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1. Introduction

The study of multilinear singular integral operators of Calderén-Zygmund type continues to attract many researchers’
interests, such as [5,10,7,11,2,1,13]. Many results obtained parallel to the linear theory of classical Calderén-Zygmund oper-
ators but new interesting phenomena have been observed. See also [9] and the references therein for a detailed description
of previous work in the subject.

One aspect of the theory that still is being developed is the one related to the study of maximal operators associated
to multilinear singular integrals and appropriate versions of multilinear weighted norm inequalities. So we first recall the
definition of multilinear Calderén-Zygmund operators as well as the corresponding maximal operators.

Definition 1.1 (Multilinear Calderén-Zygmund operators). Let T be a multilinear operator initially defined on the m-fold prod-
uct of Schwartz spaces and taking values in the space of tempered distributions

T:R") x - x L(R") — S (R").
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Following [5], we say that T is an m-linear Calderon-Zygmund operator if, for some 1 < q; < oo, it extends to a bounded
multilinear operator from L9 x ... x L9m to L9, where % = % 4+ 4 qlm' and if there exists a function K, defined off the

diagonal x=y; =--- =y in (R")™H! satisfying
T(f1...., fm) ) = / K&, y1,....ym) fi(¥1) - fm(Yym) dy1---dym
(Rmym
for all x ¢ ﬂ?;l supp fj;
A .
o 1Yk — i

|K(yo. y1,-.. ym)| < (11)

and
Alyj—yjlf
k1o Yk — yihmnte”

for some & > 0 and all 0 < j <m, whenever |y; — y/j\ < %maX()gkgm lYj— Ykl

Ko, ¥joeoon ym) = K(yo, .. Yoo ym) | < (1.2)
J

As in the linear theory, a certain amount of extra smoothness is required for these operators to have such boundedness

properties. We will assume that K(yo, ¥1,..., ¥m) satisfies the following estimates
A
A0 MK (Y0, Y1, - -5 Ym)| < “ , (1.3)
’ Yo Y | = (Z;:lzo |Yk _ yl|)mn+|a|
for all || < N, where o = (tp, ..., ®y) is an ordered set of m-tuples of nonnegative integers, |a| = |ag| + - - - + |&m|, Where

|aj| is the order of each multiindex «j, and N is a large integer to be determined later.
In this article we study maximal multilinear singular integral operator defined by

’

T (H)(x) = §u13|T5<f1, N 1Y)

where Ts are the smooth truncations of T given by

Ts(fises fi) (0 = f K5t Y1s e s V) 1V - i) 7
(Rmm

Here, dy = dyq---dym, Ks(X, Y1,....¥m) = o/ IX—y112+ -+ |x — ym|2/28)K (X, ¥1, ..., ym) and ¢ (x) is a smooth func-
tion on R", which vanishes if |x| < 1/4 and is equal to 1 if |x| > 1/2.
In [8], the authors studied the following operator T, given by

f*(f)(x):f*(fl,-~~7fm)(x)ziulg / K@ y1, s ym) F1(y1) -+ - fm(ym) dy.
[Xx=y1 P+t |x—ym[?>82

Throughout this paper we will let W be the norm of T in the mapping T: L! x -+ x LT — L1/™®_ We list some results for
T. and T, as follows:

Theorem A. (See [8].) Let T be an m-linear Calderén-Zygmund operator. Then, for all n > 0, there exists a constant C, =
Cy(n, m) < oo such that for all f in any product of L9 (R") spaces, with 1 < q; < oo, the following inequality holds for all x in R"

T.(Hx) <Gy ((M(|T(?>|")(x>)“/ "4 A+ w)[[MFi (x)>, (14)

i=1

where M denotes the Hardy-Littlewood maximal function with respect to balls on R".

Corollary B. (See [8].) Let T be an m-linear Calderén-Zygmund operator. Then, for all exponent 1 < q; < 00, q < 00, and q satisfying
1

11 4. .41
q_q1+ +qm,wehave

IT(H |10 < CA+WH T fillsr-

i=1
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Theorem C. (See [8].) Let 1 < q; < oo, and q be such that qi] 4+ qim and w € Ag, N --- N Ag,,. Let T be an m-linear
Calderén-Zygmund operator. Then there exists a constant Cq.n < oo for all f =(f1,..., fm) satisfying

ITeH0 < CugA+WH]TIfills-

i=1

Theorem D. (See [6].) Let 1 < q1, ..., qm, q < oo be fixed indices satisfying
1 1 1

@ an q
andlet 0 < p1,..., pm, P < 1 be real numbers satisfying

1

P

1 1
+ ...

E Pm
Suppose that K satisfies (1.3) with N = [n(1/p — 1)]. Let T be related to K and assume that T admits an extension that maps
L9 x ... x LI into L9 with norm B. Then T, extends to a bounded operator from HP' x -.. x HPm into LP, and satisfies the norm
estimate || Ty gr1 x...xHgpm —1p < C(A 4 B) for some constant C = C(n, p;, q;).

Recently, the theory of weighted multilinear Calderén-Zygmund singular integral operators was established in [11] by
Lerner, Ombrosi, Pérez, Torres, Trujillo-Gonzalez and the multiple weights A; were constructed. This together with the re-
sults for multiple weights A 4) adapted to multilinear fractional integral operators [1,13] answered an open problem in [9].
That is, the existence of multiple weights theory for multilinear Calderén-Zygmund operators and multilinear fractional in-
tegral operators. Meanwhile, a new more refined multiple maximal function M

Moo = supH o /|f,<yl>|dy,

was used in [11] to characterize the class of Aj and to obtain some weighted estimates for the multilinear Calder6n-
Zygmund singular integral operators. So let us recall the definition of A; weights.
1

For m-exponents p1,..., pm, we will often write p for the number given by % =5 Tt plm, and p for the vector
=(P1,..-, Pm)-

Definition 1.2 (Multiple Ay weights). (See [11].) Let 1 < p1, ..., pm < co. Given o= (w1,...,w0n), set

p/p,

v = | | o;

:]s

j=1

We say that @ satisfies the AT, condition if

1 1-p] ﬁ?
5“"(|Q|/H ) <|Q|/°"’ p) - (-2)

1
When pj =1, (ﬁ fQ a)ﬂ"#)"i is understood as (infg a)j)*l.

In particular, when m =1, we note that A; will be degenerated to the classical A, weight. Moreover, if m =1 and
pi =1, then this class of weights coincides with the classical A1 weights. It is well known that if w € A for 1 < p < oo,
then w € A; for all r > p and w € A4 for some 1 < q < p. We thus use q,, :=inf{q > 1: w € A4} to denote the critical index
of w. We will refer to (1.5) as the multilinear A; condition.

We list some results in [11] as follows:

Theorem E. (See [11].) Let & = (w1, ..., wn) and 1 < p; < co. Then & € Aj if and only if

1-pi’ :
{wi "E€Appy 1=1,...,m,

Vo € Amp

where the condition a) P! € Amp, in the case p; = 1 is understood as /™ e Aj.
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Theorem F. (See [11].) Let T be an m-linear Calderén-Zygmund operator, satisfying (1.1), (1.2), % = J—] 4+ 4 plm, 1 < p;j < oo and
@ satisfy the Ay condition. Then
R m
M@ <CTTHfillp- (16)
w '=1 1

Theorem G. (See [11].) Let T be an m-linear Calderén-Zygmund operator, satisfying (1.1), (1.2), % = P]_l + o+ plm, @ satisfy the Ap
condition, and 1 < p; < oo. Then

ITHeole <cTifil- (1.7)
w l=] 1

On the other hand, in 1989, Stromberg and Torchinsky in [14] defined weighted Hardy spaces and obtained some bound-
edness for Calderén-Zygmund operators.

We will use Garcia-Cuerva’s atomic decomposition theory [3] for weighted Hardy spaces. We characterize weighted
Hardy spaces in terms of atoms in the following way.

Definition 1.3 (Weighted Hardy spaces). Assume that w € Ag with critical index q,,. Let [-] be the greatest integer function.
For s € Z satisfying s > [n(q,/p — 1)], a real-valued function a(x) is called (p, g, s)-atom centered at xp with respect to w
(or w — (p, q, s)-atom centered at xg) if

(a) a e LY (R") and is supported in a cube Q centered at Xo,

1_1
(b) llalls, < @(Q)7 7,
(c) fRn a(x)x* dx = 0 for every multi-index o with |or| <s.

When q = oo, Lg; will be taken to mean L and || fllee = || flloo-

Theorem H. (See [3].) Let w € Ag, 0 < p <1< q < oo, and p # q. For each f € HEP (R™), there exist a sequence a; of
o — (p,q, [n(@w/p) — 1])-atoms and a sequence A; of real numbers with _ |A;|P < C||f||Zp such that f = )" A;a; both in the

sense of distributions and in the H?, norm.

At present, combining the above, we have obtained the boundedness of multilinear Calder6n-Zygmund operators on
weighted Hardy spaces in [12], so it is natural to ask the following interesting question. Are there any weighted results for
maximal operators for multilinear singular integral operators on weighted Hardy spaces? Our result is as follows:

Theorem 1.1. Let 1 < q1,...,qm,q < 00,0 < p1,..., Pm, P < 1, satisfying

and
1 1 1
+ot—=—.
P1 Pm D
Let T be an m-linear Calderén-Zygmund operators such that K satisfies (1.1), (1.2), (1.3) with N = maxi<i<m{[n((@)w/Pi —
1], [(qi/pi — 1)mn]}. We have the following results:

(i) fw € Ag, N---N Ag,,, then
N m
ITeH@ | <CT Al (18)
i=1
(ii) If for each i, w; € Ay, then

IT.H0]p <INl (1.9)
[ l:] 1
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2. Proof of Theorem 1.1
We will use the following facts as in [12]:

(a) Let ¢ > 1 and w € Aq. Suppose a is an w-(p, 0o, s)-atom. Then a is an w-(p, q, s)-atom.
(b) Let w € Ap, p > 1, then for any cube Q and A > 1, w(2Q) < CA"™w(Q), where C does not dependent on Q nor on A
(see [4] for details).

We now turn our attention to Theorem 1.1.

We prove this theorem using the atomic decomposition of H?, spaces. Since finite sums of atoms are dense in HE,, we
will work with such sums and obtain estimates independent of the number of terms in each sum.

Since T, is bounded from L2™ x ... x LZ™ into L2 by Lemma 2.2 below when w; =1, we can assume each f;, 1 <i<m,
as a finite sum of HY!-atoms, f; = >k }ikaik, where a;, are (p;, 0o, s)-atom, this means they are supported in cubes Q; x
and |a; | < w(Q)~V/Pi. However, by the above fact (a), we know that a; ; satisfies

1_1
llaill o < w(Q)% *i, (2.1)
/ai,k(X)X“ dx=0, |a|<s, s> [n((@)w/pi—1)]. (22)
Qik

Denote by c; and |Q;| the center and the side length of Q;y, and let Q,-,k = 84/nQ; \, employing multilinearity we
write

To(H®) =Ta(f1o o f) O <D M Aoy T @1y - -+ i ) (). (23)
k] km
For x € R", we split the right side of (2.3) into two terms I7(x) + I(x), where
Lx) = Z e Z Pty ko || T @14y - am,km)(X)|XQ]k1 -G
k] km
and
LX) = ; e ’Z [A1 k|- |)Lm,km||T*(a1,k1 seees am,km)(x)|XQ16Jq U-UBE,
1 Km

Now, let us begin to discuss I (x). For fixed k1, ..., kpn, assume that Ql,lq n---N Qm,km # (), otherwise, there is nothing
need to be proved.

Suppose that Q;s k., i* €1,2,...,m, has the smallest size among all these cubes. We take a cube Gy, .k, such that

Qg NN Qukn € Gy, € Gy € Qg NN Qi
and

..... k) = CO(Qix i)
By using the Holder’s inequality, Lemma 2.2 when w; = w, and (2.1), we have

1 /
To(@1 ks - - O k) (X) |0 (%) dX
(Gi,.... k) T @1 " |
kq,..skm
(G Y\ T, @1 4rs...,0 X
©Crr ) (Gry,.o k) H (@1 k) ( )HLg)

i=1 i=1

= [[(@Qis) 7. (%)

i=1
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In order to get the estimate for I;(x), we need the following lemma:

Lemma 2.1. Let 0 < p < 1. Then there is a constant C = C(p) such that for all finite collections of cubes {Q}j._, in R" and all
nonnegative functions gy € L, with supp g C Qj we have

m
Z 8k

k=1

<C
LP(w)

(2.4)

LP(w)

I
; P / o dxxg,
= Qk

. [gllle proof of this lemma can be easily obtained by substituting LP norm by L?, and ‘Qlﬁ J, % gr(x)dx by ﬁQk) /i Y g wdx
in [6].
Using the above lemma and the fact (b), we have

m
_1
Il <CJ D2 D sl A [ J(Qie i)™ xg,

kq km i=1

m _1
I'I(Z idlo(Qis ) 7 X, )

i=1 ki

m _1 1
H(Z [ ki [0(Qix ) PiO(X) Pi X5k1 km)

=k T

N
()

<

@)

LP

<C 1‘[( D ik |wa(Q,-*,ki*)—1w<éi*,ki*>> !

i=1 k,'
1

=CH(Z|)\i,ki|pi>p—i. (2.5)

i=1 k,'

Secondly, we consider the estimate of I, (x).
Let A be a nonempty subset of {1,...,m}, and we denote the cardinality of A by |A|, then 1 < |A| < m. Let A® =
{1,...,m}\ A. If A={1,...,m}, we define

(m Q) n ( N Q) ~ &5

icA ieAc i€A
then we have
AC A C A C A
Qi Y Yk, = U <(m Qi”“) n < ﬂ Qi’kl))
m} icA ieA¢

We set Ea = (Njca Qicki) N (Nieac Q,’,ki). For fixed A, we assume that the side length of the cube Q;: ., i* € A, is the
smallest among the side lengths of the cube Q;,, i € A. Let P?{*»kv* (X, Y1, ..., ym) be the Nth order Taylor polynomial of

K(X,y1,...,ym) about the variable y;+ at the i k..
Since ajy k. has zero vanishing moments up to N, and observe that the kernels K; satisfy (1.3) uniformly in § > 0.
By (1.3) we get

’T*(al,lq ] am,km)(x)’

m
< sup [T ax (J’i)/ai*,k,-* Vi) (Ks (6, Y1, -0, ym) — ngki* * Y1, ym))dy
P70 o =i R
m m —mn—N—-1
<C / ]_[ |ai g ()| /|ai*,k,-* Vi) 1yie — Cinoie N (lx —&l+ Z Ix — le) dy,
(R”)m’l i=1,iA* RN J=1, j#i

where & is between y;+ and iy ;. -



390 W. Li et al. /. Math. Anal. Appl. 373 (2011) 384-392

As argument in [12], when N = maxi<igm [1((@i)w/pi — D], [(gi/pi — 1)mn], we have

m 1
pi
21l < c]‘[(Z |A,-,k,.|"f> : (2.6)

i=1 k,‘

In conclusion, summing the estimates (2.5) for I; and (2.6) for I, we can take limit and obtain
m
IT.(H®p <c[] I il
i=1

We complete the proof of Theorem 1.1 for case (i).

Now we turn to prove case (ii). Procedure is similar as in proof of case (i), we only show the differences.

To prove I1(x), we must introduce another lemma about weighted norm inequality with multiple weights for maximal
operators.

Lemma 2.2. Let T be an m-linear Calderén-Zygmund operator, satisfying (1.1), (1.2), % = p]—] 4+ 4 pim, and @ satisfy the Ap
condition, and 1 < p; < oco. Then
R m
IT«(Hx) H% <cJ] I il (2.7)
i=1

We will postpone its proof until the last section.
We take a cube Gy, .k, such that for each i, w;(G,. ... k,) = Cwi(Qj k. ). Thus by Lemma 2.2, we have

1
v(;) (Gk] ,,,,, km )

,,,,,

f T2 @1y Gone) (0 V5 (%)

m
-1
< €V (Gkyok) T T il
. 1
i=1

m
_1
<CJ Qg 7.

i=1

By Lemma 2.1, then

Il <c

m
_1
> D Il | [T (Qise) ™7 x,
k1

km =7

m

<c]]

i=1

1 1
<Z|/\i,k,»|wi(Qi*,ki*) i) Xe, )
S Km

k, i

m L
< CH(ZIAi,ki|pi>pl.

i=1 " k;

3. Proof of Lemma 2.2

In order to prove Lemma 2.2, we must give an improved multiple Coltlar’s inequality associated to Theorem A. For
integrity, we give its proof with some modifications in [8] as follows.

m
> > 1
T.(H() <Cy ((M(IT(f)I")(X))( My A+w) ]_[Mfi(X)) (3.1)
i=1
Now, we prove (3.1) firstly. We will denote by Ss(x) the cube {y: Supigjgm I1X — ¥l <8}, and denote Us = {y € Sas).
It is clear that it is enough to prove for n arbitrary small, so we only discuss for 0 < n < 1/m. Fix x in R". Then we have

sup < CAMP(®).

>0

/Ks(x,y],...,ym>f1(y1)---fm(ym)d9

Us
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So it suffices to show (3.1) with T*(f)(x) replaced by
T.(fH(x) = gugln(fl, e @), (32)
where

Ts(f1,..., fm) () = / KsX, Y1, .o, ym) fiy1) -+ fm(ym) dy. (3.3)
V¢Ss(x)

Fix § > 0 and let B(x, §) be the ball of center x and radius 8. Since T is an m-linear Calderén-Zygmund operator, T(]‘) is in
L(% and hence it is finite almost everywhere. For z € B(x, §/2+/m) and y ¢ Ss(x), we get

1/2

1/2
(z=y1lP++1z—ym?) 2= (x=y1P 4+ x—yul?)* = Vmlx— 2| > 26 =6 =35.

Hence,
Ts(F)@) = T(F) @) — T(fo) @), (3.4)

where fo = (f1X80.26)» ---» fm XB(0.25))-
By (1.2), we obtain

Alx =z T 1£5 )

Ts(Hx) —Ts(H @] < / dy=1.
| | ) (Ix=y1l+ -+ X — ym[)m+e
Y¢Ss(x)
Now, the right side of the above inequality can be rewritten as a sum of integral for some {j1, ..., jm} & {1,...,m} so that

for y we have |x — yjl <4 if and only if j e {j1,..., ji}. We denote the set for y satisfying |x — yjl <8 by Q. Thenl<m
and it follows that

< / Alx—zI* TTiL il 05
(Ix=y1l 4+ 1x = ympmm+e

V£S5 (x)

f |fildy; / X = 20° gy, in 1 i1 4y
Y (x—y1l+ -+ |x — yp|)mn+e
77777 ®RmM\Q)m-!

°° Q"
/Ifjl y; > ¥ e / [T Ifildy;
..... (2k+1Q)m*’ j(;é{jl,...,j,}
00
|Q |/

<CAZW / l_[|fj|dy]

k=0 (2k+1Q)m j=1
< CAM(F)(x).

In [8], we can still modify the last inequality easily. Other part is the same as in [8].
Now, we begin to prove Lemma 2.2.
Ifwe Ag, then by Theorem E, we have vg € Amp. If we choose 1 < o, mp < -, then vz € A 2. Employing Theorem F and

Theorem G, we get
ITeH e <G M(THT) @)™ + A+ WM lue,
<G| (M(ITH M) ) A P 4 Cp(A+ W)||M(f)(X)||Lp

<G| (THIN 0" +Cya+ wTliwl, y

i=1

<Gty +C (A+W)HHf,(x)”Lp,

i=1

cn(A+W)]_[||f,(x)||Lp,.

i=1
Therefore, we complete the proof of Lemma 2.2.
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