
Locally symmetric spaces and K-theory of number fields

Abstract

We discuss which flat bundles over locally symmetric spaces give rise to nontrivial

elements in the K-theory of number fields.

1 Introduction

Meanwhile elements in topological K-theory K∗ (X) are, by definition, represented by
(virtual) vector bundles over the space X , it is less evident what the topological meaning
of elements in algebraic K-theory K∗ (A), for a ring A, may be. An approach, which
can be found e.g. in the appendix of [18], is to associate elements in K∗ (A) to any flat
GL (A)-bundle over an aspherical homology sphere M . Namely, let ρ : π1M → GL (A)
be the monodromy of the flat bundle, then (Bρ)

+
: M+ → BGL+ (A) can, in view of

M+ ≃ Sn, be considered as an element in algebraic K-theory Kn (A) := πnBGL
+ (A). It

was proved by Hausmann and Vogel (see [15]) that, for n ≥ 5 or n = 3, all elements in
Kn (A) arise from such a construction.

If the aspherical manifold M is not a homology sphere, but still possesses a fun-
damental class [M ] ∈ Hn (M ; Z), one can still consider (Bρ)n [M ]Q as an element of
Hn (BGL (A) ; Q) ∼= Kn (A) ⊗ Q.

An interesting special case, which has been studied by Dupont-Sah and others, is
K3 (C). By a theorem of Suslin, K3 (C) is, up to 2-torsion, isomorphic to the Bloch group
B (C). On the other hand, each ideally triangulated hyperbolic manifold yields, in a very
natural way, an element in B (C), the Bloch invariant. By [22], this element does not
depend on the chosen ideal triangulation.

A generalization to higher-dimensional hyperbolic manifolds was provided by Gon-
charov. He associated to an odd-dimensional hyperbolic manifold and flat bundles coming
from the half-spinor representations, an element in K∗

(
Q
)
⊗ Q, and proved its nontriv-

iality by showing that application of the Borel regulator yields (a fixed multiple of) the
volume.

It thus arises as a natural question, how much of algebraic K-theory in higher (odd)
degrees can be represented by locally symmetric spaces and representations of their fun-
damental groups.

In section 2, we generalize the argument in [12] to the extent that, for a compact
locally symmetric space M2n+1 = Γ\G/K of noncompact type and a representation
ρ : G → GL (N,C), nontriviality of the associated elements in K-theory K2n−1 (C) ⊗ Q

is (independently of Γ) equivalent to nontriviality of the Borel class ρ∗b2n+1.
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Theorem. For each symmetric space G/K of noncompact type and odd dimension n,
and to each representation ρ : G → GL (N,C) with ρ∗bn 6= 0, there exists a constant
cρ 6= 0, such that the following holds: to each compact, orientable, locally symmetric
space M = Γ\G/K, with ρ (Γ) ⊂ GL (N,C), there exists an element

γ (M) ∈ Kn (C) ⊗ Q

such that the Borel regulator rn : Kn (C) ⊗ Q → R fulfills

rn (γ (M)) = cρvol (M) .

If ρ∗b2n+1 6= 0, then it follows that manifolds of Q-independent volume give Q-independent
elements in K∗ (C) ⊗ Q.

The construction actually yields elements in K2n+1

(
Q
)
⊗ Q, due to the fact that

compact locally symmetric spaces of finite volume are defined over Q. Accordingly locally
symmetric spaces defined over some number field F ⊂ Q will give elements in K2n+1 (F )⊗
Q.

In section 3, we work out the list of representations ρ : G → GL (N,C) for which
ρ∗b2n+1 6= 0 holds true. (It is pretty clear from the definitions that ρ∗b2n+1 6= 0 is always
true if 2n+ 1 ≡ 3 mod 4. We work out, for which representations ρ∗b2n+1 6= 0 holds in
the case 2n+ 1 ≡ 1 mod 4.) The proof uses only standard Lie algebra and representation
theory. The result reads as follows.

Theorem. The following is a complete list of non-exceptional symmetric spaces G/K
and irreducible representations ρ : G→ GL (N,C) with ρ∗bn 6= 0 for n := dim (G/K).
- SLl (R) /SOl, l ≡ 0, 3, 4, 7 mod 8, any irreducible representation,
- SLl (C) /SUl, l ≡ 0 mod 2, any irreducible representation,
- SL2l (H) /Spl, l ≡ 0 mod 2, any irreducible representation,
- Spinp,q/ (Spinp × Spinq) , p, q ≡ 1 mod 2, p 6≡ q mod 4, any irreducible representation,
- Spinp,q/ (Spinp × Spinq) , p, q ≡ 1 mod 2, p ≡ q mod 4, tensor products of copies of
positive and/or negative half-spinor representations,
- Spinl (C) /Spinl, l ≡ 3 mod 4, tensor products of copies of the spinor representation
and/or its conjugate,
- Spinl (C) /Spinl, l ≡ 2 mod 4, any irreducible representation,
- Spl (C) /Spl, l ≡ 3 mod 4, any irreducible representation.

The only exceptional symmetric space which may possess representations with ρ∗bn 6=
0 is E7 (C) /E7. In this case we have checked that indeed Adams’ representation ([1],
section 8) satisfies ρ∗bn 6= 0.

In section 4 we show that also (not necessarily compact) odd-dimensional locally
symmetric spaces M of finite volume give rise to classes γ (M) ∈ K∗ (C)⊗Q. (This is not
the case for arbitrary manifolds with boundary.) Unfortunately, the proof of γ (M) 6= 0
for noncompact finite-volume manifolds is not as natural as in the compact case, but
requires more elaborate topological arguments.

Section 5 discusses a few examples.

2



2 Preparations

The results of this section are fairly straightforward generalizations of the results in [12]
from hyperbolic manifolds to locally symmetric spaces of noncompact type. We will define
a notion of representations with nontrivial Borel class and will, mimicking the arguments
in [12], show that representations with nontrivial Borel class give rise to nontrivial ele-
ments in algebraic K-theory of number fields. The problem of constructing representations
with nontrivial Borel class will be tackled in the section 3.

2.1 Construction of elements in algebraic K-theory

In this paper, rings A will always be commutative rings with unit. (Mainly we are
interested in subrings of C.)

Assume that M is a closed, orientable n-manifold with Γ := π1M . Assume that we are
given a ring A and a representation ρ : Γ → GL (A), where GL (A) denotes the increasing
union of GL (N,A) over all N ∈ N.

Assume that M is aspherical, that is, M ≃ BΓ, then we get an induced map

Bρ : M ≃ BΓ → BGL (A) .

Throughout this paper BGL (A) resp. BSL (A) will mean the classifying space for the
group with the discrete topology. Thus π1BSL (A) = SL (A).

Quillen’s plus construction (see [24]) provides us with a map

(Bρ)+ : M+ → BGL+ (A) .

If M happens to be a homology sphere, then M+ is homotopy equivalent to Sn and one
gets a map

Sn ≃M+ → BGL+ (A)

which may be considered as representative of an element

[
(Bρ)+

]
∈ Kn (A) := πn (BGL (A)) .

It was actually shown by Hausmann and Vogel (cf. [15] or [14]) that, for n ≥ 5 or n = 3,
each element in Kn (A) for a finitely generated commutative ring A can be constructed
by some homology sphere M and some representation ρ.

If M is not a homology sphere, but closed, orientable and aspherical, then we will not
construct an element in Kn (A) but rather in Kn (A) ⊗ Q, as follows. We do get a map

(Bρ)∗ : Hn (M ; Q) → Hn (BGL (A) ; Q) .

Since M is a closed, orientable n-manifold, we have a fundamental class in Hn (M ; Q),
which is the image of a generator of Hn (M ; Z) under the change-of-rings homomorphism
associated to the inclusion Z → Q. We may consider the image of the fundamental class
[M ] ∈ Hn (M ; Q)

(Bρ)∗ [M ] ∈ Hn (BGL (A) ,Q) ∼= Hn

(
BGL (A)+ ,Q

)
.
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By the Milnor-Moore Theorem, the Hurewicz homomorphismKn (A) := πn

(
BGL (A)

+
)
→

Hn

(
BGL (A)

+
; Z
)

gives, after tensoring with Q, an injective homomorphism

In : Kn (A) ⊗ Q = πn

(
BGL (A)+

)
⊗ Q → Hn

(
BGL (A)+ ,Q

)
= Hn (BGL (A) ,Q) .

Again by the Milnor-Moore Theorem, its image consists of the subgroup of indecom-
posable elements, which we denote by Pn (BGL (A) ,Q).

If n is even and A is a ring of integers in any number field, then Kn (A) ⊗ Q = 0.
Therefore one is only interested in the case that n is odd, n = 2m− 1.

We note that there is a canonical projection prn : Hn (BGL (A) ,Q) → Pn (BGL (A) ,Q).
Namely, the kernel of the Borel regulator rn : Hn (BGL (A) ; Q) → R (defined by pairing
with the Borel class bn, see section 2.3.) is complementary to Pn (BGL (A) ,Q), thus we
may define prn as the projection along the kernel of the Borel regulator.

The element γ (M) ∈ K2m−1 (A) ⊗ Q that we are going to consider in this paper is
then defined as

γ (M) := I−1
2m−1pr2m−1 (Bρ)∗ [M ] .

If M is a (compact, orientable) manifold with nonempty boundary, then there is no
general construction of an element in algebraic K-theory. However, we will show in section
4 that for special cases of finite-volume locally symmetric spaces one can generalize the
above construction.

2.2 The volume class in H
n

c

(
Isom

(
M̃

))

Let M̃ = G/K be a symmetric space of noncompact type, with isometry group G. It is

well-known that M̃ has nonpositive sectional curvature.

Volume class. We recall that the continuous cohomology H∗
c (G; R) is defined as the

homology of the complex
(
Cc

(
G∗+1,R

)G
, d
)
, where Cc

(
G∗+1,R

)G
stands for the con-

tinuous G-invariant mappings from G∗+1 to R and d is the usual boundary operator.
In particular, the group cohomology of G is the continuous cohomology for G with the
discrete topology. There is the obvious comparison map H∗

c (G; R) → H∗ (G; R). In par-
ticular, elements of H∗

c (G; R) can be evaluated on H∗ (G; R).

The volume class
vn ∈ Hn

c (G; R)

is defined as follows. Fix an arbitrary point x̃0 ∈ M̃ = G/K. Then we define an n-cochain
vn on G by

vn (g0, . . . , gn) := signed volume of the straight simplex with vertices g0x̃0, . . . , gnx̃0.

(Note that in simply connected spaces of nonpositive sectional curvature each ordered
n+ 1-tuple of vertices determines a unique straight n-simplex.) Since volume is invariant
under isometries (and isometries map straight simplices to straight simplices), this cochain
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is G-invariant. Its cohomology class does not depend on x̃0. From the additivity of the
volume, it is easy to see that this cochain is a cocycle. Thus we have defined a cohomology
class vn.

Theorem 1 : Let M = Γ\G/K be a (closed, orientable) locally symmetric space of
noncompact type, and j : Γ → G the inclusion of Γ = π1M . Let j∗ : Hn (M ; R) ∼=
Hn (Γ; R) → Hn (G; R) be the induced homomorphism, and denote [M ] ∈ Hn (M ; R) the
fundamental class of M . Then

vol (M) =< vn, j∗ [M ] > .

Proof: Fix a point x0 ∈ M and a lift x̃0 ∈ M̃ . Let Cstr,x0∗ (M) be the chain complex
of straight simplices with all vertices in x0. Each σ ∈ Cstr,x0

∗ (M) is uniquely determined
by the homotopy classes of the n edges γj between its vertices σ (v0) and σ (vj) for
j = 1, . . . , n. Thus

Cstr,x0

∗ (M) ∼= C∗ (Γ)

for Γ = π1 (M,x0), where the isomorphism maps σ to (1, γ1, . . . , γn).
Moreover, inclusion Cstr,x0∗ (M) → C∗ (M) induces an isomorphism in homology. In-

deed, each cycle in C∗ (M) can first be homotoped such that all vertices are in x0, and
then be straightened. Straightening a simplex σ means to chose the unique geodesic sim-
plex whose edges represent the same element of π1 (M,x0) as the corresponding edges
of σ. It is well-known that straightening all simplices of a cycle yields a cycle in the
same homology class. (Remark: This construction uses that M is a manifold of non-
positive sectional curvature. It was actually shown in [10] that for each aspherical space
Cstr,x0

∗ (M) → C∗ (M) induces an isomorphism in homology.)
Let

∑r
i=1 aiσi be a representative of the fundamental class. (One may choose e.g. a

triangulation σ1 + . . .+ σr .) Then vol (M) =
∑r

i=1 aivol (σi). The cycle
∑r

i=1 aiσi is ho-

mologous to some
∑r

i=1 aiτi ∈ Cstr,x0

∗ (M). (Possibly after straightening some simplices
overlap, so we do not get a triangulation. However, it will be sufficient to have a fundamen-
tal cycle consisting of geodesic simplices.) By Stokes Theorem, vol (M) =

∑r
i=1 aivol (τi).

The isomorphism Cstr,x0

∗ (M) ∼= C∗ (Γ) maps each τi to
(
1, γi

1, . . . , γ
i
n

)
∈ Γn+1, where

γi
j ∈ Γ is the class of the (closed) edge from τi (v0) to τi (vj). Thus

j∗ [M ] ∈ Hn (G; R)

is represented by (
1, γi

1, . . . , γ
i
n

)
∈ Gn+1.

But< vn,
(
1, γi

1, . . . , γ
i
n

)
> is the volume of the straight simplex with vertices x̃0, γ

i
1x̃0, . . . , γ

i
nx̃0,

i.e. of the lift of τi to M̃ with first vertex x̃0. Hence < vn,
(
1, γi

1, . . . , γ
i
n

)
>= vol (τi),

which implies

< vn,

r∑

i=1

ai

(
1, γi

1, . . . , γ
i
n

)
>=

r∑

i=1

aivol (τi) = vol (M) .

�
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2.3 Borel classes

Let M̃ = G/K be a symmetric space of noncompact type. Then G is a semisimple,
noncompact Lie group and K is a maximal compact subgroup.

Let g be the Lie algebra of G, and k ⊂ g be the Lie algebra of K. There is a
decomposition g = k ⊕ p with [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. It is a well-known fact that
the Killing form B (X,Y ) = Tr (ad (X) ◦ ad (Y )) is negatively definite on k and positively
definite on p.

The dual symmetric space is Gu/K, where Gu is the simply connected Lie group with
Lie algebra gu = k⊕ ip ⊂ g⊗C. The Killing form on gu is negatively definite, thus Gu/K
is a compact symmetric space.

The Lie algebra cohomology H∗ (g) is the cohomology of the complex (Λ∗g, d) with

dφ (X0, . . . , Xn) =
∑

i<j φ (−1)
i+j

φ
(
[Xi, Xj ] , X0, . . . , X̂i, . . . , X̂j , . . . , Xn

)
. The relative

Lie algebra cohomology H∗ (g, k) is the cohomology of the subcomplex (C∗ (g, k) , d) with
C∗ (g, k) = {φ ∈ Λ∗g : Xyφ = 0, ad (X)φ = 0 ∀X ∈ k}. If G/K is a symmetric space of
noncompact type, and Gu/K its compact dual, then there is an obvious isomorphism
H∗ (g, k) = H∗ (gu, k), dual to the obvious linear map k ⊕ ip → k ⊕ p. Moreover, H∗ (g, k)
is the cohomology of the complex of G-invariant differential forms on H∗ (G/K). Since
Gu is compact and connected, there is an isomorphism (defined by averaging)H∗ (gu, k) ≃
H∗ (Gu/K).

For example,

H∗ (spin (n, 1) , spin (n)) ∼= H∗ (Spin (n+ 1) /Spin (n)) = H∗ (Sn) .

Dualizing representations. Let ρ : G → GL (N,C) be a representation. ρ can be
conjugated such that K is mapped to U (N). We will henceforth always assume that ρ
has been fixed such that ρ sends K to U (N).

Definition 1 : Let M̃ = G/K be a symmetric space of noncompact type. Let ρ :
(G,K) → (GL (N,C) , U (N)) be a smooth representation. We denote

Deρ : (g, k) → (gl (N,C) , u (N))

the associated Lie-algebra homomorphism, and, with g = k ⊕ p, gu := k ⊕ ip,

Deρu : (gu, k) → (u (N) ⊕ u (N) , u (N))

the induced homomorphism on k ⊕ ip. The corresponding Lie group homomorphism

ρu : (Gu,K) → (U (N) × U (N) , U (N))

will be called the dual homomorphism to ρ.

Here gu, k and ip are to be understood as subsets of the complexification g⊗C, and Gu

is the simply connected Lie group with Lie algebra gu. In particular, the complexification
of glNC is isomorphic to glNC ⊕ glNC, and ip ≃ u (N) in this case. We emphasize that
ρu sends K to the first factor of U (N)×U (N), and not to the diagonal subgroup as has
been claimed in [12].
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Van Est Theorem. The van Est theorem states that there is a natural isomorphism

H∗
c (G; R) = H∗ (g, k) .

If ρ : G→ GL (N,C) is a representation, sending K to U (N), then we conclude that
there exists the following commutative diagram, where all vertical arrows are isomor-
phisms

H∗
c (GL (N,C))

ρ∗ - H∗
c (G)

H∗ (gl (N,C) , u (N))

∼=
6

Deρ
∗
- H∗ (g, k)

∼=
6

H∗ (u (N) ⊕ u (N) , u (N))

∼=
6

Deρ
∗
u- H∗ (gu, k)

∼=
6

H∗ (U (N))

∼=
6

ρ∗u- H∗ (Gu/K)

∼=
6

If dim (G/K) = n, then Gu/K is an n-dimensional, compact, orientable manifold
and we have Hn

c (G,R) ∼= Hn (Gu/K,R) ∼= R. Thus the volume class [vn] is the (up to
multiplication by real numbers) unique nontrivial continuous cohomology class in degree
n.

Corollary 1 : The volume class [vn] ∈ Hn
c (G) corresponds (under the van Est isomor-

phism) to the (de Rham) cohomology class of the volume form [dvol] ∈ Hn (Gu/K,R).

Proof: According to [8], Prop. 1.5, vn corresponds to the class of the volume form in
Hn (g, k). It is obvious that the isomorphism Hn (g, k) ≃ Hn (gu, k) maps the volume form
of G/K to the volume form of Gu/K. �

Borel classes
Let G be a compact Lie group. Let IS (G) resp. IA (G) be the ad-invariant sym-

metric resp. antisymmetric multilinear forms on g. We have the isomorphism In
A (G) →

Hn (G; R). Moreover, we remind that there is the Chern-Weil isomorphism In
S (G) →

H2n (BG; R), where BG means the classifying space for G with its Lie group topology.
In particular, if G = U (N), then the invariant polynomial 1

(2πi)nTr (An) is mapped to

Cn ∈ H2n (BU (N) ; Z), the n-th component of the universal Chern character.
There is a fibration G → EG → BG and an associated ’transgression map’ τ which

maps a subspace of H2n (BG; Z) (the so-called transgressive elements) to a quotient of
H2n−1 (G; Z), cf. [3], p.410. If G = U (N), then, according to Borel([3], p.412), one has

H∗ (U (N) ; Z) ∼= ΛZ (b1, . . . , b2N−1) ,
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for transgressive elements b2n−1 ∈ H2n−1 (U (N) ; Z) which satisfy

τ (b2n−1) = Cn.

The classes b2n−1 are called Borel classes. By definition, Borel classes exist only in odd
degrees. (We will not distinguish between b2n−1 and its image in H2n−1 (U (N) ; R).)

According to Cartan ([6]), there is a homomorphism

R : In
S (G) → I2n−1

A (G) ,

whose image corresponds (after the isomorphism I2n−1
A (G) ∼= H∗ (G; R)) precisely to the

transgressive elements. It is explicitly given by
R (f) (X1, . . . , X2n−1) =

∑
σ∈S2n−1

f
(
Xσ(1),

[
Xσ(2), Xσ(3)

]
, . . . ,

[
Xσ(2n−2), Xσ(2n−1)

])
.

In particular, forH∗ (U (N) ; R) ∼= H∗ (u (N)), a representative of b2n+1 ∈ H2n+1 (u (N))
is given by the cocycle

b2n+1 (X0, . . . , X2n) =
1

(2πi)
n+1

∑

σ∈S2n+1

Tr
(
Xσ(0)

[
Xσ(1), Xσ(2)

]
. . .
[
Xσ(2n−1), Xσ(2n)

])
.

It will be clear from the context whether we consider the Borel classes as elements of
H∗ (u (N)) ≃ H∗ (U (N) ; R) or as the (under the van Est isomorphism) corresponding
elements of H∗

c (GL (N,C) ; R).
We note that stabilization H∗ (U (N + 1) ; R) → H∗ (U (N) ; R) preserves b2n−1, thus
b2n−1 may also be considered as an element of H∗ (U ; R) ∼= H∗

c (GL (C) ; R).

Let m ∈ N. We consider K2m−1 (C) ⊗ Q as a subgroup of H2m−1 (GL (C) ; Q), as in
section 2.1. The Borel regulator

r2m−1 : K2m−1 (C) ⊗ Q → R

is, for x ∈ K2m−1 (C) ⊗ Q, defined as applying the Borel class

b2m−1 ∈ H2m−1
c (GL (C) ; R)

to pr2m−1 (x), where pr2m−1 : H2m−1 (GL (C) ; Q) → K2m−1 (C) ⊗ Q is the projection
defined in section 2.2.

Let A be a subring of C, for example Q, any number field or its ring of integers.
Inclusion induces a homomorphism K2m−1 (A) ⊗ Q → K2m−1 (C) ⊗ Q, thus the Borel
regulator also defines a homomorphism

r2m−1 : K2m−1 (A) ⊗ Q → R.

Borel class of representations.

Definition 2 : Let M̃ = G/K be a symmetric space of noncompact type of odd dimension
2n− 1. We say that a (continuous) representation ρ : G → GL (N,C) has nonvanishing
Borel class if ρ∗bn 6= 0 ∈ H2n−1

c (G; R).

8



Lemma 1 : Let G/K be a symmetric space of noncompact type, of odd dimension 2n−1.
A representation ρ : G → GL (N,C) has nonvanishing Borel class if and only if ρ∗ubn 6=
0 ∈ H2n−1 (Gu/K; R), and the latter holds if and only if

< bn, (ρu)∗ [Gu/K] > 6= 0.

Proof: The first equivalence follows from naturality of the van Est isomorphism.
The second equivalence follows from H2n−1 (Gu/K; R) ≃ R. (Gu/K is orientable, be-
cause it is simply connected.) �

2.4 Compact locally symmetric spaces and K-theory

In this subsection, we finally show that to each representation of nontrivial Borel class,
and each compact, orientable, locally symmetric space of noncompact type we can find a
nontrivial element in the algebraic K-theory of the algebraic numbers tensored with Q.

Theorem 2 : For each symmetric space G/K of noncompact type and odd dimension
n, and to each representation ρ : G → GL (N,C) with ρ∗bn 6= 0, there exists a constant
cρ 6= 0, such that the following holds: to each compact, orientable, locally symmetric space
M = Γ\G/K, with ρ (Γ) ⊂ GL (N,A) for a subring A ⊂ C, there exists an element

γ (M) ∈ Kn (A) ⊗ Q

such that the Borel regulator rn : Kn (A) ⊗ Q → R fulfills

rn (γ (M)) = cρvol (M) .

Proof:
In Theorem 1 we have produced an element j∗ [M ] ∈ Hn (G; Z). Applying (Bρ)∗ we

get an element
(Bρ)∗ j∗ [M ] ∈ Hn (GL (N,C) ; Z) .

Since (Bρ)∗ j maps Γ to GL (N,A), we have

(Bρ)∗ j∗ [M ] ∈ Hn (GL (N,A) ; Z) .

By assumption ρ∗bn 6= 0. Since Hn
c (G) is one-dimensional, this implies ρ∗bn = cρvn

for some real number cρ 6= 0.
As in section 2.1., we consider

γ (M) := I−1
n prn (Bρ)n jn [M ] ∈ Kn (A) ⊗ Q.

Since the Borel regulator is defined by pairing with bn, and prn is the projection along
the kernel of the Borel regulator, we get

rn (γ (M)) =< bn, γ (M) >=< bn, prn (Bρ)n jn [M ] >=< bn, (Bρ)n jn [M ] >=< ρ∗bn, j∗ [M ] >

=< cρvn, j∗ [M ] >= cρvol (M)

where the last equality is true by Theorem 1. �
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Corollary 2 : For each symmetric space G/K of noncompact type and odd dimension
n, and to each representation ρ : G → GL (N,C) with ρ∗bn 6= 0, there exists a constant
cρ 6= 0, such that the following holds: to each compact, orientable, locally symmetric space
M = Γ\G/K there exists an element

γ (M) ∈ Kn

(
Q
)
⊗ Q

such that the Borel regulator rn : Kn

(
Q
)
⊗ Q → R fulfills

rn (γ (M)) = cρvol (M) .

Proof: By Weil’s rigidity theorem all finite-volume locally symmetric manifolds can be
defined over Q, that is, they are of the form M = Γ\G/K with Γ ⊂ G

(
Q
)
.

For each irreducible representation ρ : G→ GL (N,C), G
(
Q
)

is mapped toGL
(
N,Q

)
.

This follows from the classification of irreducible representations of Lie groups, see [11].
Thus we can apply Theorem 2. �

Corollary 3 : Assume a representation of ρ : G → GL (N,C) is given with ρ∗bn 6=
0. Then compact, orientable, locally symmetric n-manifolds of rationally independent
volumes yield rationally independent elements in Kn

(
Q
)
⊗ Q.

Remark: In [12] it was claimed that for hyperbolic manifolds one can construct an el-
ement γ (M) ∈ Kn

(
Q
)
⊗ Q such that rn (γ (M)) = vol (M). However, since ρ∗bn is an

integer cohomology class, cρ is rational if and only if vn is a rational cohomology class,
and this is equivalent to vol (M) =< vn, [M ] >∈ Q. Since, conjecturally, all hyperbolic
manifolds have irrational volumes, one can probably not get rid of the factor cρ in Theo-
rem 2.

If M is defined over some subring A ⊂ Q, then we do get an element in Kn (A) ⊗ Q.
The proof is an obvious modification. We will state and prove the general case of (possi-
bly noncompact) finite-volume symmetric spaces in section 4.

In conclusion, we are left with the problem of finding representations of nontrivial
Borel class, which will be solved in section 3.

The Matthey-Pitsch-Scherer construction. The following construction gives
a somewhat stronger invariant under the assumption that M is stably parallelizable.
Assume that Md → Rn is an embedding with trivial normal bundle νM . Let U be a
regular neighborhood. Then there is the composition

Sn → U/∂U → U/∂U ∧M+ = Th (νM) ∧M+ = Σn−dM+ ∧M+ → Sn−d ∧M+

giving an element γ (M) ∈ πs
d (M). By [21], if M is a closed hyperbolic 3-manifold and

ρ : M → BSL is the map given by the stable trivialization, then ρ∗ (γ (M)) is the Bloch
invariant.

An analogous construction works for locally symmetric spaces, as long as they are
stably parallelizable.

It is known by a Theorem of Deligne and Sullivan that each hyperbolic manifold M
admits a finite covering M̂ which is stably parallelizable. Let k be the degree of this

10



covering. Then, rationally, we can define γ (M) := 1
k
γ
(
M̂
)
∈ πs

d (M) ⊗ Q, and thus get

a finer invariant which gives back γ (M) ∈ Kd (C) ⊗ Q. We will not pursue further this
approach in this paper.

3 Existence of representations of nontrivial Borel class

3.1 Invariant polynomials

Lemma 2 : Let G/K be a symmetric space of noncompact type, of dimension 2n − 1.
Let t be a Cartan subalgebra of g.

Then a representation ρ : G→ GL (N,C) has nonvanishing Borel class if and only if
Tr (Dρ (t)

n
) 6= 0 for some t ∈ t.

Proof: As in section 2.3, we consider the dual representation

ρu : Gu/K → U (N) × U (N) /U (N) = U (N) .

We know that ρ has nonvanishing Borel class if and only if

ρ∗ub2n−1 6= 0 ∈ H2n−1 (Gu/K) .

The projection p : Gu → Gu/K induces an injective map p∗ : H∗ (Gu/K) → H∗ (Gu),
because a left inverse to p∗ is given by averaging differential forms over the compact group
K. Hence, ρ∗ub2n−1 6= 0 if and only if its image in H2n−1 (Gu) does not vanish. The latter
equals

(π2ρu)
∗
b2n−1,

where π2 : U (N) × U (N) → U (N) is projection to the second factor.
We identify H2n−1 (Gu) with I2n−1

A (Gu) and H2n (BGu) with In
S (Gu). Let

R : In
S (Gu) → I2n−1

A (Gu)

be Cartan’s homomorphism (see section 2.3). According to [6], the image of R are the
transgressive elements and one has

R ◦ τ = id

for the universal transgression map τ . (In particular b2n−1 = R (Cn).),
In view of naturality of the transgression map, Cn = τ (b2n−1) implies that

(π2ρu)∗ Cn = τ
(
(π2ρu)∗ b2n−1

)
,

thus (π2ρu)
∗
b2n−1 6= 0 is implied by

(π2ρu)
∗
Cn 6= 0 ∈ H2n (BGu) .

Moreover, R ◦ τ = id implies injectivity of τ , hence (π2ρu)∗ Cn 6= 0 is also a necessary
condition for (π2ρu)

∗
b2n−1 6= 0.

11



Recall that Cn corresponds to

1

(2πi)
nTr (An)

under the isomorphism H2n (BU (N)) ≃ In
S (u (N)). Hence it suffices to check that the

invariant polynomial
Tr (π2Dρu (A)

n
)

is not trivial on gu.
Let tu be the Cartan subalgebra of gu, which corresponds to t under the canonical

bijection k ⊕ p ≃ k ⊕ ip. There is an action of the Weyl group W on tu, we denote its
space of invariant polynomials by SW

∗ (tu). By Chevalley’s theorem (see [4]), restriction
induces an isomorphism

I∗S (gu) ∼= SW
∗ (tu) .

In particular, it suffices to check that Tr (π2Dρu (.)
n
) is not trivial on tu.

We note that the Cartan algebra t can be conjugated into be a subspace of p. Since
the conclusion of Lemma 2 is invariant under conjugation, we can w.l.o.g. assume that
t ⊂ p and thus tu ⊂ ip. This implies that, for t ∈ tu, Dρu (t) belongs to the second factor
of u (N) ⊕ u (N), and thus π2Dρu (t) = Dρu (t) on tu. Finally we note that, for t ∈ p,
Tr (Dρ (t)n) and Tr (Dρu (it)n) coincide up to a power of i. The claim follows. �

Example: Spinor representations. We consider the spinor representations of
so (m,C) because their Borel classes have been computed in [12] and the computation
given there appears not to be correct. (The main point of confusion seems to be that
[12] computes a supertrace rather than a trace. This seems to be related to the wrong
assertion that K = U (N) embeds as a diagonal subgroup into Gu = U (N) × U (N).
However, K corresponds to the first factor of U (N)×U (N), see section 2.3.) We use the
description of the spinor representations as they can be found in [11].

m even. Let V = C2m with C-basis e1, . . . , e2m, and Q the quadratic form given by
Q (ei, em+i) = Q (em+i, ei) = 1 and Q (ei, ej) = 0 else. There is an injective homomor-
phism so (Q) → Cl (Q)

even
which maps, in particular, Ei,i − Em+i,m+i to 1

2 (eiem+i − 1)
(see [11], pp.303-305). Let W be the C-subspace of V spanned by e1, . . . , em, W ′ the
subspace spanned by em+1, . . . , e2m.

Cl (Q) acts on Λ∗W as follows: ei sends v ∈ W to ei ∧ v and em+i sends v ∈ W to
2v − 2Q (v, em+i) ei, for i = 1, . . . ,m. (This follows from the proof of [11], Lemma 20.9.)
This action extends in the obvious way to an action of Cl (Q) on Λ∗W . In particular
1
2 (eiem+i − 1) acts by sending v ∈ W to ei ∧ v − 1

2v. Thus it maps ei to 1
2ei and ej to

− 1
2ej for j 6= i.
This action gives rise to an isomorphism Cl (Q)

even ∼= End (ΛevenW )⊕End
(
ΛoddW

)

(see [11], p.305). The induced actions of so (Q) on ΛevenW resp. ΛoddW are the positive
resp. negative half-spinor representations. We will denote them by S+ and S−.

Thus Ei,i−Em+i,m+i acts on ei1∧. . .∧eik
by multiplication with 2−k

2 if i ∈ {i1, . . . , ik}
and by multiplication with −k

2 if i 6∈ {i1, . . . , ik}.
As a Cartan-algebra we choose the algebra of diagonal matrices diag (h1, . . . , hm,−h1, . . . ,−hm).

Let {Ai : i = 1, . . . ,m} be a basis, where Ai = Ei,i − Em+i,m+i.
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For the positive half-spinor representation we have

Tr
(
S+ (Ai)

n)
=
∑

k even

∑

i∈{i1,...,ik}

(
1 − k

2

)n

+
∑

i6∈{i1,...,ik}

(
−k

2

)n

=
∑

k even

(
m− 1
k − 1

)(
1 − k

2

)n

+

(
m− 1
k

)(
−k

2

)n

.

In particular, we have Tr (S+ (Ai)
n
) < 0 for n odd and Tr (S+ (Ai)

n
) > 0 for n even.

For the negative half-spinor representation we have

Tr
(
S− (Ai)

n)
=
∑

k odd

∑

i∈{i1,...,ik}

(
1 − k

2

)n

+
∑

i6∈{i1,...,ik}

(
−k

2

)n

=
∑

k odd

(
m− 1
k − 1

)(
1 − k

2

)n

+

(
m− 1
k

)(
−k

2

)n

.

In particular, we have Tr (S− (Ai)
n
) < 0 for n odd and Tr (S− (Ai)

n
) > 0 for n even.

m odd. Let V = C2m+1 with C-basis e1, . . . , e2m+1, and Q the quadratic form given by
Q (e2m+1, e2m+1) = 1, Q (ei, em+i) = Q (em+i,ei

) = 1 and Q (ei, ej) = 0 else. As in the
case m even, we have so (Q) → Cl (Q)

even
which maps Ei,i −Em+i,m+i to 1

2 (eiem+i − 1)
Let W be the C-subspace of V spanned by e1, . . . , em, W ′ the subspace spanned by
em+1, . . . , e2m.

It follows from the proof of [11], Lemma 20.16., that Cl (Q) acts on Λ∗W as follows:
the action of ei and em+i, for i = 1, . . . ,m is defined as in the case m even, and e2m+1 acts
as multiplication by 1 on ΛevenW and as multiplication by -1 on ΛoddW . In particular,
we have again that 1

2 (eiem+i − 1) acts by sending ei to 1
2ei and ej to − 1

2ej for j 6= i.
This action gives rise to an isomorphism Cl (Q)even ∼= End (ΛW ) (see [11], p.306).

The induced action of so (Q) on ΛW is the spinor representation S.
As a Cartan-algebra we choose the algebra of diagonal matrices diag (h1, . . . , hm,−h1, . . . ,−hm, 0).

Let {Ai : i = 1, . . . ,m} be a basis, where Ai = Ei,i−Em+i,m+i. Ai acts on ei1∧. . .∧eik
by

multiplication with 2−k
2 if i ∈ {i1, . . . , ik} and by multiplication with −k

2 if i 6∈ {i1, . . . , ik}.
Thus we have

Tr (S (Ai)
n
) =

∑

k

∑

i∈{i1,...,ik}

(
1 − k

2

)n

+
∑

i6∈{i1,...,ik}

(
−k

2

)n

=
∑

k

(
m− 1
k − 1

)(
1 − k

2

)n

+

(
m− 1
k

)(
−k

2

)n

.

In particular, we have Tr (S (Ai)
n
) < 0 for n odd and Tr (S (Ai)

n
) > 0 for n even.

3.2 Borel class of Lie algebra representations

Let g be a semisimple Lie algebra and R (g) its (real) representation ring, with addition
⊕ and multiplication ⊗. Let t be a Cartan subalgebra of g.
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In this section we consider, for n ∈ N, the map

b2n−1 : R (g) → Z [t]

given by
b2n−1 (π) (t) = Tr (π (t)n) .

It is obvious that b2n−1 (π1 ⊕ π2) = b2n−1 (π1) + b2n−1 (π2) holds for representations
π1, π2. Therefore b2n−1 is uniquely determined by its values for irreducible representa-
tions. Moreover, b2n−1 (π1 ⊗ π2) = b2n−1 (π1) b2n−1 (π2) for representations π1, π2.

Complex-linear representations. First we consider complex semisimple Lie algebras
and the ring RC (g) ⊂ R (g) of their C-linear representations.

g = sl (l + 1,C).
Let V = Cl+1 be the standard representation, with basis e1, . . . , el+1. Then RC (g) =
Z [A1, . . . , Al] with Ak the induced representation on ΛkV , cf. [11]. In particular, irre-
ducible representations correspond to monomials with coefficient 1, i.e. to tensor products
of Ak’s. Thus it suffices to compute b2n−1 on Ak.

A basis of ΛkV is given by {ei1 ∧ . . . ∧ eik
: 1 ≤ i1 < . . . < ik ≤ l + 1}. As Cartan-

subalgebra we may choose the diagonal matrices diag (h1, . . . , hl, hl+1) with h1 + . . . +
hl+1 = 0. diag (h1, . . . , hl, hl+1) acts on ei1 ∧. . .∧eik

by multiplication with hi1 + . . .+hik
.

Hence

b2n−1 (Ak)




h1 0 . . . 0
0 h2 . . . 0
. . . . . .
0 0 . . . hl+1


 =

∑

1≤i1<...<ik≤l+1

(hi1 + . . .+ hik
)
n
.

For n = 1, the sum is a multiple of h1 + . . .+hl+1 = 0. For l = k = 1 and n odd, we have
that bn (A1) = hn

1 +hn
2 is a multiple of h1 +h2 = 0. In all other cases, i.e. for l ≥ 2, n > 1

or l = k = 1, n even, the sum is not divisible by h1+ . . .+hl+1 and thus not trivial. This is
obvious for even n. In the case of odd n > 1 and l ≥ 2, it follows for example from the com-

putation b2n−1 (Ak) diag (2,−1,−1, 0, . . . , 0) = (2n − 1)

((
l − 2
k − 1

)
−
(

l− 1
k − 1

))
6= 0.

Thus, fundamental representations have nontrivial b2n−1, for all l ≥ 2, n > 1 or l = k =
1, n even.

g = sp (l,C).
Let V = C2l be the standard representation. Then RC (g) = Z [B1, . . . , Bl] with Bk the
induced representation on ΛkV . Thus it suffices to compute bn on Bk.

sp (l,C) consists of matrices

(
A B
C D

)
, such that the lxl-blocks A,B,C,D satisfy

BT = B,CT = C,AT = D. As Cartan-subalgebra we may choose the diagonal matrices
diag (h1, . . . , hl,−h1, . . . ,−hl).

Let {e1, . . . , el, f1, . . . , fl} be a basis of C2l for the standard representation. A basis of
ΛkV is given by

{
ei1 ∧ . . . ∧ eip

∧ fj1 ∧ . . . ∧ fjk−p
: 0 ≤ p ≤ k, 1 ≤ i1 < . . . < ip ≤ l, 1 ≤ j1 < . . . < jk−p ≤ l

}
.
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diag (h1, . . . , hl,−h1, . . . ,−hl) acts on ei1 ∧ . . . ∧ eip
∧ fj1 ∧ . . . ∧ fjk−p

by multiplication
with hi1 + . . .+ hip

− hj1 − . . .− hjk−p
. Hence

b2n−1 (Bk)




h1 0 . . . 0 0 . . .
0 h2 . . . 0 0 . . .
. . . . . .
0 0 . . . −h1 0 . . .
0 0 . . . 0 −h2 . . .
. . . . . .




=
∑

1≤i1<...<ip≤l,1≤j1<...<jk−p≤l

(
hi1 + . . .+ hip

− hj1 − . . .− hjk−p

)n

If n is even, we clearly get a nonvanishing polynomial without cancellations. If n is odd,
then the permutation which transposes ir and jr simultaneously for all r multiplies the
sum by −1 but on the other hand preserves the sum. Thus b2n−1 (Bk) = 0 if n is odd.

g = so (2l+ 1,C).
Let V = C2l+1 be the standard representation. Then RC (g) = Z [C1, . . . , Cl−1, S] with
Ck the induced representation on ΛkV , and S the spin representation.

As Cartan-subalgebra we may choose the diagonal matrices diag (h1, . . . , hl,−h1, . . . ,−hl, 0).
Then the computation of b2n−1 on Ck is exactly the same as for sp (l,C), in particular
b2n−1 (Ck) 6= 0 for n even and b2n−1 (Ck) = 0 for n odd.
Moreover, we have computed in section 3.1 that b2n−1 (S) 6= 0 for all n.

g = so (2l,C).
Let V = C2l be the standard representation. Then RC (g) = Z [D1, . . . , Dl−2, S

+, S−]
with Dk the induced representation on ΛkV , and S± the half-spinor representations.

As Cartan-subalgebra we may choose the diagonal matrices diag (h1, . . . , hl,−h1, . . . ,−hl).
Again the same computation as for sp (l,C) shows that b2n−1 (Dk) 6= 0 for n even and
b2n−1 (Dk) = 0 for n odd. Moreover, we have computed in section 3.1 that b2n−1 (S±) 6= 0
for all n.

Exceptional Lie groups.
We will see in the next section that we will only be interested in Lie groups which ad-
mit a symmetric space of odd dimension. The only exceptional Lie group admitting an
odd-dimensional symmetric space is E7 with dim (E7/E7 (R)) = 163 = 2.82−1. The fact
that 163 ≡ 3 mod4, i.e. n = 82 even, implies automatically that ρ∗b163 6= 0 holds for
each irreducible representation ρ. However, for completeness we also show, at least for a
specific representation, that ρ∗b2n−1 6= 0 holds for each n > 1.

Namely, we consider the representation ρ : E7 → GL (56,C), which has been con-
structed in [1], Corollary 8.2, and we are going to show that this representation satisfies
ρ∗b2n−1 6= 0 for each n > 1, in particular for n = 82.

By [1], chapter 7/8, there is a monomorphism Spin (12) × SU (2) /Z2 → E7 and
the Cartan-subalgebra of e7 coincides with the Cartan-subalgebra t of spin (12)⊕ su (2).
According to [1], Corollary 8.2, the restriction of ρ to Spin (12) × SU (2) is λ1

12 ⊗ λ1 ⊕
S−⊗1, where λ1

12 resp. λ1 are the standard representations and S− is the negative spinor
representation.

For even n, we know that ρ∗b2n−1 6= 0. If n is odd then, for the derivative π1 of the
standard representation λ1 of SU (2) we have Tr (π1 (h)

n
) = 0, whenever h ∈ t ∩ su (2)
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belongs to the Cartan-subalgebra of su (2) , because the latter are the diagonal 2x2-
matrices of trace 0. Thus the first direct summand λ1

12 ⊗ λ1 does not contribute to
Tr (π (h)

n
). Hence , for h = (hspin, hsu) ∈ t ⊂ spin (12) ⊕ su (2), we have Tr (π (h)

n
) =

Tr (S− (hspin)n). But the nontriviality of the latter has already been shown in section 3.1.

Noncomplex Lie algebras. Let π : g → gl (N,C) be an R-linear representation of
a simple Lie-algebra g which is not a complex Lie algebra. Then g ⊗ C is a simple com-
plex Lie algebra and π is the restriction of some C-linear representation g⊗C → gl (N,C).
Let t be a Cartan subalgebra of g. Then it is obvious that an element t ∈ t ⊗ C with
Tr (π (t)

n
) 6= 0 exists if and only if such an element exists in t. Thus π has nontrivial

Borel class if and only if π ⊗ C has nontrivial Borel class. Hence we can use the results
for complex-linear representations.

Real representations of complex Lie algebras. If g is a simple complex Lie al-
gebra, then each R-linear representation π : g → gl (N,C) is of the form π = π1 ⊗ π2

for C-linear representations π1, π2. We have Tr (π (t)
n
) = Tr (π1 (t)

n
)Tr (π2 (t)

n
). In

particular, real representations with nontrivial b2n−1 can only exist if there are complex
representations of nontrivial b2n−1.

3.3 Conclusion

In this section, we discuss, for which symmetric spaces G/K (irreducible, of noncompact
type, of dimension 2n − 1) and which representations ρ : G → GL (N,C) the inequality
ρ∗b2n−1 6= 0 holds.

Definition 3 : We say that a Lie algebra representation π : g → gl (N,C) has nontrivial
Borel class if b2n−1 (π) 6≡ 0, for b2n−1 : R [g] → Z [t] defined in section 3.2.

Proposition 1 : Let ρ : G → GL (N,C) be a representation of a Lie group G, and
π : g → gl (N,C) the associated Lie algebra representation π = Deρ. Then ρ has nontrivial
Borel class if and only if π has nontrivial Borel class.

Proof: This is precisely the statement of Lemma 2. �

We use the classification of symmetric spaces as it can be read off table 4 in [23]. Of
course, we are only interested in symmetric spaces of odd dimension. A simple inspec-
tion shows that all odd-dimensional irreducible symmetric spaces of noncompact type are
given by the following list:

SLl (R) /SOl, l ≡ 0, 3 mod 4,
SL2l (H) /Spl, l ≡ 0 mod 2,
Spinp,q/ (Spinp × Spinq) , p, q ≡ 1 mod 2,
SLl (C) /SUl, l ≡ 0 mod 2,
SOl (C) /SOl, l ≡ 2, 3 mod 4,
Spl (C) /Spl, l ≡ 1 mod 2,
E7 (C) /E7.
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First we note that for n even all representations satisfy ρ∗b2n−1 6= 0. This applies to
locally symmetric spaces of dimension ≡ 3 mod 4. In the above list this are the following
symmetric spaces:
SLl (R) /SOl, l ≡ 0, 7 mod 8,
SL2l (H) /Spl, l ≡ 2 mod 4,
SOp,q/ (SOp × SOq) , p, q ≡ 1 mod 2, p 6≡ q mod 4,
SLl (C) /SUl, l ≡ 0 mod 2,
SOl (C) /SOl, l ≡ 2 mod 4,
Spl (C) /Spl, l ≡ 3 mod 4,
E7 (C) /E7.

We now analyze the locally symmetric spaces of dimension ≡ 1 mod 4. For those,
whose corresponding Lie algebra g is not a complex Lie algebra (this concerns the first
3 cases), we can, as observed at the end of section 3.2, directly apply the results for the
complexifications. Thus we get :
- for SLl (R) /SOl, l ≡ 3, 4 mod 8, every irreducible representation yields a nontrivial
element,
- for SL2l (H) /Spl, l ≡ 0 mod 4, every irreducible representation yields a nontrivial ele-
ment,
- for Spinp,q/ (Spinp × Spinq) , p, q ≡ 1 mod 2, p ≡ q mod 4, tensor products of copies of
positive and/or negative half-spinor representations are the only irreducible representa-
tions yielding nontrivial elements.
For those locally symmetric spaces whose corresponding Lie algebra g is a complex Lie
algebra, we use the fact that each real representation is of the form ρ1 ⊗ ρ2. We get:
- for SOl (C) /SOl, l ≡ 3 mod 4, tensor products of copies of the spinor representation
and its conjugate are the only irreducible representations yielding nontrivial elements,
- for Spl (C) /Spl, l ≡ 1 mod 4, no representation yields nontrivial elements.

Example (Goncharov): Hyperbolic space Hm is the symmetric space Hm = Spinm,1/ (Spinm × Spin1).
Let m = 2n− 1 be odd. It was shown in [12] that the positive and negative spinor repre-
sentation have nontrivial Borel class. The question was raised ([12], p.587) whether these
are the only fundamental representations of Spinm,1 with this property. As a special
case of the above results we see that for m ≡ 3 mod 4 each irreducible representation
has nontrivial Borel class, meanwhile for m ≡ 1 mod 4 the positive and negative spinor
representation are the only fundamental representations with this property.

3.4 Some clues on computation

So far we have only discussed how to decide ρ∗b2n−1 6= 0, which is in view of Lemma 2
easier then computing ρ∗b2n−1. The aim of this subsection is only to give some clues to
computation of ρ∗b2n−1. Its results are not needed throughout the paper, except for the
explicit values of the Borel regulator in section 5.

For each Lie-algebra-cocycle P ∈ Cn (gu, k), we denote by ωP ∈ Ωn (Gu/K) the corre-
sponding Gu-invariant differential form. Then we have the following obvious observation.
([ωP ] denotes the cohomology class of ωP , and [Gu/K]

v ∈ Hn (Gu/K,R) denotes the
dual of the fundamental class [Gu/K]. The Riemannian metric is given by the negative
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of the Killing form.)

Lemma 3 : Let X1, . . . , Xn be an ON-basis for ip (w.r.t. -B). Then, for each P ∈
In (gu, k), we have

[ωP ] = [Gu/K]
v
vol (Gu/K)P (X1, . . . , Xn) .

Corollary 4 : [ωP ] 6= 0 iff P (X1, . . . , Xn) for some (hence any) basis of ip.

We will apply this to the Borel class bn ∈ H2n−1 (u (N) ⊕ u (N) , u (N)) which is given
by the cocycle

P (X1, . . . , X2n−1) =
1

(2πi)n

1

(2n− 1)!

∑

σ∈S2n−1

Tr
(
Xσ(1)

[
Xσ(2), Xσ(3)

]
. . .
[
Xσ(2n−2), Xσ(2n−1)

])
.

Example: Hyperbolic 3-manifolds.
Let G = SL (2,C). Then

ip =
{
iA ∈Mat (2,C) : Tr (A) = 0, A = A

T
}
.

An ON-basis of ip is given by 1
2
√

2
H, 1

2
√

2
X, 1

2
√

2
Y , with

H =

(
i 0
0 −i

)
, X =

(
0 i
i 0

)
, Y =

(
0 −1
1 0

)
.

We have
[H,X ] = −2Y, [H,Y ] = −2X, [X,Y ] = 2H.

Thus, for each representation ρ : Sl (2,C) → GL (m+ 1,C) with associated Lie algebra
representation Π : sl (2,C) →Mat (m+ 1,C) we have

(2πi)
2
6ρ∗b3 (H,X, Y ) = 2Tr (ΠH [ΠX,ΠY ])+2Tr (ΠX [ΠY,ΠH ])+2Tr (ΠY [ΠH,ΠX ])

= 4Tr
(
(ΠH)2

)
+ 4Tr

(
(ΠX)2

)
+ 4Tr

(
(ΠY )2

)
.

By the classification of irreducible representations of sl (2,C), each m + 1-dimensional
irreducible representation is equivalent to πm given by

πm (H) =




im 0 0 ... 0
0 i (m− 2) 0 ... 0
0 0 i (m− 4) ... 0
. . . ... .
0 0 . ... −im



,

πm (X) =




0 −i 0 ... 0
−im 0 −2i ... 0

0 −i (m− 1) 0 ... 0
. . . ... −im
0 0 0 ..− i 0



,
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πm (Y ) =




0 1 0 ... 0
−m 0 2 ... 0
0 − (m− 1) 0 ... 0
. . . ... m
0 0 0 ..− 1 0



.

Therefore, the diagonal entries of πm (H)
2

are
(
−m2,− (m− 2)

2
, . . . , 0, . . . ,− (m− 2)

2
,−m2

)
,

the diagonal entries of πm (X)
2

resp. πm (Y )
2

are both equal to (−m,−m− 2 (m− 1) , ...).

Therefore Tr
(
πm (X)

2
)

= Tr
(
πm (Y )

2
)

and we conclude

ρ∗mb3

(
1

2
√

2
H,

1

2
√

2
X,

1

2
√

2
Y

)
= − 1

48π2
Tr
(
(πmH)

2
)
− 1

24π2
Tr
(
(πmX)

2
)

=
1

48π2

m∑

k=0

(m− 2k)
2

+
1

24π2

m∑

k=0

(k + 1) (m+ k) + (k + 2) (m+ k + 1) .

If m = 1, we get ρ∗1b3
(

1
2
√

2
H, 1

2
√

2
X, 1

2
√

2
Y
)

= 1
8π2 , that is the Borel regulator is 1

8π2

times the volume.

Example: SL (3,R) /SO (3).

Let ρ : SL (3,R) → GL (3,C) be the inclusion. Since SL (3,R) /SO (3) is 5-dimensional,
we wish to compute ρ∗b5.

Let

H1 =




i 0 0
0 −i 0
0 0 0


 , X1 =




0 i 0
i 0 0
0 0 0


 , Y1 =




0 −1 0
1 0 0
0 0 0


 .

We will use the convention that, for A ∈ {H,X, Y } if A1 is defined (in a given basis),
then A2 is obtained via the base change e1 → e2, e2 → e3, e3 → e1 and A3 is obtained via
the base change e1 → e3, e3 → e2, e2 → e1.

We have [H1, H2] = 0, [H1, X1] = 2Y1, [H1, X2] = −Y2, [H1, X3] = −Y3, [X1, X2] = iY3

and more relations are obtained out of these ones by base changes.
A basis of ip is given by H1, H2, X1, X2, X3. The formula for ρ∗b5 (H1, H2, X1, X2, X3)

contains 120 summands. (24 of them contain [H1, H2] = 0 or [H2, H1] = 0.)
Each summand appears four times beacuse, for example, H1 [H2, X1] [X2, X3] also

shows up as −H1 [X1, H2] [X2, X3] ,−H1 [H2, X1] [X3, X2] and H1 [X1, H2] [X3, X2]. Thus
one has to add 30 summands (6 of them zero), and multiply their sum by 4.

We note that all summands of the form H1 [H2, .] [., .] give after base change corre-
sponding elements of the form H2 [H1, .] [., .], which are summed with the opposite sign.
Thus these terms cancel each other. The same cancellation occurs between summands
of the form X2 [., .] [., .] and X3 [., .] [., .]. Thus we only have to sum up summands of the
form X1 [., .] [., .] and we get

(2πi)
3
5!ρ∗b5 (H1, H2, X1, X2, X3) =
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4Tr (X1 [H1, H2] [X2, X3])+4Tr (X1 [X2, X3] [H1, H2])+4Tr (X1 [H1, X2] [X3, H2])+4Tr (X1 [X3, H2] [H1, X2])+

+4Tr (X1 [H1, X3] [H2, X2]) + 4Tr (X1 [H2, X2] [H1, X3])

= 0 + 0 + 4Tr (X1Y2Y3) + 4Tr (X1Y3Y2) + 4Tr (−2X1Y3Y2) + 4Tr (−2X1Y2Y3)

= 0 + 0 + 4i+ 4i− 8i− 8i = −8i.

We note that H1, H2, X1, X2, X3 are orthogonal of norm 2
√

3. Dividing each of them
by 2

√
3 gives an ON-basis, on which evaluation of ρ∗b5 gives 1

(2
√

3)5

1
5!

1
(2πi)3

(−8i) =

1
34560

√
3π3

.

4 The cusped case

4.1 Preparations

Let G be a connected, semisimple Lie group with maximal compact subgroup K. Then
G/K is a symmetric space of noncompact type. G acts on M̃ = G/K and thus on the

ideal boundary ∂∞M̃ . A group P ⊂ G is maximal parabolic if there is some x ∈ ∂∞M̃
with P = {g ∈ G : gx = x; gy 6= y ∀ y 6= x}.

Let ρ : G → GL (N,C) be a representation. We assume that ρ maps K to U (N),
which can be achieved upon conjugation. We note that connected, semisimple Lie groups
are perfect, hence ρ has image in SL (N,C) and maps K to SU (N).

The induced map ρ : G/K → SL (N,C) /SU (N) maps geodesics in G/K to geodesics
in SL (N,C) /SU (N), because geodesics are of the form t→ gexp (tX)K for someX ∈ g.

Thus one gets a map of ideal boundaries ∂∞M̃ → ∂∞ (SL (N,C) /SU (N)) which
is ρ-equivariant for the actions of G resp. SL (N,C). In particular, maximal parabolic
subgroups are mapped to maximal parabolic subgroups.

We note that for SL (N,C) /SU (N) a maximal parabolic subgroup is given by the
group B of upper triangular matrices with all diagonal entries equal. This follows from
the well-known description of ∂∞ (SL (N,C) /SU (N)) as a flag manifold. Moreover, each
maximal parabolic subgroup B′ is conjugate to B

Relative classifying spaces.

Let M be a manifold with boundary such that int (M) = M − ∂M admits a locally
symmetric Riemannian metric of finite volume. Let M+ be the quotient space obtained
by identifying points in respectively each boundary component. In particular Hn (M+)
has a fundamental class.

First, we briefly discuss the approach via relative classifying spaces, which works
exactly as in [7]. Let M be a manifold with boundary such that int (M) = M−∂M admits
a locally symmetric Riemannian metric of finite volume. Let M+ be the quotient space
obtained by identifying points in respectively each boundary component. In particular
Hn (M+) has a fundamental class.

Let P ⊂ G and B′ ⊂ SL (N ; C) be maximal parabolic subgroups, such that ρ :
(G,K) → (SL (N,C) , SU (N)) sends P to B′. To a locally symmetric space Γ\G/K of
finite volume and dimension n, we can consider G/K ∪ C, where C denotes the set of
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parabolic fixed points in ∂∞G/K and get as in [7], section 3, an (up to Γ-equivariant ho-
motopy unique) Γ-equivariant map G/K ∪C → E (G,F (P )). The quotient of G/K ∪C
by Γ is homeomorphic to M+. In particular, Hn (Γ\ (G/K ∪ C)) has a fundamental class,
and we get as in [7] an element in Hn (B (G,F (P ))), which by the representation ρ is
pushed forward to an element in Hn (B (GL (N,C) ,F (B′))).
In the rest of this section we will discuss the more interesting question of lifting this
invariant to K (C)⊗Q. The construction of this lift in section 4.2. is close to the work of
Cisneros-Molina and Jones. However, proving nontriviality of the constructed invariant
γ (M) needs more arguments. For hyperbolic 3-manifolds, nontriviality was proved in [7]
by showing that γ (M) can be pushed forward to a certain nontrivial invariant α (M) in
the Bloch group. This approach does not seem to generalize to other locally symmetric
spaces. Therefore we will prove in section 4.3. that application of the volume cocycle
to γ (M) gives vol (M). This implies in particular nontriviality of γ (M). The proof in
section 4.3. is unfortunately not so canonical like the proof for the compact case in section
2.5. but requires more technical arguments.

Relative group cohomology.

We discuss the approach via relative group cohomology, which (for hyperbolic manifolds)
has been used in [12]. (The approach in [12] implicitly assumes that ∂M is connected.
However it is possible to extend it to the general case.)

Let M = Γ\G/K be a locally symmetric space of finite volume. For each cusp let

x̃r ∈ ∂∞M̃ be a lift of the cusp and Pr = {g ∈ G : gx̃r = x̃r; gy 6= y ∀ y 6= x}. ρ maps Pr

to some B′
r ⊂ GL (N,C), where B′

r is conjugate to the group of upper triangular matrices.
Let Cone (∂M →M) be the mapping cone of the inclusion. (It is homotopy equivalent

to M+.) We use the well-known isomorphism H∗ (M,∂M) ≃ H∗ (Cone (∂M →M)). In
particular, we consider the fundamental class [M,∂M ] as a homology class on Cone (∂M →M).

M and each connnected component of ∂M are classifying spaces for their fundamen-
tal groups. If ∂M is connected, then we get a homotopy equivalence Cone (∂M →M) ≃
Cone (Bπ1∂M → Bπ1M). In the general class we can, after performing a homotopy
equivalence h, assume that the images h (∂rM) of all connected components ∂rM of
the boundary ∂M intersect in exactly one point p. If we choose this point as a base
point for π1M as well as π1h (∂rM) for each connected component ∂rM , we get a ho-

motopy equivalence Cone (h (∂M) →M) ≃ Cone
(⋃k

r=1Bπ1∂rM → Bπ1M
)
. (We note

that vol (M) < ∞ implies π1h (∂rM) ∩ π1h (∂sM) = {1}, because otherwise the corre-
sponding cusps would have infinite volume.)

By Weil rigidity we have Γ ⊂ G
(
Q
)
. Let j : π1M = Γ → G

(
Q
)

be the inclusion and

ρ |
G(Q): G

(
Q
)
→ GL

(
Q
)

the restriction of ρ. We note that π1h (∂rM) = Pr ∩ Γ, thus

ρ (π1h (∂rM)) ⊂ B′
r

(
Q
)
.

We get a map

Bρ |
G(Q) Bj : Cone (∂M →M) ≃ Cone (Bπ1h (∂M) → Bπ1M) → Cone

(
k⋃

r=1

BB′
r

(
Q
)
→ BGL

(
N,Q

)
)
.
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We recall that

e∗ : H∗
(
GL

(
N,Q

)
; Q
)
→ H∗

(
GL

(
N,Q

)
, B′

r

(
Q
)
; Q
)

is surjective for each r (see [12], Thm.2.12.). From this one can derive that we find an
element γ (M) ∈ Hn

(
GL

(
N,Q

)
; Q
)

with e∗γ (M) = (Bρ)∗ (Bj)∗ [M,∂M ]. The problem
is to show that indeed

rn (γ (M)) = vol (M) .

Possibly this can be shown by similar arguments as in [12] (although the existence of
several cusps makes it unclear how to define vn in formula (16) on p.579.) Here we
will use another construction of γ (M), which is inspired by [7], and show by explicit
topological arguments that rn (γ (M)) = vol (M) holds true.

4.2 Generalized Cisneros-Molina-Jones construction

We start with some algebraic preparations. For a ring A, let St (N,A) be the Steinberg
group and Φ : St (N,A) → SL (N,A) the canonical homomorphism. We use the notation
of [24]: xa

ij , with 1 ≤ i, j ≤ n and a ∈ A, are the generators of St (N,A), and ea
ij = Φ

(
xa

ij

)

are the elementary matrices, which generate SL (N,A).

Lemma 4 : Let A be a ring. Let B0 be the subgroup of SL (N,A) consisting of upper tri-
angular matrices with all diagonal entries equal to 1. Then there exists a homomorphism
Π : B0 → St (N,A) with ΦΠ = id.

Proof: Let U ⊂ St (N,A) be the subgroup generated by all xa
ij with i < j, a ∈ A. The

restriction of Φ to U is obviously a surjective morphism onto B0, because B0 is generated
by all ea

ij with i < j. Moreover Φ |U is injective by [24], Lemma 4.2.3. Thus Φ |U : U → B
is an isomorphism and we may define Π as its inverse. �

Lemma 5 : Let N ∈ N. Let A ⊂ C be a subring with
i) either A = C,
ii) or A contains no N -th root of unity ξ 6= 1.
Let B be the subgroup of SL (N,A) consisting of upper triangular matrices with all diag-
onal entries equal. Then there exists a homomorphism Π : B → St (N,A) with ΦΠ = id.

Proof: In case ii) we have B = B0, thus the claim is the same as Lemma 4.
We consider case i). We fix some primitive N -th root of unity ξ 6= 1. By surjectivity

of Φ, we can fix some Π (ξI) with ΦΠ (ξI) = ξI. (For example, if N = 2, ξ = −1, one can
choose Π (−1) = x1

12x
−2
21 x

1
12x

−2
21 .)

Let b ∈ B. Since all diagonal entries are equal, b ∈ B must be (uniquely) of the form
b = ηb0 for some b0 ∈ B0 and some N -th root of unity η, which thus must be of the form
η = ξk for some k ∈ Z. Then we define Π (b) = Π (ξI)k Π(b0), where Π (b0) is defined by
Lemma 4.

We have to show that the so-defined Π is a homomorphism. Let b1 = ξk1Πea
ij and

b2 = ξk2Πeb
kl. Then Π (b1)Π (b2) = Π (b1b2) is equivalent to the statement that Π (ξI)

k2

commutes with Π
(
Πea

ij

)
.
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Let A = ξk2 and B = Πea
ij . Then A ∗ B = [Π (A) ,Π(B)] ∈ K2 (C) (see e.g. [7],

p.337/8 for the definition and the properties of A∗B). We have Ak = 1, thus Ak ∗B = 0.

But Ak ∗B = (A ∗B)k by bilinearity. By the Bass-Tate Theorem, (K2 (F ) , ∗) is uniquely

divisible for algebraically closed fields F . Thus (A ∗B)k = 0 implies A ∗ B = 0, that is,

Π (ξI)
k2 and Π

(
Πea

ij

)
commute. Hence Π is a homomorphism.

This implies in particular ΦΠ
(
ξkb0

)
= ΦΠ(ξI)

k
ΦΠ(b0) = ξkb0, that is, ΦΠ = id. �

Corollary 5 : Let B′ ⊂ SL (N ; C) be some maximal parabolic subgroup. Then there
exists a homomorphism Π′ : B′ → St (N,C) with ΦΠ′ = id.

Proof: B′ is conjugate to B: B′ = γBγ−1 for some γ ∈ SL (N ; C). Fix some
y ∈ St (N ; C) with Φ (y) = γ and define Π′ (γbγ−1

)
= yΠ(b) y−1 for each b ∈ B. �

Let M be a manifold with boundary such that its interior M − ∂M is homeomorphic
to a locally symmetric space Γ\G/K of finite volume. (We will actually throughout
section 4.2. only require that M and each connected component of ∂M are aspheri-
cal.) Let ρ : π1M → SL (C) be a representation. (e.g. coming from a representation
G → GL (N,C), which by perfectness of G has necessarily image in SL (N ; C)). Let

Q∗ : H∗
(
BSL (C)

+
; Q
)
→ H∗ (BSL (C) ; Q) be Quillen’s isomorphism. To push forward

the fundamental class [M+] one would like to have a map R : M+ → BSL (C)
+

such that
the following diagram commutes up to homotopy:

M
q - M+

BSL (C)

Bρ

? incl- BSL (C)
+

R

?

If this is the case, then one can define Q∗R∗ [M+] ∈ H∗ (BSL (C) ; Q) and thus obtain an
element in K∗ (C) ⊗ Q.

Assuming Corollary 5, the construction of R will now be completely analogous to the
construction in [7], Section 8.1.

Definition 4 : A homomorphism ρ : π1M → SL (N ; C) is said to preserve parabolics
if, for each connected component ∂0M of ∂M , π1∂0M is mapped into some maximal
parabolic subgroup of SL (N ; C).

Lemma 6 : Let M be a manifold with boundary such that M and each connected com-
ponent of ∂M are aspherical. Let ρ : π1M → SL (N,C) be a homomorphism preserv-
ing parabolics. Then there exists a continuous map R : M+ → BSL (C)

+
such that

R ◦ q = incl ◦Bρ.

Proof: Let F be the homotopy fiber of BSL (C) → BSL (C)
+
. It is well-known

(e.g. [7], p.336) that π1F is isomorphic to the Steinberg group St (C).
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Let ∂0M be some connected component of ∂M . By assumption, ρ maps π1∂0M
to a maximal parabolic subgroup B′. It follows then from Corollary 5 that there is a
homomorphism τ : π1∂0M → St (N ; C) such that Φτ = ρ |π1∂0M .

By assumption, ∂0M is aspherical. Hence τ is induced by some continuous mapping
g0 : ∂0M → F , and the diagram

∂0M
i0 - M

F

g0

? j- BSL (C)

Bρ

?

commutes up to some homotopy Ht.
This construction can be repeated for all connected components ∂0M,∂1M, . . . , ∂sM

of ∂M . For each r = 0, 1, . . . , s we get a continuous map gr : ∂rM → F such that
jgr ∼ (Bρ) ir. Altogether, we get a continuous map g : ∂M → F such that jg is
homotopic to (Bρ) i.

By [7], Lemma 8.1. this implies the existence of R. �

4.3 Nontriviality

We show nontriviality of the constructed element by applying the Borel regulator. In this
section we will not consider arbitrary (parabolics-preserving) representations π1M →
SL (N,C), as we did in the previous section, but only those coming from a representation
G→ SL (N ; C) for an inclusion π1M = Γ ⊂ G.

We remark that, for a subring A ⊂ C, to each element γA (M) ∈ Kn (A) ⊗ Q we also
get an element γ (M) ∈ Kn (C) ⊗ Q. Of course it suffices to prove rn (γ (M)) = vol (M)
for the latter, as this implies rn (γA (M)) = vol (M). Thus we will confine to the case
A = C in this section.

Theorem 3 : Let M be a compact, orientable, n-dimensional manifold with boundary
∂M , whose interior is a locally symmetric space Γ\G/K of finite volume.

Let B ⊂ G be a maximal parabolic subgroup and Φ : S → G the universal central
extension. Assume that there exists a homomorphism Π : B → S with ΦΠ = idB.

Let ρ : π1M → GL (N,C) be a representation, preserving parabolics. Then there exists
a continuous mapping Rρ : M+ → BG+ such that: γ (M) := I−1

n prn (Bρ)∗QnRn [M+] ∈
Kn (C) ⊗ Q satisfies

rn (γ (M)) = cρvol (M) .

Proof:
In principle, the existence of a continuous map R : M+ → BG+ can be proved

by literally the same argument as in the proof of Lemma 6 (which handled the case
G = SL (N,C)). However, it turns out that (to compute the volume) we will need to be
more explicit in the choice of a homotopy H : BΓ × I → BG.

We note that it suffices to prove < vn, QnRn [M+] >= vol (M) because this implies
rn (γ (M)) = cρvol (M) by the same argument as in the proof of Theorem 2.
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Let p : M →M+ be the canonical projection, mapping each component of ∂M into one
point. Let

∑r
i=1 σi ∈ Cn (M,∂M) be a (relative) triangulation, which then represents the

fundamental class [M,∂M ] ∈ Hn (M,∂M ; R). We may assume that all vertices of all σi

are in ∂M and there is only one vertex in each connected component of ∂M .
∑r

i=1 p (σi) ∈
Cn (M+) represents the fundamental class [M+] ∈ Hn (M+; R). (This follows from the
well-known isomorphism Hn (M,∂M ; R) ∼= Hn (M+; R).) M+ can be considered as a
compactification of int (M) and inherits a volume form dvol on int (M) ⊂M+. Defining
wn (σ) :=

∫
∆n σ

∗dvol (where M+ − int (M) is to be considered as a null set) we get
a cocycle wn with vol (M) =< wn,

∑r
i=1 p (σi) >=< wn,

∑r
i=1 str (p (σi)) >. On the

other hand, the homotopy equivalence h : M → BΓ can be defined as follows. Perform a
homotopy equivalence onM such that all boundary components have exactly one point x0

in common, which is the above common vertex of the σi. Then each simplex σi determines
an n-tuple of elements

(
1, γi

1, . . . , γ
i
n

)
∈ (π1 (M,x0))

n+1
, namely the edges from the 0-th

to the j-th vertex for j = 1, . . . , n. < vn,
(
1, γi

1, . . . , γ
i
n

)
> is the volume of the straight

simplex (with all vertices in one point) whose edges from the 0-th to the j-th vertex are
represented by γi

j , for j = 1, . . . , n. Hence, < vn,
(
1, γi

1, . . . , γ
i
n

)
>= vol (str (p (σi))).

This implies < vn,
∑r

i=1

(
1, γi

1, . . . , γ
i
n

)
>= vol (M).

R is constructed with the help of a map g : ∂M → F and a homotopy H : BΓ × I →
BG. LetH1 = H (., 1) andH0 = H (., 0). We have just shown that< vn, (H0)n

(∑r
i=1

(
γi
0, . . . , γ

i
n

))
>=

vol (M). A representative of QnRn [M+] is given by H1

(∑r
i=1

(
γi
0, . . . , γ

i
n

))
. Thus, to

prove< vn, QnRn [M+] >= vol (M), it suffices to prove that< vn, (H1)n

(∑r
i=1

(
γi
0, . . . , γ

i
n

))
=

vol (M).
The problem is now that vn is a cocycle, but

∑r
i=1

(
γi
0, . . . , γ

i
n

)
is only a relative

cycle. Therefore a homotopy may change the value of < vn,
∑r

i=1 ai

(
γi
0, . . . , γ

i
n

)
> . To

guarantee that, for a suitably chosen homotopy H , this is not the case we have to look at
an explicit description of Ht.

To this behalf, we first need an explicit description of the homotopy fibration and of
its volume cocycle. Recall from Quillen’s construction that BG+ is constructed out of
BG by attaching cells, in particular BG ⊂ BG+. Let

PBG =
{
w : [0, 1] → BG+ continuous , w (0) ∈ BG

}
.

It is well-known that the inclusion BG→ PBG is a homotopy equivalence, and that the
endpoint map p : PBG→ BG+, given by w → w (1), is a fibration with fiber

FG =
{
w : [0, 1] → BG+ continuous , w (0) ∈ BG,w (1) = ∗

}

for some point ∗ ∈ BG.
Recall from section 2.2. that vn is defined as a cellular cocycle on BG. Of course,

there are isomorphisms

Hn
cell (BG) ∼= Hn

sing (BG) ∼= Hn
sing (PBG) ,

thus there must be a singular cocycle vn ∈ Csing
n (PBG) whose cohomology class corre-

sponds to the cohomology class of vn under this isomorphism. To evaluate the volume
cocycle on the homotoped chain, we will need an explicit description of vn.

Fix some x̃0 ∈ G/K. There is a continuous mapping s : BG → G/K, which maps
each simplex (g0, . . . , gn) to the straight simplex with vertices g0x̃0, . . . , gnx̃0. Let dvol
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be the volume form of G/K, then σ →
∫
∆n σ

∗dvol is a singular cocycle vsing
n extending

vn. Define vn := p∗vsing
n for the projection p : PBG→ BG given by p (w) = w (0). Since

p is a homotopy equivalence, vn indeed corresponds to vn under the above isomorphism
of cohomology groups.

∂0M - M - M+

=

BT
?

- BΓ
?

- M+

BB

Bi

?
- BG

Bi

?

FG

g

?
- PBG

H1

?
- BG+

We come to the explicit construction of the homotopy. It suffices to construct it for
each connected component of ∂M , to be denoted ∂0M . T := π1∂0M ⊂ Γ is a subgroup
of some maximal parabolic subgroup B′ ⊂ G. Let Φ : S → G be the universal central
extension. By assumption we have a homomorphism Π : B → S. Conjugating B′ into B
we get Π′ : B′ → S.

Let
FB′ := {w ∈ F : w (0) ∈ BB′ ⊂ BG} .

FB′ → PBB′ → BG+ is a fibration. It follows from the long exact homotopy sequence
that

π1FB′ = S.

Since ∂0M ≃ BT is aspherical, we can thus choose a homotopy such that BT is mapped
to FB′ ⊂ FG.

Let (BΓ)0 be the 0-skeleton of BΓ and (BΓ)0 − (BT )0 the complement of (BT )0 in
(BΓ)0. We note that (BT ∪ ((BΓ)0 − (BT )0)) × I ∪ BΓ × {0} is a sub-CW-complex of
BΓ × I. It is well-known that the inclusion of a sub-CW-complex is a cofibration. By
assumption we have a map H0 : BΓ → PBG. and a homotopy

H : BT × I → PBG

extending H0 on BT × {0} (and such that H (BT × {1}) ⊂ FG). Since BT is aspherical
and the image of its fundamental group is contained in B′ we can actually choose H0 to
have image in PBB′.
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Moreover, we define H : ((BΓ)0 − (BT )0) × I → PBG by H (g, t) = H0 (g). Thus we
have constructed a continuous mapping H : (BT ∪ (BΓ)0) × I ∪ BΓ × {0} → PBG. By
the cofibration property we may extend H to a continuous mapping

H : BΓ × I → PBG.

We will now use the special properties of H to show that
< vn, H1

(∑r
i=1

(
γi
0, . . . , γ

i
n

))
>=< p∗s∗dvol,H1

(∑r
i=1

(
γi
0, . . . , γ

i
n

))
>= vol (M).

If γi
0, . . . , γ

i
n 6∈ T , then, by construction, H1

(
γi
0, . . . , γ

i
n

)
is a singular simplex in PBG

which has vertices in (the constant paths) γi
0, . . . , γ

i
n. Thus pH1

(
γi
0, . . . , γ

i
n

)
has vertices

γi
0, . . . , γ

i
n. This implies that spH1

(
γi
0, . . . , γ

i
n

)
is the straight simplex σi in G/K with

vertices γ0x0, . . . , γnx0. In particular vol
(
spH1

(
γi
0, . . . , γ

i
n

))
= vol (σi).

If some of the γi
k is an element of T , then H1

(
γi

k

)
∈ FB′ , hence pH1

(
γi

k

)
∈ BB′. Thus

γi
kx̃0 andH1

(
γi

k

)
x̃0 are mapped to the same point in ∂M+. Thus, vol

(
spH1

(
γi
0, . . . , γ

i
n

))
=

vol (σi) also in this case.
Hence

< vn, H1

(
γi
0, . . . , γ

i
n

)
>= vol (σi) .

This implies < vn, H1

∑r
i=1

(
γi
0, . . . , γ

i
n

)
>= vol (M). �

5 Examples

5.1 K-theory of Z

Let N ∈ N. It follows from the Selberg Lemma that SL (N,Z) contains a torsion-free
subgroup Γ of finite index.

Then M̂ := Γ\SL (N,R) /SO (N) is a (noncompact) odd-dimensional locally symmet-
ric space of finite volume.

Even though M = SL (N,Z) \SL (N,R) /SO (N) is not a manifold, we may of course

apply our construction to the finite covering M̂ and then divide the so-obtained element
of K∗ (Z) ⊗ Q by the degree of the covering to obtain an invariant of M .

Let N ≡ 3 mod 4. A = Z does not contain an N -th root of unity, thus, in view
of Lemma 5, the assumptions of Theorem 3 are satisfied. Hence, for each irreducible
representation ρ of SL (N,R) we get a nontrivial element γ (M) ∈ K 1

2
(N−1)(N+2) (Z)⊗Q

with rn (γ (M)) = cρvol (M).
For example, for M = SL (3,Z) \SL (3,R) /SO (3) and ρ : SL (3,R) → GL (3,C)

the inclusion, we get γ (M) ∈ K5 (Z) ⊗ Q with rn (γ (M)) = 1
144

√
2π3

vol (M) by the

computation at the end of section 3.4.
Similarly one can construct elements in the K-theory of other number rings A which

satisfy the assumption i) of Lemma 5.

5.2 Examples using hyperbolic manifolds

The examples in section 5.1. have been noncompact manifolds of finite volume. Compact
examples can e.g. be obtained by Borel’s construction of arithmetic hyperbolic n-manifolds
using quadratic forms.
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Let n be odd. Let u be an algebraic integer such that all roots of its minimal poly-
nomial have multiplicity 1 and are real and negative (except u). Assume moreover that

(0, . . . , 0) is the only integer solution of x2
1 + . . . + x2

n − ux2
n+1 = 0. Let Γ̂ ⊂ GL (n+ 1)

be the group of maps preserving x2
1 + . . . + x2

n − ux2
n+1. It is isomorphic to a discrete

cocompact subgroup of SO (n, 1). By Selberg’s lemma, it contains a torsionfree cocom-
pact subgroup Γ. The compact manifold M := Γ\Hn gives us a nontrivial element
γ (M) ∈ Kn (Z [u]) ⊗ Q.

The case n = 3 has been discussed to some extent in [22]. If M is a hyperbolic 3-
manifold, then π1M can be conjugated to be contained in SL (2, F ), where F is an at
most quadratic extension of the trace field ([20]), thus one gets an element in K3 (F )⊗Q.
In [22], section 9, some examples of this construction are given. (The discussion in [22]
is about elements in B (F )⊗Q for the Bloch group B (F ), but of course analogously one
is getting elements in K3 (F ) ⊗ Q associated to the respective manifolds.) For example
(cf. [22], section 9.4.) for a number field F with just one complex place there exists a
hyperbolic 3-manifold with this field as invariant trace field and thus giving an element
in K3 (F ) ⊗ Q.

5.3 Representation varieties

If ψ : π1M → G is a homomorphism, one can construct a ψ-equivariant map f : M̃ →
G/K which is unique up to homotopy. In particular, vol (ψ) :=

∫
F
f∗dvol, for a fun-

damental domain F ⊂ M̃ , is well-defined. Literally the same proof as for Theorem 1
shows

< vn, (Bψ)∗ [M ] >= vol (ψ) .

Thus, if ρ : G → GL (N,C) is a representation with ρ∗bn 6= 0, and M possesses a
fundamental class [M ] ∈ Hn (M ; Z), one does again get a nontrivial element γ (ψ) :=
I−1
n prn (Bρ)n (Bψ)n [M ] ∈ Kn (C)⊗Q. Of course, continuous families of representations

give us constant images in K-theory, because already (Bψ)n [M ] ∈ Hn (G; Z) is constant.
Thus we actually get a map from the set of connected components of the representation va-
riety, π0Rep (π1M,G), to Kn (C)⊗Q. We note that this map is not constant. This follows,
for example, from the volume rigidity theorem (which for hyperbolic manifolds has been
proved by Thurston and Dunfield and in the higher rank case is a consequence of Margulis
superrigidity theorem) which states that elements of the component of Rep (π1M,G) that
contains the discrete representation are the only representations of maximal volume.
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de groupes de Lie compacts’, Ann. Math. 57, pp.115-207 (1953).

[3] A. Borel, ’Topology of Lie groups and characteristic classes’. Bull. Amer. Math. Soc.
61, pp.397-432 (1955).

28



[4] N. Bourbaki, ’Groupes et algèbres de Lie’, Hermann (1975).
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