
4

Relations to some previous analytic methods

In this chapter we reveal the relationships between the homtopy analysis
method and other nonperturbation techniques such as Adomian’s decom-
position method, Lyapunov’s artificial small parameter method, and the δ-
expansion method. We show that these methods can be unified by the homo-
topy analysis method.

4.1 Relation to Adomian’s decomposition method

Adomian’s decomposition method [23, 24, 25] is a well-known, easy-to-use
analytic tool for nonlinear problems and has been widely applied in science
and engineering [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79].
In Chapter 2 we show by an example that the solution expression (2.17) given
by Adomian’s decomposition method is just a special one of the solution
expressions (2.57) given by the homotopy analysis method. In this section
we prove that the homotopy analysis method logically contains Adomian’s
decomposition method in general.

To simply describe the basic ideas of Adomian’s decomposition method,
let us consider a nonlinear problem governed by

N [u(r, t)] = f(r, t), (4.1)

where N is a nonlinear operator, u is a dependent variable, f(r, t) is a known
function, and r and t denote the spatial and temporal variables, respectively.
Assume that the nonlinear operator N can be divided into

N = L0 + N0, (4.2)

where L0 and N0 are linear and nonlinear operators, respectively. Under this
assumption the original nonlinear equation becomes

L0[u(r, t)] + N0[u(r, t)] = f(r, t). (4.3)

By means of Adomian’s decomposition method we express u(r, t) in such a
series

u(r, t) = u0(r, t) +
+∞∑
n=1

un(r, t), (4.4)

© 2004 CRC Press LLC 



where
u0(r, t) = L−1

0 [f(r, t)] (4.5)

and
un(r, t) = −L−1

0 [An−1(r, t)], n ≥ 1, (4.6)

in which L−1
0 is the inverse operator of L0, and An(r, t) is the so-called Ado-

mian polynomial defined by (see Cherruault [66] and Babolian et al. [75])

An(r, t) =
1
n!

[
dn

dqn
N0

(
u0(r, t) +

+∞∑
n=1

un(r, t)qn

)]∣∣∣∣∣
q=0

. (4.7)

Unlike Adomian’s decomposition method, the homotopy analysis method
is valid even without the assumption denoted by (4.2). Let L denote an aux-
iliary linear operator, u0(r, t) an initial approximation that is unnecessary to
be given by (4.5), � a nonzero auxiliary parameter, H(r, t) a nonzero auxiliary
function, and q ∈ [0, 1] an imbedding parameter, respectively. By means of the
homotopy analysis method, we construct the so-called zero-order deformation
equation

(1 − q) L [Φ(r, t; q) − u0(r, t)] = � q H(r, t) {N [Φ(r, t; q)] − f(r, t)} , (4.8)

where Φ(r, t; q) is a unknown dependent variable. It clearly holds

Φ(r, t; 0) = u0(r, t) (4.9)

and
Φ(r, t; 1) = u(r, t) (4.10)

when q = 0 and q = 1, respectively. Thus, the unknown function Φ(r, t; q)
governed by Equation (4.8) deforms from the initial approximation u0(r, t)
to the exact solution u(r, t) of the original equation (4.1) as the embedding
parameter q increases from 0 to 1. By Taylor’s theorem and using (4.9) we
expand Φ(r, t; q) in a power series of q in the form

Φ(r, t; q) = u0(r, t) +
+∞∑
n=1

un(r, t) qn, (4.11)

where

un(r, t) =
1
n!

dnΦ(r, t; q)
dqn

∣∣∣∣
q=0

. (4.12)

The zero-order deformation equation (4.8) contains the initial approximation
u0(r, t), the auxiliary linear operator L, the auxiliary parameter �, the auxil-
iary function H(r, t), and more importantly, we have great freedom to choose
them. Assuming that all of them are properly chosen so that the series (4.11)
converges at q = 1, we have, using (4.10), the solution series

u(r, t) = u0(r, t) +
+∞∑
n=1

un(r, t). (4.13)
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Note that in form this expression is the same as (4.4).
Differentiating the zero-order deformation equation (4.8) n times with re-

spect to q and then dividing it by n! and finally setting q = 0, we have the
first-order deformation equation (when n = 1)

L [u1(r, t)] = � H(r, t) {N [u0(r, t)] − f(r, t)} (4.14)

and the nth-order deformation equation (when n ≥ 2)

L [un(r, t) − un−1(r, t)] = � H(r, t) Rn(r, t), (4.15)

where

Rn(r, t) =
1

(n − 1)!
dn−1N [Φ(r, t; q)]

dqn−1

∣∣∣∣
q=0

. (4.16)

We then can prove that Adomian’s decomposition method is just a special
case of the homotopy analysis method under the assumption (4.2). Because
we have great freedom to choose the auxiliary linear operator L and the initial
guess u0(r, t), we certainly can choose

L = L0, u0(r, t) = L−1
0 [f(r, t)]. (4.17)

Setting
� = −1, H(r, t) = 1 (4.18)

and substituting (4.2) and (4.17) into Equations (4.14) and (4.15), we have

L0 [u1(r, t)] = f(r, t) − L0 [u0(r, t)] −N0 [u0(r, t)] (4.19)

and

L0 [un(r, t)]

= L0 [un−1(r, t)] − 1
(n − 1)!

dn−1L0 [Φ(r, t; q)]
dqn−1

∣∣∣∣
q=0

− 1
(n − 1)!

dn−1N0 [Φ(r, t; q)]
dqn−1

∣∣∣∣
q=0

, n ≥ 2, (4.20)

respectively. From (4.17), it holds

f(r, t) − L0 [u0(r, t)] = 0

so that Equation (4.19) becomes, by the definition (4.7),

L0 [u1(r, t)] = −A0(r, t), (4.21)
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where A0(r, t) is an Adomian polynomial. According to definition (4.12), it
holds

L0 [un−1(r, t)] − 1
(n − 1)!

dn−1L0 [Φ(r, t; q)]
dqn−1

∣∣∣∣
q=0

= L0 [un−1(r, t)] − L0

[
1

(n − 1)!
dn−1Φ(r, t; q)

dqn−1

∣∣∣∣
q=0

]

= L0 [un−1(r, t)] − L0 [un−1(r, t)]
= 0. (4.22)

Thus, Equation (4.20) becomes

L0 [un(r, t)] = − 1
(n − 1)!

dn−1N0 [Φ(r, t; q)]
dqn−1

∣∣∣∣
q=0

. (4.23)

Substituting (4.11) of Φ(r, t; q) into the above expression, we have, according
to the definition (4.7) of the Adomian polynomial,

L0 [un(r, t)]

= − 1
(n − 1)!

[
dn−1

dqn−1
N0

(
u0(r, t) +

+∞∑
n=1

un(r, t) qn

)]∣∣∣∣∣
q=0

= −An−1(r, t). (4.24)

So, the solution of Equation (4.21) and Equation (4.24) can be uniformly
expressed by

un(r, t) = −L−1
0 [An−1(r, t)], n ≥ 1, (4.25)

which is exactly the same as the solution (4.6) given by Adomian’s decompo-
sition method. Therefore, Adomian’s decomposition method is just a special
case of the homotopy analysis method under the assumption (4.2) when

u0(r, t) = L−1
0 [f(r, t)], L = L0, H(r, t) = 1, � = −1.

Some points should be emphasized here. First, we have great freedom to
choose the initial guess u0(r, t), the auxiliary linear operator L, and the auxil-
iary function H(r, t) different from the above expressions so that the solution
of high-order deformation equations (4.14) and (4.15) can be expressed by bet-
ter base functions than those employed by Adomian’s decomposition method
that often uses polynomials. Second, it is unnecessary for us to assume that
the nonlinear operator N should be divided into the form (4.2). Finally but
most importantly, solutions given by the homotopy analysis method contain
the auxiliary parameter �, which provides us with a simply way to adjust
and control convergence region and rate of solution series. Therefore, the
homotopy analysis method is more general than Adomian’s decomposition
method.
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4.2 Relation to artificial small parameter method

In 1892 Lyapunov [21] proposed the so-called artificial small parameter method.
In Chapter 2 we illustrate that the solution expression (2.15) given by Lya-
punov’s artificial small parameter method is just a special one of the solution
expressions (2.57) given by the homotopy analysis method. In this section we
prove that Lyapunov’s artificial small parameter method is in essence equiva-
lent to Adomian’s decomposition method and therefore is also a special case
of the homotopy analysis method.

To simply describe the basic ideas of Lyapunov’s artificial small parameter
method, let us consider a nonlinear equation

N [u(r, t)] = f(r, t), (4.26)

where N is a nonlinear operator, u is a dependent variable, f(r, t) is a known
function, and r and t denote the spatial and temporal variables, respectively.
Assume that the nonlinear operator N can be divided into

N = L0 + N0, (4.27)

where L0 and N0 are linear and nonlinear operators, respectively. Using the
above expression and introducing the artificial small parameter ε, the original
equation (4.26) becomes

L0 [φ(r, t; ε)] + ε N0 [φ(r, t; ε)] = f(r, t), (4.28)

where φ(r, t; ε) is an unknown function. When ε = 1, the above equation is
clearly the same as Equation (4.26) so that

φ(r, t; 1) = u(r, t). (4.29)

Expanding φ(r, t; ε) in a power series of the artificial small parameter ε, we
have

φ(r, t; ε) = u0(r, t) +
+∞∑
n=1

un(r, t) εn. (4.30)

Setting ε = 1 in the above expression we have, using (4.29),

u(r, t) = u0(r, t) +
+∞∑
n=1

un(r, t), (4.31)

which in form is exactly the same as the solution expression (4.4) given by
Adomian’s decomposition method.
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Substituting (4.30) into Equation (4.28), we have

L0[u0(r, t)] − f(r, t) +
+∞∑
n=1

εn L0 [un(r, t)]

+ ε N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]
= 0. (4.32)

Write

N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]
=

+∞∑
n=0

wn(r, t) εn.

Differentiating both sides of the above expression m times with respect to the
artificial small parameter ε and then setting ε = 0, we have

{
∂m

∂εm
N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]}∣∣∣∣∣
ε=0

= m! wm(r, t),

which gives, using the definition (4.7), that

wm(r, t) =
1
m!

{
∂m

∂εm
N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]}∣∣∣∣∣
ε=0

= Am(r, t),

where Am(r, t) is the so-called Adomian polynomial. So, substituting

N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]
=

+∞∑
n=0

An(r, t) εn

into Equation (4.32), we have

{L0[u0(r, t)] − f(r, t)} +
+∞∑
n=1

εn {L0 [un(r, t)] + An−1(r, t)} = 0,

which gives
L0[u0(r, t)] − f(r, t) = 0

and
L0 [un(r, t)] + An−1(r, t) = 0, n ≥ 1.

Solving the above equations successively, we have

u0(r, t) = L−1
0 [f(r, t)]

and
un(r, t) = −L−1

0 [An−1(r, t)], n ≥ 1,
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which are exactly the same as the solutions (4.5) and (4.6) given by Adomian’s
decomposition method, respectively. So, Adomian’s decomposition method is
in essence equivalent to the artificial small parameter method.

In §4.1 we prove that Adomian’s decomposition method is just a special
case of the homotopy analysis method. Therefore, Lyapunov’s artificial small
parameter method is also a special case of the homotopy analysis method
under the assumption

N = L0 + N0

when
� = −1, H(r, t) = 1, L = L0, u0(r, t) = L−1

0 [f(r, t)].

This is easy to understand if we regard the so-called artificial small param-
eter ε as the embedding parameter and Equation (4.28) as a special zero-order
deformation equation.

4.3 Relation to δ-expansion method

In Chapter 2 only the solution expression (2.21) given by the δ-expansion
method is not among the four families of solution expressions given by means
of the homotopy analysis method. However, using the generalized zero-order
deformation equation (3.34) in §3.6, we can show that the δ-expansion method
is also a special case of the homotopy analysis method. To illustrate this point,
let us consider the same example in Chapter 2, i.e.,

V̇ (t) + V 2(t) = 1, V (0) = 0. (4.33)

To solve this problem by means of the homotopy analysis method, we choose
an auxiliary linear operator

LΦ =
∂Φ
∂t

+ Φ − 1 (4.34)

and an initial approximation V0(t) satisfying

L[V0(t)] = 0, V0(0) = 0,

which gives
V0(t) = 1 − exp(−t). (4.35)

From Equation (4.33), we define the nonlinear operator

N [Φ(t; q), q] =
∂Φ(t; q)

∂t
+ [Φ(t; q)]q+1 − 1. (4.36)
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Define the auxiliary operator

Π [Φ(t; q), q] = (1 − q)
{
[Φ(t; q)]q+1 − Φ(t; q)

}
(4.37)

which equals zero when q = 0 and q = 1. Let �, �2 denote the auxiliary
parameters, and H(t),H2(t) the auxiliary functions, respectively. According
to (3.34), we construct the zero-order deformation equation

(1 − q)L[Φ(t; q) − V0(t)] = q � H(t) N [Φ(t; q), q]
+ �2 H2(t) Π [Φ(t; q), q], (4.38)

subject to the initial condition

Φ(0; q) = 0. (4.39)

When q = 0, it is straightforward that

Φ(t; 0) = V0(t) = 1 − exp(−t). (4.40)

When q = 1, Equation (4.38) is equivalent to the original equation (4.33),
provided

Φ(t; 1) = V (t). (4.41)

Expand Φ(t; q) in a power series

Φ(t; q) = Φ(t; 0) +
+∞∑
n=1

Vn(t) qn, (4.42)

where

Vn(t) =
1
n!

∂nΦ(t; q)
∂qn

∣∣∣∣
q=0

. (4.43)

Assuming that the series (4.42) is convergent at q = 1, we have using Equa-
tions (4.40) and (4.41)

V (t) = V0(t) +
+∞∑
m=1

Vm(t). (4.44)

The governing equation of Vm(t) is deduced by means of the definition
(4.43). Differentiating the zero-order deformation equation (4.38) m times
with respect to the embedding parameter q and then dividing by m! and
finally setting q = 0, we have the high-order deformation equation

L0[Vm(t) − χm Vm−1(t)] = � H(t) Rm(t) + �2 H2(t) ∆m(t), (4.45)

subject to the initial condition

Vm(0) = 0, (4.46)
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where χm is defined by (2.42) and

Rm(t) =
1

(m − 1)!
∂m−1N [Φ(t; q), q]

∂qm−1

∣∣∣∣
q=0

, (4.47)

∆m(t) =
1
m!

∂mΠ [Φ(t; q), q]
∂qm

∣∣∣∣
q=0

(4.48)

under the definition
L0Φ =

∂Φ
∂t

+ Φ. (4.49)

Substituting Equations (4.36) and (4.37) into Equations (4.47) and (4.48),
respectively, we have

R1(t) = V̇0(t) + V0(t) − 1,

R2(t) = V̇1(t) + V1(t) + V0(t) ln V0(t),
...

and

∆1(t) = V0(t) ln V0(t),

∆2(t) = −V0(t) ln V0(t) + V1(t) [1 + lnV0(t)] +
1
2
V0(t) ln2 V0(t),

...

In the special case

� = �2 = −1, H(t) = H2(t) = 1, (4.50)

we have the high-order deformation equations

V̇1 + V1 = −V0 ln V0 − R1(t), V1(0) = 0,

V̇2 + V2 = −V1(1 + lnV0) − 1
2
V0 ln2 V0 − R2(t), V2(0) = 0,

...

Solving the above high-order deformation equations successively, we obtain

V1(t) = exp(−t)
[
t − π2

6
+ PL

2 (e−t)
]
− (1 − e−t) ln(1 − e−t),

...

where

PL
n (z) =

+∞∑
k=1

zk

kn
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is the nth polylogarithm function of z. So, the first-order approximation is

V (t) ≈ 1 + exp(−t)
[
t − π2

6
− 1 + PL

2 (e−t)
]
− (1 − e−t) ln(1 − e−t), (4.51)

which is exactly the same as the approximation (2.21) given by the δ-expansion
method in Chapter 2. It should be emphasized that the solution expression
given by Equations (4.45) and (4.46) contains the two auxiliary parameters �

and �2 and thus is more general than the solution expression (2.21) given by
the δ-expansion method. In fact, from (4.35) it holds R1(t) = 0. Furthermore,
using the first-order deformation equation, we have R2(t) = 0. Thus, the
high-order deformation equations are exactly the same as those given by the
δ-expansion method in Chapter 2. Substituting

� = �2 = −1, H(t) = H2(t) = 1

into the zero-order deformation equation (4.38) we have

∂Φ(t; q)
∂t

+ [Φ(t; q)]1+q = 1, (4.52)

which is the same as the equation

V̇ (t) + V 1+δ(t) = 1

in Chapter 2 used by the δ-expansion method, if δ and V (t) are replaced
by q and Φ(t; q), respectively. In general, we can regard δ as an embedding
parameter and the corresponding equation as a special zero-order deformation
equation. Therefore, the δ-expansion method is only a special case of the
homotopy analysis method.

4.4 Unification of nonperturbation methods

As shown above, Adomian’s decomposition method, Lyapunov’s artificial small
parameter method, and the δ-expansion method are only special cases of the
homotopy analysis method. Therefore, these three nonperturbation methods
can be unified in the frame of the homotopy analysis method. A unified theory
is often believed to be closer to the truth. This, from another side, further
indicates the validity of the homotopy analysis method.
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