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SOME REMARKS ON THE SUPERCUSPIDAL
REPRESENTATIONS OF p-ADIC
SEMISIMPLE GROUPS

G. LUSZTIG

1. Let G be a semisimple group over a local nonarchimedean field X with ring of
integers @ and finite residue field k. We define G = G(K), G = G(K) where K is a
maximal unramified extension of K (with ring of integers @ and residue field %,
an algebraic closure of k).

Let T = G be a maximal torus, defined and anisotropic over K. We shall assume
that T satisfies the following condition. There exists a Borel subgroup B of G
containing T and defined over K. (This condition is certainly satisfied if T is split
over K.) Let T be the set of homomorphisms of T = T(K) into Q¥ (/ a prime #
char k) which factor through a finite quotient of 7. One expects that to any § € T
satisfying some regularity condition, there corresponds an irreducible admissible
supercuspidal representation of G (over @,). Such a correspondence has been
established by Gérardin (for T split over K, with certain restrictions, see [2]) using
methods of Shintani, Howe and Corwin. (For SL, the correspondence was estab-
lished by Gelfand, Graev, Shalika and others.)

I would like to suggest another possible approach to the question of constructing
this correspondence. This would use /-adic cohomology (or homology) of a certain
infinite dimensional variety X over k. (The fact that /-adic cohomology might be
used to construct representations of G is made plausible by the work of Drinfeld
and by that of Deligne and myself, in the case of finite fields [1]. Note that, even in
Gérardin’s approach, one has to appeal, in the case where the conductor is very
small, to the representation theory of a reductive group over a finite field, which is,
itself, based on /-adic cohomology.)

Let U be the unipotent radical of B and let U = U(K). Consider the Frobenius
map F: G — G defined by the Frobenius element ¢ € Gal(K/K), so that G = GF.

Let X = {geG|g 1 F(g)e U}/U | F'U. (The action of U F1U on G is
by right multiplication.) Now G x T acts on X by (go, t): g — gogt™! (g0 € G,
teT, gel).

I believe that, by regarding X as an infinite dimensional variety over k, one can
define l-adic homology groups H,(X) on which G x T acts in such a way that H,(X)
= @y H{(X)y (Wwhere H,(X), is the subspace of H,(X)on which T acts according
to 8). Moreover, for 6 fixed, H,(X), should be zero for large i, while if # is not fixed
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by any nontrivial element in the small Weyl group of T, Hy(X), should be nonzero
for exactly one index i = i (depending on #) and the resulting representation of
G on H,(X), should be an irreducible admissible supercuspidal representation. This
should establish the required correspondence between characters of T and repre-
sentations of G.

2. Consider, for example, the case where G = SL,(K) and let F: G — G be the
homomorphism defined by

0 1 0 0 1 0 Yy
o 1. 0 1.
2.1 F(4) = S| 4
0 . 1 0 - 1
T 0 b1 -0

where 7 is a uniformizing element of ¢ and, for any matrix 4 over K, A% is obtained
by applying ¢ to each entry of 4. The fixed point set GF is the group of elements of
reduced norm one in a central division algebra of dimension n2 over K. Let T be
the group of diagonal matrices in SL,(K); it is invariant under F. Let U = SL,(K)
(resp. U-) be the subgroup consisting of all upper (lower) triangular matrices with
1’s on the diagonal. If 4 is a matrix in SL,(K) satisfying A-1F(4) € U, we can find
a unique Be U | F-1U such that (4B)"'F(4B)e U ( FU-. Thus,

{4eSL(K)| 4 1F(4)e U}/T n F(0)
can be identified with
X = {4eSL(K)|A"'F(4)e U FU-}

on which GF acts by left multiplication and TF acts by right multiplication. X is
just the set of all n x »n matrices of the form

a S =D

may al e
(2.2) \"'a'¢—(n—l)
: B —=2) T _g—n—1)

Ty oo rat a?

with g; € K and determinant equal to 1. For such a matrix, we have automatically
;€0 (1 £i = n)and g ¢70.

It follows that X may be regarded as the projective limit proj lim, X, of the
algebraic varieties X, over k, where X}, (2 = 1) is the set of all » x n matrices of the
form (2.2) with a; € (0] z*0)*, a; € 0/ z"*'0 (2 £ i < n), with determinant equal
to 1. (We regard za; (2 < i < n) as elements of 70/ x*@; the determinant of such
a matrix has an obvious meaning as an element of @/ z*@.)

Let G, be the set of all n x n matrices (a;;) with a;; ez &/ 70 (Vi > j), a;; €
O/z¥10 (Vi < j), a; € (0] z+@)* (Vi), with determinant equal to 1, as an element
of @/ z+@. Define F: G, — G, by the formula (2.1). G, is an algebraic group over &
and F: G, — G, is the Frobenius map for a k-rational structure on G,. Let T}, be
the group of diagonal matrices in G, and let U, (resp. U;") be the group of upper
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(lower) triangular matrices in G, with 1’s on the diagonal. We may identify X, with
the variety

{4 €G,|41F(4)e U, N FU;}.

Gf acts on X, by left multiplication and 7T acts on X, by right multiplication.
(Note that GF = proj lim,Gf, TF = proj lim,TF). The following lemma is
crucial.

LeEMMA. The action of K, = ker(T, —» T)—;) (h = 2), on X, preserves each fibre
of the natural map X,;, - X,,_,, and each fibre of X,/K, — X,—, is isomorphic to the
affine space of dimension (n — 1) over k.

Let us define H,(Y) for any smooth algebraic variety Y over k of pure dimension
d, to be H*~% (Y, Q(d)), where /is a fixed prime # char k. The previous lemma
shows that, for » = 2, H(X_,) is canonically isomorphic to H,(X,)%* (fixed points
of K, on H{X})). In particular, we have a well-defined embedding HA(X,_,) —
H{(X,). Using these embeddings, we form the direct limit inj lim,H/(X,). We
define H,(X) to be this direct limit. H,(X) decomposes naturally in a direct sum
@H/(X),, where 0 runs through the set (TF)V. It is clear that, for fixed 6, H{X)y
is of finite dimension and is zero for large i. On the other hand, it is in a natural
way a GF-module (GF acting via a finite quotient). Let Ry = X,(— 1)iH(X),.

THEOREM. For each 0 e(TF)V, + Ry is an irreducible GF-module. If 0 # @', then
+ Ry, + R; are distinct.

It suffices to prove that, if ¥ = GJ\(X, x X,) (with G acting diagonally on
X, x X,) we have

2(=1idim H(X)y o =1 if 6 =0,
=0 if 0 #0.
(Here Tf x T} acts on X by right multiplication and H{(ZX) -1 denotes the
(0, 0’ )-eigenspace of T§ x T¥.)

To compute the (equivariant) Euler characteristic of X' we use the principle that
the Euler characteristic of a space can be computed from the zeros of a nice vector
field.

The map (g, &) - (x, x', y), x = g71F(g), x' = g'"'F(g’), y = g~'g’ defines an
isomorphism

2 =~ {(x,x,y)e(U, N FU}) x (U, N FUR) x G| xF(y) = yx'}

(compare [1, 6.6]). Now, any y € G, can be written uniquely in the form

y=yy¥i¥s  yeU; | FU, ye T(Uy N F7IUY),

yieUy, N F Uy, y;€ U, N F7IU,.
We now make the substitution xF(y;) = % € U,, so the equation of I becomes
FF()FODE(yy) = myayive X'

Any element z e U, can be written uniquely in the form z = y3x'F(y3)~! with
yoe U, N F71U,, x" € U, () FUjy, so the equation of ¥ becomes



174 G. LUSZTIG
XF(y)F(y) € y1y2 1 Uy = 133 U,
Thus, we may identify
2 = {(%y,»29) €U, N FUy) x (Uy N FIU,) x T(U; N F71U;)
x (Uy N FIUR) |yt 72 2F(33) F(y)) € Uy}

The action of Tf x T¥ is given by

rn”

(& t): (X, y1, y2, Y1) = (%t~ tyy t71, ty, /71 £7y] '70),

This action extends to an action of a larger group H, consisting of all pairs (¢, ¢')
of n x n-diagonal matrices with diagonal entries in (¢/z*®)* such that det ¢t = det ¢’
and t71F(¢) = t'71F(t') € centralizer of T,(U;, N F~1Uj); the action of H is
given by

@, 1) (%, y1, y2, Y1) = (F(OXRF()™Y, F@OyiF(0)™L, typt'—1, ¢y’ D).

A diagonal matrix of the form

0 ,  ae(0/z"0)*,
1
a

certainly centralizes T,(U; (| F~1Uy). Thus, any pair (¢, ¢) with ¢ of the form
S0
&¢
0 ¢

(with & e (0/z*)* a root of 1 of order prime to char k) is in H. The set of all such
pairs (¢, ¢) is a one dimensional subtorus 7 of H (over k). This torus acts on ¥
commuting with TF x Tf. Its fixed point set on ¥ is the finite set given by % =
y1 = )| = e, ys € TF, hence it is isomorphic to TF with Tf x TT acting by left
and right multiplication. It follows that

2(= 1y dim H{(Z)5,g-1 = 23(— 1) dim H(Z7)5 g1
=dim Hy(Tf)g -1 =1 if0 =0,
=0 iff #0,
as required.

3. Let ¥ be a 2-dimensional vector space over K and let ¥ = V ®, K. Let F:
V — V be defined by F = 1 ® ¢. Assume that we are given a nonzero element
weA2V. The set X = {xe V|x A Fx = @} is invariant under the obvious
action of SLy(¥) and under the action of the group T = {ie K*|A-2¢ = 1} which
acts by scalar multiplication. (This set X can be identified with the set X defined
in §1 for G = SL, and T a maximal torus associated to the unramified quadratic
extension of K.) Objects similar to this X appear in the work of Drinfeld. We now
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show what is the meaning of the homology groups H,(X) in the present case. It
can be easily checked that if x € X, the #-module spanned by x and Fx is invariant
under F, hence it comes from a lattice L in V.

Thus X is a disjoint union X = [[ X, over all lattices L = V with determinant
0*w, where

X, ={xeL®,0|x A Fx = o}.

Each X, can be regarded in a natural way as proj lim,X; , where X; , is the
h-dimensional variety over k defined by

X4 = {xe L ®,(0z-0)|x A Fx = w}.

The fibres of X;,, — X, ;1 have a property similar to that in the Lemma in §2.
This allows us to define Hy(X;) = inj lim,H(X; ,) as in §2. We also define H(X)
= @ H{XL).

Similar arguments should apply in the general case.

4.LetG, T, B, Ube as in §1. Assume that G comes from a Chevalley group over
Z by extension of scalars so that G(0), G(0) are well defined. Let G, = G(0/z"0).
Assume that T(K) < G(0). Let T,, U, be the images of T(K), U(K) (| G(0) under
G — G,. F:G(K) - G(K) induces F: G, —» G,. This gives a k-rational struc-
ture on the k-algebraic group G,. Define

X, = {geGy|g7! F(g) e U,}/ T, N F1T,.

The finite group Gf x TF acts on X, as before, by left and right multiplication.
For each character §: Tf — Q7! we form

Ry = 25 (= 1Y H(X,)y.
THEOREM. If 0 is sufficiently regular, the virtual GF-module + Ry is irreducible.
It is independent of the choice of B.

In the case & = 1, this follows from [1].
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