couple such
that both Z; and Z} have cotype 2. Then the following bilinear interpolation theorem:

GWO(Y) ® G(pl(Y) _’Hm(Z)
holds for any Banach couples X and Y.

Let us show an application of this result for Calderén—Lozanovsky spaces. We do
not discuss here applications to concrete bilinear operators. The interested reader
may consult the results on boundedness of a large class of bilinear operators on a
product of L,-spaces presented, e.g. in [8] or [13] in order to get via the bilinear
interpolation Theorem 3.7 the results on boundedness of these operators on a
product of Orlicz spaces.
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Theorem 3.6. Assume that the concave functions ¢, ¢, and ¢ in o with ¢, being non-
degenerate and o e ®*~ satisfy condition (SM). Assume that Z = (Zy, Z,) is a couple
of maximal Banach lattices such that both Z* and Z7 have cotype 2. Then the following
bilinear interpolation theorem:

(X)) ® ¢ ()= p(2)
holds for any Banach couples of lattices X and Y.

Proof. It is well-known that if ¢ € @, is a concave function, then
@(Eo, E1) > Gy (Eo, E1)

for any couple (Ey, Ey) of Banach lattices (see [27] or [28, p. 453]). Since H,(Z) =
®(Z) whenever Z; is maximal (j=0,1) (see [28, pp. 474-475]), Theorem 3.5
applies. [

We note that by the well-known description of Calderén—Lozanovsky construc-
tion for any weighted L, spaces (see, e.g., [27]) the application of the above theorem
yields a bilinear interpolation theorem for the products of Musielak—Orlicz spaces
with respect to the products of weighted L, spaces. For the sake of completeness we
recall that if 1<po<pi;<oo and (L,,(wo), Ly, (w1)) is a Banach couple of weighted
L, spaces on a measure space (, u), then for any concave ¢ € d, we have

QD(LPO (WO)a LP1 (Wl )) = L»//h

where L ; is the Musielak—Orlicz space generated by the function
A (1) = M (w1 (0) P (1)) (v (1) /1 (1))

for u>0 and reQ with 1/g=1/py—1/pi and M~'(s) = p(s'/P0,s'/P1) for 5>0
(see [27]) equipped with the norm

||x||:inf{/1>0; /Q/%(x(t)/)v,t)dp&l}.

Combining the above remarks with the well-known fact that any L,-space with
1<p<2 has cotype 2 (see, e.g., [20]), we obtain the following bilinear theorem for
Orlicz spaces.

Theorem 3.7. Assume that the concave functions ¢, ¢, and ¢ in &y with ¢, being non-
degenerate and @ e @~ satisfy condition (SM). Let 1<py<p1< o0, I<gy<qi <o
and 2<ro<r < oo and let My, M1 and M be Orlicz functions defined by %al(s) =
@o(s1P0 S1PV) T (s) = oy (5190 sV and T (s) = (s 0, sV for any s=0.
Then the triple of spaces (L. y,,L.u,; L.y) is bilinear interpolation with respect to the
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triple ((Lpy, Lp,), (Lgys Lq,); (Lry, Ly,)) of couples of Ly-spaces defined on any measure
spaces.

4. Interpolation spaces of operators

In this section we present certain applications of the obtained results. We first
present a result which shows that bilinear interpolation theorem yields an
information on relations about spaces of operators between interpolation spaces
and interpolation spaces with respect to couples of operator spaces. To be more
precise, let X = (Xo, X1), ¥ = (Yo, Y1) be Banach couples. It is clear that we have the
following continuous inclusion:

L(Xja, V) > L(Xon X1, Yo + 1)
for j = 0,1, where for a Banach space X intermediate with respect to (Xp, X1), X4
(resp., X°) denotes a normed space (Xon X7, || - ||y) (resp., the closed hull of XN X
in X). In consequence (% (Xo4, Yo), #(X14, Y1)) forms a Banach couple denoted for
simplicity by (Z(Xo, Yo), Z (X1, Y1)).

Theorem 4.1. Let Fy, Fy and F, be interpolation functors such that the bilinear
interpolation theorem Fy® Fy — F> holds with a constant C>0. Then for any Banach
couples X and Y the following continuous inclusion holds

Fi(Z(Xo, Yo), Z (X1, 1)) & L(Fo(X°) 4, Fa(T)).

Proof. Assume that a bilinear interpolation theorem Fy® F;— F, holds with a
constant C>0. Let P;: X7 x #(X;, ¥;) > Y; be a bilinear operator defined by

Pi(x, Ty) = Tix for (x,T)e Xy x £(X;, Y)),
where T} X7 — Y is a norm preserving the extension of 7j: Xj4 — Y;. Since

12506, Ty, = 1Tl < [Tl v, 1]

X = ||x] x; T||1Y/‘A—’Yj’

P; is a bounded bilinear operator. Further, for any xeXjnX? = XonX; and
Te % (Xy, Yo)nZ (X1, Y1), we have

Py(x,T)=Tx=Tx = Pi(x,T).

Hence, (Py,P1) is a bounded bilinear operator from the product (Xj,X7) x
(Z(Xo, o), L(X1, Y1)) into (Yo, ¥7). Let

PIA(X) X (X, Yo)+ Z (X1, 1))-» Yo+ 1
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be a bounded bilinear extension of (P, P1). Note that P(x, T) = Tx for any xe 4(X)
and Te L (X, Yo) + Z(X), Y1). In fact, it follows by definition of P that

P(X, T) = Po(x, T()) +P1(x, Tl)

for any xed(X), T =Ty + T1 e Z(Xo, Yo) + Z(X1, Y1), where Tje #(X;,Y;) for
j=20,1. Hence

P(x,T)=Tox + Tix = Tox + T1x = Tx.

By our hypothesis the bilinear interpolation theorem Fy® F;— F, holds with a
constant C>0. Thus

P:Fy(X°), x Fi(Z(Xo, Yo), Z(X1, V1)) > F>(Y)

is a bounded bilinear operator with a norm less or equal to C. This implies that for
any xe A(X) and TeF|(Z(Xo, Yo), Z(X1, Y1)), we have

T gy 7y = PG T gy 0y < CHX ) | Ty (200, v0), 2001, 10)) -

In consequence
W1y ), - oy = SUPTIT gy 5 |IXl ey S T 16l gy <13
< CUTF 2 x0,v0). 2. 11))
which completes the proof. [

We conclude the paper with a result concerning the Banach operator ideal of
(E,p)-summing operators. We recall, following [9], that if I<p<oo and E is a
Banach sequence space on N such that /, < E, then an operator 7': X — Y between
Banach spaces is said to be (E, p)-summing if there is a constant C >0 such that for
all finite sequences {x, ..., x,} in X, we have

" 1/p
< Csup (Z |x*(xk)|p> ;X
E =

n
D NT )y ex
k=1

We denote by 7ng,(7) the smallest constant C satisfying this property, and by
Ilg,(X,Y) the space of (E,p)-summing operators from X into Y. Then (I1g,, ng,)
is a Banach operator ideal in the sense of Pietsch provided that |le,||p = 1. In
particular, if £ = /,, we obtain the Banach ideal of p-summing operators (see [29]).

In what follows, .#,,, = M, (K) denotes the space of n x m matrices on K.
A matrix T €.#,,, will be identified with a linear operator from K" into K" built
by using the canonical bases.
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Theorem 4.2. Let (X, X1) and (Y, Y1) be two couples of finite-dimensional Banach
spaces with dim Xy = dim X| = m, dim Yy = dim Y| = n and assume that Xy, X, are
2-concave lattices and Yy, Y| have cotype 2. Then, for any super-multiplicative
Sfunction pe ®", 1< p<2 and 2-convex maximal separable Banach sequence space E
such that £, E the following holds:

Gy gp(Xo, Yo), IEp(X1, Y1) g p(Gy(Xo, X1), Hy (Yo, Y1)
with a norm of the continuous inclusion not depending on m and n.

Proof. We observe that an operator 7: X — Y is (E, p)-summing if and only if

sup ||TkH£[(/;,,X)aE(Y) <0,

k>1

where T} : 3(/;,X)—>E(Y) is defined by

k
T4(S) = Z (TSe;)e; for Se,?,”(/];,,X).

i=1

Now we follow the method of Pisier [30] for the complex method of interpolation.
Fix a positive integer k& and consider the bilinear operator

Up: L4y, X)) % i p(X;, Yy) = E(Y)),
defined by U;(S,T) = Zf.‘:l(TSe,-)e,- for j =0,1. Then we have

U (0, dptn 36,3) ) ST
It is easy to check that if F' is a 2-concave Banach sequence space and a Banach
space X has cotype 2, then F(X) has cotype 2. Since E is separable, E(Y;)" is
isometrically isomorphic to E'(Y}). Thus, our hypothesis implies that £(Y;)" has
cotype 2 for j = 0,1 (by 2-convexity of E it follows that E’ has cotype 2, see [20]).
Now, the bilinear interpolation Theorem 3.5 gives that there is a constant C>0
such that

k
Z (TS@,')@,'
i=1

S ClISlg, (it o). 2k, ) 1T NGy 15, x, ¥0) 1, 00,72

Hrﬂ(E(YO)wE(Yl))

for all Te .M, and Se M p,,. Since E is a maximal Banach sequence space, the
following continuous inclusion holds (see [23])

Hy(E(Y0), E(Y1)) S E(Hy(Yo, Y1)).
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To complete the proof, we use the following result (which follows from the proof of
Proposition 4 in [10]): if ¢ e® is a non-degenerate function, then for any finite-
dimensional Banach space N of cotype 2 and any couple (M, M;) of finite-
dimensional 2-concave Banach lattices with dim(My) = dim(M,),

L(N*, Gp(Mo, M) G (L(N*, My), L(N*, My))

with a norm of the continuous inclusion depending only on the 2-concavity constants
of My and M, and a cotype 2 constant of N.

Combining the above with the fact that /f,f has cotype 2 for any 1 <p<2, we obtain
that

k
Z TS€1 ||H

i=1 E

< (S|l g (1%.Go (X0, 1)) ||T||Gq,(HE_l,()((,,)’(,)VHE7,,(X1,Y1))

for all Te.#,,; and Se.#,,. This shows that the sequence {Tk}kv;l of operators
with

Ti: Z(0%, Gy(Xo, X)) > E(Hy (Yo, Y1)

is uniformly bounded, which yields the desired continuous inclusion. [
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