SOME REMARKS ON THE SUPERCUSPIDAL REPRESENTATIONS OF p-ADIC SEMISIMPLE GROUPS

G. LUSZTIG

1. Let G be a semisimple group over a local nonarchimedean field K with ring of integers \mathcal{O} and finite residue field k. We define G = G(K), $\tilde{G} = G(\tilde{K})$ where \tilde{K} is a maximal unramified extension of K (with ring of integers $\tilde{\mathcal{O}}$ and residue field \tilde{k} , an algebraic closure of k).

Let $T \subset G$ be a maximal torus, defined and anisotropic over K. We shall assume that T satisfies the following condition. There exists a Borel subgroup B of G containing T and defined over K. (This condition is certainly satisfied if T is split over K.) Let T be the set of homomorphisms of T = T(K) into Q_l^* (l a prime \neq char k) which factor through a finite quotient of T. One expects that to any $\theta \in T$ satisfying some regularity condition, there corresponds an irreducible admissible supercuspidal representation of G (over Q_l). Such a correspondence has been established by Gérardin (for T split over K, with certain restrictions, see [2]) using methods of Shintani, Howe and Corwin. (For SL_2 the correspondence was established by Gelfand, Graev, Shalika and others.)

I would like to suggest another possible approach to the question of constructing this correspondence. This would use l-adic cohomology (or homology) of a certain infinite dimensional variety X over \tilde{k} . (The fact that l-adic cohomology might be used to construct representations of G is made plausible by the work of Drinfeld and by that of Deligne and myself, in the case of finite fields [1]. Note that, even in Gérardin's approach, one has to appeal, in the case where the conductor is very small, to the representation theory of a reductive group over a finite field, which is, itself, based on l-adic cohomology.)

Let U be the unipotent radical of B and let $\tilde{U} = U(\tilde{K})$. Consider the Frobenius map $F: \tilde{G} \to \tilde{G}$ defined by the Frobenius element $\phi \in \operatorname{Gal}(\tilde{K}/K)$, so that $G = \tilde{G}^F$.

Let $X = \{g \in \tilde{G} \mid g^{-1} F(g) \in \tilde{U}\}/\tilde{U} \cap F^{-1} \tilde{U}$. (The action of $\tilde{U} \cap F^{-1} \tilde{U}$ on \tilde{G} is by right multiplication.) Now $G \times T$ acts on X by $(g_0, t) : g \to g_0 g t^{-1}$ $(g_0 \in G, t \in T, g \in \tilde{G})$.

I believe that, by regarding X as an infinite dimensional variety over \bar{k} , one can define l-adic homology groups $H_i(X)$ on which $G \times T$ acts in such a way that $H_i(X) = \bigoplus_{\theta \in T} H_i(X)_{\theta}$ (where $H_i(X)_{\theta}$ is the subspace of $H_i(X)$ on which T acts according to θ). Moreover, for θ fixed, $H_i(X)_{\theta}$ should be zero for large i, while if θ is not fixed

AMS (MOS) subject classifications (1970). Primary 22E50; Secondary 14F20, 20H30.

172 G. LUSZTIG

by any nontrivial element in the small Weyl group of T, $H_i(X)_{\theta}$ should be nonzero for exactly one index $i = i_0$ (depending on θ) and the resulting representation of G on $H_{i_0}(X)_{\theta}$ should be an irreducible admissible supercuspidal representation. This should establish the required correspondence between characters of T and representations of G.

2. Consider, for example, the case where $\tilde{G} = \mathrm{SL}_n(\tilde{K})$ and let $F: \tilde{G} \to \tilde{G}$ be the homomorphism defined by

(2.1)
$$F(A) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ \pi & 0 \end{pmatrix} A^{\phi} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ \pi & 0 \end{pmatrix}^{-1}$$

where π is a uniformizing element of \mathcal{O} and, for any matrix A over \tilde{K} , A^{ϕ} is obtained by applying ϕ to each entry of A. The fixed point set \tilde{G}^F is the group of elements of reduced norm one in a central division algebra of dimension n^2 over K. Let \tilde{T} be the group of diagonal matrices in $\mathrm{SL}_n(\tilde{K})$; it is invariant under F. Let $\tilde{U} \subset \mathrm{SL}_n(\tilde{K})$ (resp. \tilde{U}^-) be the subgroup consisting of all upper (lower) triangular matrices with 1's on the diagonal. If A is a matrix in $\mathrm{SL}_n(\tilde{K})$ satisfying $A^{-1}F(A) \in \tilde{U}$, we can find a unique $B \in \tilde{U} \cap F^{-1}\tilde{U}$ such that $(AB)^{-1}F(AB) \in \tilde{U} \cap F\tilde{U}^-$. Thus,

$$\big\{A\in \operatorname{SL}_n(\tilde{K})\,\big|\,A^{-1}F(A)\in \tilde{U}\big\}\big/\tilde{U}\,\cap\,F^{-1}(\tilde{U})$$

can be identified with

$$X = \left\{ A \in \operatorname{SL}_n(\tilde{K}) \middle| A^{-1}F(A) \in \tilde{U} \cap F\tilde{U}^{-} \right\}$$

on which \tilde{G}^F acts by left multiplication and \tilde{T}^F acts by right multiplication. X is just the set of all $n \times n$ matrices of the form

(2.2)
$$\begin{bmatrix} a_1 & a_n^{\phi^{-1}} & a_2^{\phi^{-(n-1)}} \\ \pi a_2 & a_1^{\phi^{-1}} & & & \\ & & & & & \\ \pi a_n & & & & \pi a_2^{\phi^{-(n-2)}} & a_1^{\phi^{-(n-1)}} \end{bmatrix}$$

with $a_i \in \tilde{K}$ and determinant equal to 1. For such a matrix, we have automatically $a_i \in \tilde{\mathcal{O}}$ $(1 \le i \le n)$ and $a_1 \notin \pi \tilde{\mathcal{O}}$.

It follows that X may be regarded as the projective limit proj $\lim_h X_h$ of the algebraic varieties X_h over \tilde{k} , where X_h ($h \ge 1$) is the set of all $n \times n$ matrices of the form (2.2) with $a_1 \in (\tilde{\mathcal{O}}/\pi^h\tilde{\mathcal{O}})^*$, $a_i \in \tilde{\mathcal{O}}/\pi^{h-1}\tilde{\mathcal{O}}$ ($2 \le i \le n$), with determinant equal to 1. (We regard πa_i ($2 \le i \le n$) as elements of $\pi \tilde{\mathcal{O}}/\pi^h\tilde{\mathcal{O}}$; the determinant of such a matrix has an obvious meaning as an element of $\tilde{\mathcal{O}}/\pi^h\tilde{\mathcal{O}}$.)

Let G_h be the set of all $n \times n$ matrices (a_{ij}) with $a_{ij} \in \pi \ \tilde{\mathcal{O}} / \pi^h \tilde{\mathcal{O}} \ (\forall i > j), \ a_{ij} \in \tilde{\mathcal{O}} / \pi^h \tilde{\mathcal{O}} \ (\forall i < j), \ a_{ii} \in (\tilde{\mathcal{O}} / \pi^h \tilde{\mathcal{O}})^* \ (\forall i), \$ with determinant equal to 1, as an element of $\tilde{\mathcal{O}} / \pi^h \tilde{\mathcal{O}}$. Define $F: G_h \to G_h$ by the formula (2.1). G_h is an algebraic group over \tilde{k} and $F: G_h \to G_h$ is the Frobenius map for a k-rational structure on G_h . Let T_h be the group of diagonal matrices in G_h and let U_h (resp. U_h^-) be the group of upper

(lower) triangular matrices in G_h with 1's on the diagonal. We may identify X_h with the variety

$$\{A \in G_h \mid A^{-1}F(A) \in U_h \cap FU_h^-\}.$$

 G_h^F acts on X_h by left multiplication and T_h^F acts on X_h by right multiplication. (Note that $\tilde{G}^F = \text{proj } \lim_h G_h^F$, $\tilde{T}^F = \text{proj } \lim_h T_h^F$). The following lemma is crucial.

LEMMA. The action of $K_h = \ker(T_h \to T_{h-1})$ $(h \ge 2)$, on X_h preserves each fibre of the natural map $X_h \to X_{h-1}$, and each fibre of $X_h/K_h \to X_{h-1}$ is isomorphic to the affine space of dimension (n-1) over k.

Let us define $H_i(Y)$ for any smooth algebraic variety Y over k of pure dimension d, to be $H_c^{2d-i}(Y, \bar{Q}_i(d))$, where l is a fixed prime \neq char \tilde{k} . The previous lemma shows that, for $h \geq 2$, $H_i(X_{h-1})$ is canonically isomorphic to $H_i(X_h)^{K_h}$ (fixed points of K_h on $H_i(X_h)$). In particular, we have a well-defined embedding $H_i(X_{h-1}) \rightarrow H_i(X_h)$. Using these embeddings, we form the direct limit inj $\lim_h H_i(X_h)$. We define $H_i(X)$ to be this direct limit. $H_i(X)$ decomposes naturally in a direct sum $\bigoplus H_i(X)_{\theta}$, where θ runs through the set $(\tilde{T}^F)^{\vee}$. It is clear that, for fixed θ , $H_i(X)_{\theta}$ is of finite dimension and is zero for large i. On the other hand, it is in a natural way a \tilde{G}^F -module $(\tilde{G}^F$ acting via a finite quotient). Let $R_{\theta} = \sum_i (-1)^i H_i(X)_{\theta}$.

THEOREM. For each $\theta \in (\tilde{T}^F)^{\vee}$, $\pm R_{\theta}$ is an irreducible \tilde{G}^F -module. If $\theta \neq \theta'$, then $\pm R_{\theta}$, $\pm R'_{\theta}$ are distinct.

It suffices to prove that, if $\Sigma = G_h^F \setminus (X_h \times X_h)$ (with G_h^F acting diagonally on $X_h \times X_h$) we have

$$\sum_{i} (-1)^{i} \dim H_{i}(\Sigma)_{\theta, \theta'^{-1}} = 1 \quad \text{if } \theta' = \theta,$$

$$= 0 \quad \text{if } \theta' \neq \theta.$$

(Here $T_h^F \times T_h^F$ acts on Σ by right multiplication and $H_i(\Sigma)_{\theta,\theta'^{-1}}$ denotes the (θ, θ'^{-1}) -eigenspace of $T_h^F \times T_h^F$.)

To compute the (equivariant) Euler characteristic of Σ we use the principle that the Euler characteristic of a space can be computed from the zeros of a nice vector field.

The map $(g, g') \rightarrow (x, x', y)$, $x = g^{-1}F(g)$, $x' = g'^{-1}F(g')$, $y = g^{-1}g'$ defines an isomorphism

$$\Sigma \simeq \{(x, x', y) \in (U_h \cap FU_h^-) \times (U_h \cap FU_h^-) \times G_h \mid xF(y) = yx'\}$$

(compare [1, 6.6]). Now, any $y \in G_h$ can be written uniquely in the form

$$y = y_1' y_2' y_1'' y_2'', y_1' \in U_h^- \cap F^{-1}U_h, y_2' \in T_h(U_h^- \cap F^{-1}U_h^-),$$
$$y_1'' \in U_h \cap F^{-1}U_h^-, y_2'' \in U_h \cap F^{-1}U_h.$$

We now make the substitution $xF(y_1') = \tilde{x} \in U_h$, so the equation of Σ becomes

$$\tilde{x}F(y_2')F(y_1'')F(y_2'') = y_1' y_2' y_1'' y_2'' x_1'.$$

Any element $z \in U_h$ can be written uniquely in the form $z = y_2''x'F(y_2'')^{-1}$ with $y_2'' \in U_h \cap F^{-1}U_h$, $x' \in U_h \cap FU_h^-$, so the equation of Σ becomes

174 G. LUSZTIG

$$\tilde{x}F(y_2')F(y_1'') \in y_1' y_2' y_1'' U_h = y_1' y_2' U_h.$$

Thus, we may identify

$$\Sigma = \{ (\tilde{x}, y_1', y_2' y_i'') \in (U_h \cap FU_h^-) \times (U_h^- \cap F^{-1}U_h) \times T_h(U_h^- \cap F^{-1}U_h^-) \times (U_h \cap F^{-1}U_h^-) | y_2'^{-1} y_1'^{-1} \tilde{x} F(y_2') F(y_1'') \in U_h \}.$$

The action of $T_h^F \times T_h^F$ is given by

$$(t, t'): (\tilde{x}, y'_1, y'_2, y''_1) \to (t\tilde{x}t^{-1}, ty'_1 t^{-1}, ty'_2 t'^{-1}, t'y''_1 t'^{-1}).$$

This action extends to an action of a larger group H, consisting of all pairs (t, t') of $n \times n$ -diagonal matrices with diagonal entries in $(\overline{\mathcal{O}}/\pi^h\overline{\mathcal{O}})^*$ such that $\det t = \det t'$ and $t^{-1}F(t) = t'^{-1}F(t') \in \text{centralizer}$ of $T_h(U_h^- \cap F^{-1}U_h^-)$; the action of H is given by

$$(t, t'): (\tilde{x}, y_1', y_2', y_1'') \to (F(t)\tilde{x}F(t)^{-1}, F(t)y_1'F(t)^{-1}, ty_2't'^{-1}, t'y_1''t'^{-1}).$$

A diagonal matrix of the form

$$\begin{pmatrix} 1 & & & \\ 1 & & 0 & \\ 0 & \ddots & & \\ & & 1 & \\ & & a \end{pmatrix}, \qquad a \in (\widetilde{\mathcal{O}}/\pi^h \widetilde{\mathcal{O}})^*,$$

certainly centralizes $T_h(U_h^- \cap F^{-1}U_h^-)$. Thus, any pair (t, t) with t of the form

$$egin{pmatrix} \xi^{\phi^{n-1}} & 0 \\ \vdots & \vdots \\ 0 & \xi \end{pmatrix}$$

(with $\xi \in (\tilde{\mathcal{O}}/\pi^h\tilde{\mathcal{O}})^*$ a root of 1 of order prime to char k) is in H. The set of all such pairs (t, t) is a one dimensional subtorus \mathcal{T} of H (over \tilde{k}). This torus acts on Σ commuting with $T_h^F \times T_h^F$. Its fixed point set on Σ is the finite set given by $\tilde{x} = y_1' = y_1'' = e$, $y_2' \in T_h^F$, hence it is isomorphic to T_h^F with $T_h^F \times T_h^F$ acting by left and right multiplication. It follows that

$$\begin{split} \sum (-1)^i \dim H_i(\boldsymbol{\Sigma})_{\theta,\,\theta'^{-1}} &= \sum (-1)^i \dim H_i(\boldsymbol{\Sigma}^{\tau})_{\theta,\,\theta'^{-1}} \\ &= \dim H_0(T_h^F)_{\theta,\,\theta'^{-1}} = 1 \quad \text{if } \theta = \theta', \\ &= 0 \quad \text{if } \theta \neq \theta', \end{split}$$

as required.

3. Let V be a 2-dimensional vector space over K and let $\tilde{V} = V \otimes_k \tilde{K}$. Let $F: \tilde{V} \to \tilde{V}$ be defined by $F = 1 \otimes \phi$. Assume that we are given a nonzero element $\omega \in \Lambda^2 V$. The set $X = \{x \in \tilde{V} \mid x \land Fx = \omega\}$ is invariant under the obvious action of $\mathrm{SL}_2(V)$ and under the action of the group $T = \{\lambda \in \tilde{K}^* \mid \lambda \cdot \lambda^\phi = 1\}$ which acts by scalar multiplication. (This set X can be identified with the set X defined in §1 for $G = \mathrm{SL}_2$ and T a maximal torus associated to the unramified quadratic extension of K.) Objects similar to this X appear in the work of Drinfeld. We now

show what is the meaning of the homology groups $H_i(X)$ in the present case. It can be easily checked that if $x \in X$, the $\tilde{\mathcal{O}}$ -module spanned by x and Fx is invariant under F, hence it comes from a lattice L in V.

Thus X is a disjoint union $X = \coprod_L X_L$ over all lattices $L \subset V$ with determinant $\mathcal{O}^*\omega$, where

$$X_L = \{ x \in L \otimes_{\sigma} \tilde{\sigma} \, | \, x \wedge Fx = \omega \}.$$

Each X_L can be regarded in a natural way as proj $\lim_h X_{L,h}$ where $X_{L,h}$ is the h-dimensional variety over \tilde{k} defined by

$$X_{L,h} = \{ x \in L \otimes_{\sigma} (\tilde{\mathcal{O}}/\pi^{L}\tilde{\mathcal{O}}) \mid x \wedge Fx = \omega \}.$$

The fibres of $X_{L,h} \to X_{L,h-1}$ have a property similar to that in the Lemma in §2. This allows us to define $H_i(X_L) = \inf_h \lim_h H_i(X_{L,h})$ as in §2. We also define $H_i(X) = \bigoplus_L H_i(X_L)$.

Similar arguments should apply in the general case.

4. Let G, T, B, U be as in §1. Assume that G comes from a Chevalley group over Z by extension of scalars so that $G(\mathcal{O})$, $G(\widetilde{\mathcal{O}})$ are well defined. Let $\widetilde{G}_h = G(\widetilde{\mathcal{O}}/\pi^h\widetilde{\mathcal{O}})$. Assume that $T(\widetilde{K}) \subset G(\widetilde{\mathcal{O}})$. Let \widetilde{T}_h , \widetilde{U}_h be the images of $T(\widetilde{K})$, $U(\widetilde{K}) \cap G(\widetilde{\mathcal{O}})$ under $G(\widetilde{\mathcal{O}}) \to \widetilde{G}_h$. $F: G(\widetilde{K}) \to G(\widetilde{K})$ induces $F: \widetilde{G}_h \to \widetilde{G}_h$. This gives a \widetilde{K} -rational structure on the \widetilde{K} -algebraic group \widetilde{G}_h . Define

$$X_h = \{ g \in \tilde{G}_h | g^{-1} F(g) \in \tilde{U}_h \} / \tilde{U}_h \cap F^{-1} \tilde{U}_h.$$

The finite group $\tilde{G}_h^F \times \tilde{T}_h^F$ acts on X_h , as before, by left and right multiplication. For each character $\theta \colon \tilde{T}_h^F \to \mathbf{Q}_l^{-1}$ we form

$$R_{\theta} = \sum_{i} (-1)^{i} H_{i}(X_{h})_{\theta}.$$

THEOREM. If θ is sufficiently regular, the virtual \tilde{G}_{h}^{F} -module $\pm R_{\theta}$ is irreducible. It is independent of the choice of B.

In the case h = 1, this follows from [1].

REFERENCES

- 1. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), 103-161.
- 2. P. Gérardin, Cuspidal unramified series for central simple algebras over local fields, these Proceedings, part 1, pp. 157-169.

University of Warwick, Coventry, Great Britain