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Preface

In general it is difficult to obtain analytic approximations of nonlinear prob-
lems with strong nonlinearity. Traditionally, solution expressions of a nonlin-
ear problem are mainly determined by the type of nonlinear equations and the
employed analytic techniques, and the convergence regions of solution series
are strongly dependent of physical parameters. It is well known that analytic
approximations of nonlinear problems often break down as nonlinearity be-
comes strong and perturbation approximations are valid only for nonlinear
problems with weak nonlinearity.

In this book we introduce an analytic method for nonlinear problems in
general, namely the homotopy analysis method. We show that, even if a non-
linear problem has a unique solution, there may exist an infinite number of
different solution expressions whose convergence region and rate are depen-
dent on an auxiliary parameter. Unlike all previous analytic techniques, the
homotopy analysis method provides us with a simple way to control and adjust
the convergence region and rate of solution series of nonlinear problems. Thus,
this method is valid for nonlinear problems with strong nonlinearity. More-
over, unlike all previous analytic techniques, the homotopy analysis method
provides great freedom to use different base functions to express solutions of a
nonlinear problem so that one can approximate a nonlinear problem more ef-
ficiently by means of better base functions. Furthermore, the homotopy anal-
ysis method logically contains some previous techniques such as Adomian’s
decomposition method, Lyapunov’s artificial small parameter method, and
the d-expansion method. Thus, it can be regarded as a unified or generalized
theory of these previous methods.

The book consists of two parts. Part I (Chapter 1 to Chapter 5) deals
with the basic ideas of the homotopy analysis method. In Chapter 2, the ho-
motopy analysis method is introduced by means of a rather simple nonlinear
problem. The reader is strongly advised to read this chapter first. In Chapter
3, a systematic description is given and a convergence theorem is described for
general cases. In Chapter 4 we show that Lyapunov’s artificial small parame-
ter method, the d-expansion method, and Adomian’s decomposition method
are simply special cases of the homotopy analysis method. In Chapter 5 the
advantages and limitations of the homotopy analysis method are briefly dis-
cussed and some open questions are pointed out. In Part I (Chapter 6 to
Chapter 18), the homotopy analysis method is applied to solve some non-
linear problems, such as simple bifurcations of a nonlinear boundary-value
problem (Chapter 6), multiple solutions of a nonlinear boundary-value prob-
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lem (Chapter 7), eigenvalue and eigenfunction of a nonlinear boundary-value
problem (Chapter 8), the Thomas-Fermi atom model (Chapter 9), Volterra’s
population model (Chapter 10), free oscillations of conservative systems with
odd nonlinearity (Chapter 11), free oscillations of conservative systems with
quadratic nonlinearity (Chapter 12), limit cycle in a multidimensional sys-
tem (Chapter 13), Blasius’ viscous flow (Chapter 14), boundary-layer flows
with exponential property (Chapter 15), boundary-layer flows with algebraic
property (Chapter 16), Von Kdrmén swirling viscous flow (Chapter 17), and
nonlinear progressive waves in deep water (Chapter 18). In Part II, only
Chapters 14, 15, and 18 are adapted from published articles of the author.

I would like to express my sincere thanks to Professor P. Hagedorn (Darm-
stadt University of Technology, Germany) and Professor Y.Z. Liu (Shanghai
Jiao Tong University, China) for reading Part I of the manuscript and giv-
ing their valuable comments. Thanks to Robert B. Stern, Jamie B. Sigal,
and Amy Rodriguez (CRC Press) for their editorial help as well as Nishith
Arora for assistance on KWTEX. I would like to express my sincere acknowl-
edgement to Professor J.M. Zhu and Professor Y.S. He (Shanghai Jiao Tong
University, China), Professor Chiang C. Mei (Department of Civil and En-
vironmental Engineering, Massachusetts Institute of Technology, Cambridge,
MA) and Professor D.Y. Hsieh (Division of Applied Mathematics, Brown Uni-
versity, Providence, RI) for their continuous encouragement over the years.
Thanks to my co-authors of some articles, Professor Antonio Campo (College
of Engineering, Idaho State University); Professor Kwok F. Cheung (Depart-
ment of Ocean and Resources Engineering, University of Hawaii at Monoa);
Professor Allen T. Chwang (Department of Mechanical Engineering, Hong
Kong University, Hong Kong, China); and Professor Ioan Pop (Faculty of
Mathematics, University of Cluj, Romania), for their cooperation and valu-
able discussions. This work is partly supported by National Natural Science
Fund for Distinguished Young Scholars of China (Approval No. 50125923),
Li Ka Shing Foundation (Cheung Kong Scholars Programme), Ministry of
Education of China, Shanghai Jiao Tong University, and German Academic
Exchange Service (DAAD, Sandwich Programme).

Finally, I would like to express my pure-hearted thanks to my wife for her
love, understanding, and encouragement.
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