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We introduce a unified subclass of the function class Σ of biunivalent functions defined in the open unit disc. Furthermore, we find
estimates on the coefficients |𝑎

2
| and |𝑎

3
| for functions in this subclass. In addition, many relevant connections with known or new

results are pointed out.

1. Introduction

LetA denote the class of functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎
𝑛
𝑧
𝑛 (1)

which are analytic in the open unit disc U = {𝑧 : 𝑧 ∈

C and |𝑧| < 1}. Further, by S, we will denote the class of all
functions inA which are univalent in U.

Some of the important andwell-investigated subclasses of
the univalent function class S include, for example, the class
S∗(𝛼) of starlike functions of order 𝛼 inU and the classK(𝛼)
of convex functions of order 𝛼 in U.

It is well known that every function 𝑓 ∈ S has an inverse
𝑓
−1, defined by

𝑓
−1
(𝑓 (𝑧)) = 𝑧 (𝑧 ∈ U) ,

𝑓 (𝑓
−1
(𝑤)) = 𝑤 (|𝑤| < 𝑟0 (𝑓) ; 𝑟0 (𝑓) ≥

1

4
) ,

(2)

where

𝑓
−1
(𝑤) = 𝑤 − 𝑎

2
𝑤
2
+ (2𝑎
2

2
− 𝑎
3
)𝑤
3

− (5𝑎
3

2
− 5𝑎
2
𝑎
3
+ 𝑎
4
)𝑤
4
+ ⋅ ⋅ ⋅ .

(3)

A function 𝑓 ∈ A is said to be biunivalent in U if both
𝑓(𝑧) and 𝑓−1(𝑧) are univalent in U. Let Σ denote the class of
biunivalent functions in U given by (1).

In 1967, Lewin [1] investigated the biunivalent function
class Σ and showed that |𝑎

2
| < 1.51; on the other hand Bran-

nan and Clunie [2] (see also [3–5]) and Netanyahu [6] made
an attempt to introduce various subclasses of biunivalent
function class Σ and obtained nonsharp coefficient estimates
on the first two coefficients |𝑎

2
| and |𝑎

3
| of (1). But the coef-

ficient problem for each of the following Taylor-Maclaurin
coefficients |𝑎

𝑛
| for 𝑛 ∈ N \ {1, 2}; N := {1, 2, 3, . . .} is still an

open problem. In this line, following Brannan and Taha [4],
recently, many researchers have introduced and investigated
several interesting subclasses of biunivalent function class
Σ and they have found nonsharp estimates on the first two
Taylor-Maclaurin coefficients |𝑎

2
| and |𝑎

3
|; for details, one can

refer to the works of [7–13].
Now, we defineR

Σ
(𝛼, 𝜆) of function𝑓 ∈ A satisfying the

following conditions:

𝑓 ∈ Σ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝑧
1−𝜆
𝑓
󸀠
(𝑧)

(𝑓 (𝑧))
1−𝜆
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝛼𝜋

2
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝑤
1−𝜆
𝑔
󸀠
(𝑤)

(𝑔 (𝑤))
1−𝜆
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝛼𝜋

2
(𝑧, 𝑤 ∈ U; 𝜆 ≥ 0)

(4)
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for some𝛼 (0 < 𝛼 ≤ 1), where𝑔(𝑤) is the extension of𝑓−1(𝑤)
to U. Similarly, we say that a function 𝑓 ∈ A belongs to the
classR

Σ
(𝛽, 𝜆) if 𝑓(𝑧) satisfies the following inequalities:

𝑓 ∈ Σ, R(
𝑧
1−𝜆
𝑓
󸀠
(𝑧)

(𝑓 (𝑧))
1−𝜆
) > 𝛽,

R(
𝑤
1−𝜆
𝑔
󸀠
(𝑤)

(𝑔 (𝑤))
1−𝜆
) > 𝛽 (𝑧, 𝑤 ∈ U; 𝜆 ≥ 0) ,

(5)

for some𝛽 (0 ≤ 𝛽 < 1), where𝑔(𝑤) is the extension of𝑓−1(𝑤)
to U. The classesR

Σ
(𝛼, 𝜆) andR

Σ
(𝛽, 𝜆) were introduced by

Prema and Keerthi [14]; furthermore, for these classes, they
have found the following estimates on the first two Taylor-
Maclaurin coefficients in (1).

Theorem 1. If 𝑓 ∈R
Σ
(𝛼, 𝜆), 0 < 𝛼 ≤ 1, and 𝜆 ≥ 0, then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

2𝛼

√(𝛼 + 1 + 𝜆) (1 + 𝜆)

,
󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

4𝛼
2

(1 + 𝜆)
2
+
2𝛼

2 + 𝜆
.

(6)

Theorem 2. If 𝑓 ∈R
Σ
(𝛽, 𝜆), 0 ≤ 𝛽 < 1, and 𝜆 ≥ 0, then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤
√
2 (1 − 𝛽)

1 + 𝜆
,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤
4(1 − 𝛽)

2

(1 + 𝜆)
2
+
2 (1 − 𝛽)

2 + 𝜆
. (7)

Motivated by the works of Xu et al. [12, 13], we introduce
the following generalized subclassR

Σ
(𝜑, 𝜓, 𝜆) of the analytic

function classA.

Definition 3. Let 𝑓 ∈ A, and let the functions 𝜑, 𝜓 : U → C

be so constrained that

min {R (𝜑 (𝑧)) ,R (𝜓 (𝑧))} > 0 (𝑧 ∈ U) ,

𝜑 (0) = 𝜓 (0) = 1.

(8)

We say that 𝑓 ∈ R
Σ
(𝜑, 𝜓, 𝜆) if the following conditions are

satisfied:

𝑓 ∈ Σ,
𝑧
1−𝜆
𝑓
󸀠
(𝑧)

(𝑓 (𝑧))
1−𝜆
∈ 𝜑 (U) ,

𝑤
1−𝜆
𝑔
󸀠
(𝑤)

(𝑔 (𝑤))
1−𝜆
∈ 𝜓 (U) (𝑧, 𝑤 ∈ U) ,

(9)

where 𝜆 ≥ 0 and the function 𝑔(𝑤) is the extension of 𝑓−1(𝑤)
to U.

We note that by specializing 𝜆, 𝜑, and 𝜓, we get the
following interesting subclasses:

(1) R
Σ
(𝜑, 𝜓, 1) =H

𝜑,𝜓

Σ
; see [12],

(2) R
Σ
(((1 + 𝑧)/(1 − 𝑧))

𝛼, ((1 + 𝑧)/(1 − 𝑧))𝛼, 𝜆) =R
Σ
(𝛼,

𝜆) (0 < 𝛼 ≤ 1; 𝜆 ≥ 0) and R
Σ
((1 + (1 − 2𝛽)𝑧)/(1 −

𝑧), (1 + (1 − 2𝛽)𝑧)/(1 − 𝑧), 𝜆) =R
Σ
(𝛽, 𝜆) (0 ≤ 𝛽 < 1;

𝜆 ≥ 0); see [14],

(3) R
Σ
(((1 + 𝑧)/(1 − 𝑧))

𝛼
, ((1 + 𝑧)/(1 − 𝑧))

𝛼
, 1) = H𝛼

Σ

(0 < 𝛼 ≤ 1) and R
Σ
((1 + (1 − 2𝛽)𝑧)/(1 − 𝑧), (1 +

(1 − 2𝛽)𝑧)/(1 − 𝑧), 1) =H
𝛽

Σ
(0 ≤ 𝛽 < 1); see [11].

The objective of the present paper is to introduce a new
subclassR

Σ
(𝜑, 𝜓, 𝜆) and to obtain the estimates on the coef-

ficients |𝑎
2
| and |𝑎

3
| for the functions in theaforementioned

class, employing the techniques used earlier by Xu et al.
[12, 13].

2. Main Result

In this section, we find the estimates on the coefficients |𝑎
2
|

and |𝑎
3
| for the functions in the classR

Σ
(𝜑, 𝜓, 𝜆).

Theorem 4. Let 𝑓(𝑧) be of the form (1). If 𝑓 ∈ R
Σ
(𝜑, 𝜓, 𝜆),

then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤
√

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8 + 4𝜆
,

(10)

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

4 + 2𝜆
. (11)

Proof. Since 𝑓 ∈R
Σ
(𝜑, 𝜓, 𝜆), from (9), we have,

𝑧
1−𝜆
𝑓
󸀠
(𝑧)

(𝑓 (𝑧))
1−𝜆
= 𝜑 (𝑧) (𝑧 ∈ U) ,

𝑤
1−𝜆
𝑔
󸀠
(𝑤)

(𝑔 (𝑤))
1−𝜆
= 𝜓 (𝑤) (𝑤 ∈ U) ,

(12)

where

𝜑 (𝑧) = 1 + 𝜑
1
𝑧 + 𝜑
2
𝑧
2
+ ⋅ ⋅ ⋅ ,

𝜓 (𝑧) = 1 + 𝜓
1
𝑧 + 𝜓
2
𝑧
2
+ ⋅ ⋅ ⋅

(13)

satisfy the conditions of Definition 3. Now, equating the
coefficients in (12), we get

(1 + 𝜆) 𝑎
2
= 𝜑
1
, (14)

(2 + 𝜆) 𝑎
3
= 𝜑
2
, (15)

− (1 + 𝜆) 𝑎
2
= 𝜓
1
, (16)

(2 + 𝜆) (2𝑎
2

2
− 𝑎
3
) = 𝜓
2
. (17)

From (14) and (16), we get

𝜑
1
= −𝜓
1
, 2(1 + 𝜆)

2
𝑎
2

2
= 𝜑
2

1
+ 𝜓
2

1
. (18)

From (15) and (17), we obtain

𝑎
2

2
=
𝜑
2
+ 𝜓
2

2 (2 + 𝜆)
. (19)

Since 𝜑(𝑧) ∈ 𝜑(U) and 𝜓(𝑧) ∈ 𝜓(U), we immediately have

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤
√

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠󸀠
(0)
󵄨󵄨󵄨󵄨󵄨

8 + 4𝜆
.

(20)

This gives the bound on |𝑎
2
| as asserted in (10).
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Next, in order to find the bound on |𝑎
3
|, by subtracting

(17) from (15), we get

2 (2 + 𝜆) 𝑎
3
− 2 (2 + 𝜆) 𝑎

2

2
= 𝜑
2
− 𝜓
2
. (21)

It follows from (19) and (21) that

𝑎
3
=
𝜑
2

2 + 𝜆
. (22)

Since 𝜑(𝑧) ∈ 𝜑(U) and 𝜓(𝑧) ∈ 𝜓(U), we readily get |𝑎
3
| ≤

|𝜑
󸀠󸀠
(0)|/(4 + 2𝜆) as asserted in (11). This completes the proof

of Theorem 4.

By setting 𝜑(𝑧) = 𝜓(𝑧) = ((1 + 𝐴𝑧)/(1 + 𝐵𝑧))𝛼, where
−1 ≤ 𝐵 < 𝐴 ≤ 1 and 0 < 𝛼 ≤ 1, in Theorem 4, we get the
following corollary.

Corollary 5. Let 𝑓(𝑧) be of the form (1) and in the class
R
Σ
(𝐴, 𝐵, 𝛼, 𝜆). Then,

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤
√
𝛼
2
(𝐴 − 𝐵)

2
− 𝛼 (𝐴

2
− 𝐵
2
)

4 + 2𝜆
,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤

𝛼
2
(𝐴 − 𝐵)

2
− 𝛼 (𝐴

2
− 𝐵
2
)

4 + 2𝜆
.

(23)

If we choose 𝐴 = 1 and 𝐵 = −1 in Corollary 5, we have
the following corollary.

Corollary 6. Let 𝑓(𝑧) be of the form (1) and in the class
R
Σ
(𝛼, 𝜆), 0 < 𝛼 ≤ 1 and 𝜆 ≥ 0. Then,

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ 𝛼

√
2

2 + 𝜆
,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤
2𝛼
2

2 + 𝜆
. (24)

Remark 7. Theestimates found in Corollary 6 would improve
the estimates obtained in [14, Theorem 2.2].

If we set 𝐴 = 1 − 2𝛽, 𝐵 = −1, where 0 ≤ 𝛽 < 1 and 𝛼 = 1
in Corollary 5, we readily have the following corollary.

Corollary 8. Let 𝑓(𝑧) be of the form (1) and in the class
R
Σ
(𝛽, 𝜆), 0 ≤ 𝛽 < 1 and 𝜆 ≥ 0. Then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤
√
2 (1 − 𝛽)

2 + 𝜆
,

󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤
2 (1 − 𝛽)

2 + 𝜆
. (25)

Remark 9. Theestimates found inCorollary 8would improve
the estimates obtained in [14, Theorem 3.2].

Remark 10. For 𝜆 = 1, the bounds obtained inTheorem 4 are
coincident with the outcome of Xu et al. [12]. Taking 𝜆 = 0
in Corollaries 6 and 8, the estimates on the coefficients |𝑎

2
|

and |𝑎
3
|, are the improvement of the estimates on the first two

TaylorûMaclaurin coefficients obtained in [10, Corollaries 2.3
and 3.3]. Also, for the choices of 𝜆 = 1, the results stated in
Corollaries 6 and 8 would improve the bounds stated in [11,
Theorems 1 and 2], respectively. Furthermore, various other
interesting corollaries and consequences of our main result
could be derived similarly by specializing 𝜑 and 𝜓.
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