P. MANCOSU, K.F. JGRGENSEN AND S.A. PEDERSEN
INTRODUCTION

In the 20th century philosophy of mathematics has to a great extent been
dominated by views developed during the so-called foundational crisis in the
beginning of that century. These views have primarily focused on questions
pertaining to the logical structure of mathematics and questions regarding
the justification and consistency of mathematics. Paradigmatic in this re-
spect is Hilbert’s program which inherits from Frege and Russell the project
to formalize all areas of ordinary mathematics and then adds the require-
ment of a proof, by epistemically privileged means (finitistic reasoning), of
the consistency of such formalized theories. While interest in modified ver-
sions of the original foundational programs is still thriving, in the second
part of the twentieth century several philosophers and historians of mathe-
matics have questioned whether such foundational programs could exhaust
the realm of important philosophical problems to be raised about the nature
of mathematics. Some have done so in open confrontation (and hostility)
to the logically based analysis of mathematics which characterized the clas-
sical foundational programs, while others (and many of the contributors to
this book belong to this tradition) have only called for an extension of the
range of questions and problems that should be raised in connection with an
understanding of mathematics. The focus has turned thus to a consideration
of what mathematicians are actually doing when they produce mathematics.
Questions concerning concept-formation, understanding, heuristics, changes
in style of reasoning, the role of analogies and diagrams etc. have become
the subject of intense interest. These historians and philosophers agree that
there is more to understanding mathematics than a study of its logical struc-
ture and put much emphasis on mathematical activity as a human activity.
How are mathematical objects and concepts generated? How does the pro-
cess tie up with justification? What role do visual images and diagrams play
in mathematical activity? In addition to these cognitive issues one might
also investigate how mathematics interacts with the natural sciences, and
how mathematical thinking might depend on the culture it is embedded in.
This book is based on the meeting “Mathematics as Rational Activity”
held at Roskilde University, Denmark, from November 1 to November 3,
2001. The meeting focused on recent work in the study of mathematical
activity understood according to the outline given above. The lectures, by
some of the most outstanding scholars in this area, addressed a variety of
issues related to mathematical reasoning. Despite the variety of the con-
tributions there were strong unifying themes which recur in these lectures
thereby providing a strong sense of unity and purpose to the present book.
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The title of the book “Visualization, Explanation, and Reasoning Styles in
Mathematics” is indeed an accurate description of these recurring themes.

The volume is divided into two parts. The first part is called Mathemati-
cal Reasoning and Visualization.

One question which arises pertaining to mathematical reasoning is to
what extent, if any, diagrams and visual imagery can provide us with mathe-
matical knowledge. Most of the contributions in the book touch upon this
question but the first part of the book is fully devoted to it. In “Visualization
in Logic and Mathematics”, Paolo Mancosu provides a broad introductory
discussion of visualization and diagrammatic reasoning and their relevance
for recent discussions in the philosophy of mathematics. Mancosu begins
by outlining how visual intuition and diagrammatic reasoning were discred-
ited in late nineteenth century and twentieth century analysis and geometry.
While diagrams and visual imagery were considered heuristically fruitful
their role for justificatory purposes was considered to be unreliable and thus
to be avoided. However, recent developments in mathematics and logic have
brought back to the forefront the importance of visual imagery and diagram-
matic reasoning. Mancosu describes how many mathematicians are calling
for more visual approaches to mathematics and the recent developments in
logic related to diagrammatic reasoning. In the final part of the paper he
discusses how these recent developments affect the traditional foundational
debates and describes some recent philosophical attempts to grant to visual-
ization (Giaquinto) and diagrammatic reasoning (Barwise and Etchemendy)
an epistemic status which goes beyond the mere heuristic role attributed to
them in the past.

With this background the reader can then move on to Marcus Giaquinto’s
“From Symmetry Perception to Basic Geometry”. In Frege’s approach to the
foundations of mathematics, Frege explicitly excluded that psychological in-
vestigations might be relevant to the foundational goal. This was basically
motivated by the idea that experience, whether physical or psychological,
could not warrant the generalizations drawn from it and thus in this way one
could not account for the objectivity of mathematics. The Fregean approach
had no account of how our psychological processes relate to our grasping
of mathematical truths. Frege’s position rests on the assumption that the
only role a perception or an experience of visual imaging can play is that of
evidence for a further generalization. By contrast, Giaquinto proposes that
experiences of seeing or visual imaging might play the role of “triggers” for
belief-forming dispositions which in turn give us geometrical knowledge. He
gives an account, meant to be empirically testable, of how we could come to
the knowledge of a simple geometrical truth, such as that in a perfect square
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the two parts either side of the diagonal are congruent. The account pro-
ceeds by stages. First, a description of how we perceive squareness (and the
role that visual detection of symmetries plays in the process) and how this
results in a category representation (in the form of a description set) for the
perceptual concept of square. Second, how a modification of the perceptual
concept of square gives rise to the concept of a perfect square. Third, it is
argued that the possession of these concepts is tantamount to having certain
belief forming dispositions which can be triggered by experiences of visual
seeing or imaging. However, the role of the visual or imaging experience
is not that of evidence but rather of “trigger” for the belief-forming disposi-
tions. Finally, if the mode of acquisition of such triggered beliefs is reliable
and there is no violation of epistemic rationality, Giaquinto claims that the
beliefs thus obtained constitute knowledge. What type of knowledge? Be-
ing non-logical and non-empirical (since the role of experience is not that of
providing evidence) the beliefs thus obtained are synthetic a priori. Whether
any individual or we as a community of mathematical learners come to have
the beliefs in question through the process described ought, according to
Giaquinto, to be subject of empirical investigation. If he is right the gap be-
tween experience and mathematical knowledge would finally be filled by an
account that does justice both to the role of psychological processes and to
the objectivity of mathematics.

In a more traditional philosophical context, namely the perennial dis-
pute between platonism and naturalism, James Robert Brown also addresses
the role of “seeing” and “intuition” in mathematics and the relevance of dia-
grams in this context. While providing a defense of Platonism, Brown agrees
that with respect to epistemological questions traditional Platonism has al-
ways been problematic: How are we to have access to the mathematical enti-
ties which exist in an abstract non-causal world? Modern Platonists typically
claim that we can “see” or “intuit” the mathematical entities with a special
non-sensible intuition. K. Godel and G. H. Hardy are two of the most well
known mathematicians holding this view. Thus, Hardy for instance, sees all
mathematical evidence as some sort of perception. But in this respect, ac-
cording to Brown, he goes too far. We only need, Brown says, to commit
ourselves to the perception of some basic mathematical objects and facts.
These can then serve as grounds for more advanced mathematics which we
cannot directly “see” and this is quite close to Gddel’s position. By stress-
ing the fact that much of what is called “seeing” in natural science is quite
remote from visual perception, Brown goes on to describe how we can have
“seeing” in mathematics through diagrams. Using a simple example of a
picture-proof, Brown claims that a diagram can function as a “telescope”
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that allows us to “see” into the Platonic realm. The diagram displays only a
specific case but through the diagram we are able to intuit a general truth and
this intuition cannot be confused with the sensory information given by the
diagram. Brown’s position on intuition is then elaborated further through an
analysis of how Freiling’s well known informal disproof of the Continuum
Hypothesis (by throwing darts at the real line) affects Maddy’s naturalism in
philosophy of mathematics. The resulting claim is that, according to Brown,
there is “some sort of mathematical perception which cannot be reduced to
either physical perception or to disguised logical inference”.

In his second contribution, Marcus Giaquinto addresses the varieties
of mathematical activities which are encountered in mathematical practice.
These include, to name only some paradigmatic examples, discovery, expla-
nation, formulation, application, justification and representation. All of these
activities provide rich material for a philosophical analysis of mathematics.
Unfortunately, until recently philosophers of mathematics have mainly paid
attention to only a few of these and, moreover, the of attention has often
been too narrowly focused. The extension proposed by Giaquinto concerns
not only the proposal to take into account the above mentioned activities but
also the various aspects in which mathematics is done and communicated
(making, presenting, taking in).

Three important ingredients of mathematical activity are discovery, ex-
planation and justification. The discussion of discovery through visual imag-
ing nicely ties up with the previous material on visualization and again Gi-
aquinto points out that although we might reach knowledge by such means
this need not be a proof. Explanation is also a theme touched upon by many
contributors in the book. Giaquinto points out that there are proofs which
are not explanations and explanations which are not proofs. Of course, there
are also examples of proofs which are explanations, and Giaquinto refers
to Chemla’s paper for an important historical example. Moreover, explana-
tions might play a role in motivating definitions, as illustrated by the moving
particle argument which gives a satisfactory account of the use of Euler’s
formula

€™ =cosT+isinTt

as a definition in extending the exponential function to complex numbers.
Motivating a definition through an explanation is thus an important type of
mathematical activity and it can be seen as a form as justification which is
distinct from proving a theorem. Another such activity is motivating or ‘jus-
tifying’ the axioms. Giaquinto concludes that extending the philosophical
analysis of mathematics to all these aspects, and the many more discussed in
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his paper, ‘would restore to philosophy of mathematics its ancient depth and
succulence’.

Part 11 of the book is entitled Mathematical Explanation and Proof Styles.

Jens Hgyrup in “On Reasoning Styles in Early Mathematics” discusses
aspects of reasoning in Babylonian and Greek mathematics. Hgyrup’s essay
takes its start from a criticism of those historians of mathematics who for-
mulate a distinction between Babylonian and Greek mathematics claiming
that the former is basically a collection of ad hoc rules whereas the latter is
a reasoned discipline. In addition to show that this is an incorrect charac-
terization of the situation, Hayrup also wants to characterize the reasoning
involved in Old Babylonian mathematics in constant comparison with Greek
mathematics. What he points out is that there are certainly mathematical
tablets in which solutions to problems are given where “no attempt is made
to discuss why or under which conditions the operations performed are le-
gitimate and lead to correct results”. The situation is made worse by the
fact that most of these clay tablets contain no diagrams. But obviously there
must have been more that accompanied the process of instruction and learn-
ing. Heyrup argues that a few remaining texts from Susa allows us to see
the kind of explanations that would have been given orally in a learning con-
text. Moreover, these explanations are ‘critical’, i.e. provide reasons for
the extent of the validity of the procedure under discussion and for why the
procedure works. Thus, Old Babylonian mathematics displays its own char-
acteristic style of thought. The real difference with Greek mathematics is
that in the Old Babylonian school “the role of critique had been peripheral
and accidental; in Greek theoretical mathematics it was, if not the very centre
then at least an essential gauge”. Hgyrup concludes that we cannot count as
mathematics any activity that is devoid of understanding and that when the
historian works on a mathematical culture for which the sources do not re-
veal an appeal to reasoning then either we are not understanding the sources
or the sources are not an accurate mirror of the mathematical practice.

Another area in history of mathematics which has traditionally been
judged against the yardstick of Greek mathematics is Chinese mathemat-
ics. Karine Chemla’s “The Interplay between Proof and Algorithm in 3-rd
Century China” dovetails well with Hgyrup’s contribution by showing that
Chinese mathematics also presents reasoning styles which differ from Greek
mathematics but should nonetheless be seen as part of the history of proof. A
key case study in this connection is Liu Hui’s commentary on The nine chap-
ters on mathematical procedures. In particular, Chemla focuses on Liu Hui’s
commentary on the measurement of the circle. The commentary, made up of
two parts, reveals Liu Hui’s concerns for explaining why a certain algorithm
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is correct and it functions as an explanation of the algorithm. The work bears
witness to a sophisticated practice of proving mathematical results in ancient
China which differs from proving practices in Greek mathematics. Liu Hui
was a commentator and this is significant as proofs seem to emerge in Chi-
nese mathematics as the result of such activity. Chemla claims that whereas
in Greek mathematics proofs seem mainly aimed at establishing the truth of
propositions in the case of Liu Hui what is at stake is the establishment of
the correctness of a certain algorithm or possibly showing why the algorithm
is correct. Without entering into the details of the analysis let us point out
that we have here another interesting case study of mathematical practice
which highlights two important facts. First, it shows that the role of proof
might be explanatory, in addition to that of certifying a result. Moreover,
the reasoning style displayed in these texts represent a characterizing feature
of Chinese mathematics and thus it reminds us about the importance of the
mathematical culture in which different proof practices are embedded.

Thus, Hegyrup’s and Chemla’s case studies, in addition to their intrin-
sic importance for the historiographical characterization of Old Babylonian
mathematics and Chinese mathematics vs. Greek mathematics, raise impor-
tant issues concerning mathematical understanding and mathematical expla-
nation and show that these notions are also context-dependent.

Jamie Tappenden’s article “Proof style and Understanding in Mathemat-
ics I” touches on several topics central to the book such as visualization,
explanation, justification, and concept formation. The article focuses on the
different styles within complex analysis represented by Weierstrass and Rie-
mann. Weierstrass’s methodology was computationally motivated: it aimed
at finding explicit representations of functions and algorithms to compute
their values. Riemann, by contrast, was more abstract in his approach, more
“conceptual”. With the introduction of the concept of a Riemann surface,
Riemann not only reorganized the subject matter of complex analysis but in-
troduced a whole new style in the area. This new approached yielded new
discoveries, new proofs and it deepened our understanding of the subject in
unexpected ways. Tappenden explores here the important role that the vi-
sualization allowed by Riemann’s approach played in this reconfiguration
of the subject. The unification yielded by Riemann’s approach is also ana-
lyzed by Tappenden with reference to contemporary debates on the nature of
unification, understanding, and explanation (Friedman, Toulmin, Kitcher).
The topic of unification is intimately tied to the discussion of “fruitful’ con-
cepts. Fruitful concepts have unifying and explanatory roles but it is often
difficult to say what makes a concept fruitful in mathematics. Tappenden
mentions the unification of the theory of algebraic functions of one variable
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and the theory of algebraic numbers given by Dedekind and Weber. In this
case, notions like “ideals” and “fields” turned out to be extremely fruitful
concepts: they help us understand “what is going on” and as such discharge
an explanatory role. In connecting the topics of visualization, explanation,
and unification, Tappenden notes that often, as in the case of Riemann’s ap-
proach to function theory and Artin’s Geometric Algebra, a contributor to
the “fruitfulness” or “naturalness” of the approach is that the arguments and
categories characterizing the approach can be visualized. These aspects of
mathematical practice (visualization, explanation, fruitfulness) are often rel-
egated to ‘subjective’ matters of taste but Tappenden makes a strong case that
they can be the topic of fruitful philosophical and methodological analysis.
However, he concludes, one should not hope to provide an a priori account
of such notions; rather, only detailed case studies of mathematical practice
will be able to enlighten us on these complex issues.

The notion of explanation in mathematics, which has appeared in many
of the articles discussed above, is the focus of Johannes Hafner and Paolo
Mancosu’s “The Varieties of Mathematical Explanations”. While Hafner
and Mancosu emphasize that explanations in mathematics need not be proofs
(for instance, theories as a whole might be explanatory), in this paper they
restrict attention to proofs. They begin by providing evidence for the claim
that mathematicians seek explanations in their ordinary practice and cherish
different types of explanations (for instance, many mathematicians are often
critical of proofs that only show that something is true but do not give an
hint of why it is true). They go on to suggest that a fruitful approach to the
topic of mathematical explanation would consist in providing a taxonomy of
recurrent types of mathematical explanation and then trying to see whether
these patterns are heterogeneous or can be subsumed under a general ac-
count. In the literature on explanation in mathematics there are basically
only two philosophical theories on offer. One proposed by Steiner (1978)
and an account based on unification due to Kitcher (discussed in the previ-
ous article by Tappenden). Mancosu and Hafner provide a case study of how
to use mathematical explanations as found in mathematical practice to test
theories of mathematical explanation. The case study focuses on Steiner’s
theory of mathematical explanation. This theory singles out two criteria for
a proof to count as explanatory: dependence on a characterizing property
and generalizability through varying of that property. The authors argue that
Pringsheim’s explanatory proof of Kummer’s convergence criterion in the
theory of infinite series defies both criteria and thus cannot be accounted for
by Steiner’s model of explanation. This can be seen, as it were, as a case
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study of how to show that the variety of mathematical explanations cannot
be easily reduced to a single model.

The last article of the book is devoted to a very neglected part of mathe-
matical activity: the role of aesthetical factors in mathematics. Obviously,
mathematics displays aesthetic features. Mathematicians often talk about
the elegance of certain constructions or the beauty of various geometrical
figures. But is the “aesthetic dimension’ a rational feature of mathematical
activity or a completely subjective and non-analyzable aspect of the mathe-
matical experience? Reviel Netz’s “Towards an aesthetic of mathematics”
develops several analytical tools required for a productive discussion of this
difficult topic. Netz argues from the outset that every type of human expres-
sion possesses an aesthetic dimension. Moreover, the aesthetic dimension
is an objective fact, although a difficult one to analyze. Whereas most driv-
ing factors in mathematical activity are epistemic in the case of beauty we
have a clear case of a non-epistemic value which is intrinsic to mathematical
research. Netz thus expands the range of topics addressed in the other con-
tributions of the book: “The thrust of the articles collected in this volume is,
| believe, to widen our picture of the field of mathematical practice as a ra-
tional activity: one that appeals to the visual and not merely to the symbolic,
that aims at explanation and not merely at proof. It also appeals, | suggest,
to the aesthetic. Among other things — and still as rational practitioners —
mathematicians aim at beauty.” Netz’s paper proceeds by giving a typology
of sources of mathematical beauty. Mathematical beauty can be predicated
of states of minds, of the products of mathematical activity (say theorems
as embodied in texts), and of the objects studied in the previous categories.
Netz’s analysis focuses on mathematical texts and he proposes to bring to
bear for the task a body of theory already developed in poetics. In order to
limit the scope he discusses Greek mathematical texts and explores the sense
in which techniques of “narrative” and “prosody” can be fruitfully exploited
for an analysis of the aesthetic dimension of these texts. In this approach
“narrative” will account for the content and “prosody” for the form of the
mathematical text. Netz claims that just as in literature one source of beauty
in mathematics is the interaction (he calls it “correspondence™) between form
and content.

Given the emphasis on the heterogeneity of mathematical practice dis-
played in most of the articles in the present collection, the outcome of the
work is not that of claiming that some unique model or theory will account
for the great wealth of mathematical activities. Even if such a theory were to
be found in the future, it would be premature to suggest anything of the sort at
this stage. Rather, through their mathematical, historical, and philosophical



INTRODUCTION 9

richness, these contributions show that there is a wide virgin territory open
to investigation. Our hope is that others will also embark in its exploration.
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