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Abstract

We show that the approximation numbers of a compact composition operator on the Hardy space H2 or
on the weighted Bergman spaces Bα of the unit disk can tend to 0 arbitrarily slowly, but that they never
tend quickly to 0: they cannot decay more rapidly than exponentially, and this speed of convergence is
only obtained for symbols which do not approach the unit circle. We also give an upper bound and explicit
an example.
c⃝ 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be the open unit disk of the complex plane, equipped with its normalized area measure
d A(z) =

dxdy
π

. For α > −1, let Bα be the weighted Bergman space of analytic functions
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f (z) =


∞

n=0 anzn on D such that

∥ f ∥
2
α = (α + 1)


D

| f (z)|2(1 − |z|2)α d A(z) =

∞
n=0

n!Γ (2 + α)

Γ (n + 2 + α)
|an|

2 < ∞.

The limiting case, as α
>

−→ −1, of those spaces is the usual Hardy space H2 (indeed, if f is a
polynomial, we have lim

α
>

−→ −1
∥ f ∥

2
α =


∞

n=0 |an|
2

= ∥ f ∥
2
H2 ), which we shall treat as B−1.

Note that ∥ f ∥
2
α ≈


∞

n=0
|an |

2

(n+1)α+1 and that

d Aα(z) = (α + 1)(1 − |z|2)α d A(z)

is a probability measure on D.
Bergman spaces [48, page 75, page 78] are Hilbert spaces of analytic functions on D with

reproducing kernel Ka ∈ Bα , given by Ka(z) = ( 1
1−az )

α+2, namely, for every a ∈ D:

f (a) = ⟨ f, Ka⟩, ∀ f ∈ Bα; and ∥Ka∥
2

= Ka(a) =


1

1 − |a|2

α+2

. (1.1)

An important common feature of those spaces is that the multipliers of Bα can be (isometrically)
identified with the space H∞ of bounded analytic functions on D, that is:

∀g ∈ H∞, ∥g∥∞ = sup
f ∈Bα,∥ f ∥α≤1

∥ f g∥α. (1.2)

Indeed, ∥ f g∥α ≤ ∥g∥∞∥ f ∥α is obvious, and if ∥ f g∥α ≤ C∥ f ∥α for all f ∈ Bα , testing this
inequality successively on f = 1, g, . . . , gn, . . . easily gives g ∈ H∞ and ∥g∥∞ ≤ C .

Let now ϕ be a non-constant analytic self-map (a so-called Schur function) of D and let
Cϕ : Bα → H (D) the associated composition operator:

Cϕ( f ) = f ◦ ϕ.

It is well-known [8, page 30] that such an operator is always bounded from Bα into itself, and
we are interested in its approximation numbers.

Also recall that the approximation (or singular) numbers an(T ) of an operator T ∈ L(H1,

H2), between two Hilbert spaces H1 and H2, are defined, for n = 1, 2, . . . , by:

an(T ) = inf{∥T − R∥; rank (R) < n}.

We have:

an(T ) = cn(T ) = dn(T ),

where the numbers cn (resp. dn) are the Gelfand (resp. Kolmogorov) numbers of T ([4, page 59
and page 51] respectively).

In the sequel we shall need the following quantity:

β(T ) = lim inf
n→∞


an(T )

1/n
. (1.3)

Those approximation numbers form a non-increasing sequence such that

a1(T ) = ∥T ∥, an(T ) = an(T
∗) =


an(T ∗T )
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and verify the so-called “ideal” and “subadditivity” properties [17, page 57 and page 68]:

an(AT B) ≤ ∥A∥an(T )∥B∥; an+m−1(S + T ) ≤ an(S)+ am(T ). (1.4)

Moreover, the sequence (an(T )) tends to 0 iff T is compact. If (an(T )) ∈ ℓp, we say that T
belongs to the Schatten class Sp of index p, 0 < p < ∞. Taking for T a compact diagonal
operator, we see that this sequence is non-increasing with limit 0, but otherwise arbitrary. But
if we restrict ourselves to a specified class of operators, the answer is far from being so simple,
although in some cases the situation is completely elucidated. For example, for the class of
Hankel operators on H2 (those operators Hφ whose matrix (ai, j ) on the canonical basis of H2

is of the form ai, j = φ(i + j) for some function φ ∈ L∞), it is known that Hφ is compact if
and only if the conjugate φ̄ of the symbol φ belongs to H∞

+ C, where C denotes the space
of continuous, 2π -periodic functions (Hartman’s theorem, [34, page 214]). For those Hankel
operators, the following theorem, due to Megretskii et al. [32,39, Theorem 0.1, page 490], shows
that the approximation numbers are absolutely arbitrary, under the following form.

Theorem 1.1 (Megretskii–Peller–Treil). Let (εn)n≥1 be a non-increasing sequence of positive
numbers. Then there exists a Hankel operator Hφ satisfying:

an(Hφ) = εn, ∀n ≥ 1.

Indeed, if we take a positive self-adjoint operator A whose eigenvalues sn coincide with the εn’s
and whose kernel is infinite-dimensional, it is easily checked that this operator A verifies the three
necessary and sufficient conditions of Theorem 0.1, page 490 in [39] and is therefore unitarily
equivalent to a Hankel operator Hφ which will verify, in view of (1.4):

an(Hφ) = an(A) = εn, n = 1, 2, . . . .

In particular, if εn → 0, the above Hankel operator will be compact, and in no Schatten class if
εn = 1/ log(n + 1) for example. We also refer to [16] for the following slightly weaker form due
to Khruscëv and Peller, but with a more elementary proof based on interpolation sequences in
the Carleson sense: for any δ > 0, there exists a Hankel operator Hφ such that

1
1 + δ

εn ≤ an(Hφ) ≤ (1 + δ) εn, n = 1, 2, . . . .

Now, the aim of this work is to prove analogous theorems for the class of composition
operators (whose compactness was characterized in [30,43]). But if we are able to obtain the
Khruscëv–Peller analogue for the lower bounds, we will only obtain subexponential estimates
for the upper bounds, a fact which is explained by our second result: the speed of convergence
to 0 of the approximation numbers of a composition operator cannot be greater than geometric
(and is geometric for symbols ϕ verifying ∥ϕ∥∞ < 1). Our first result involves a constant <1
and is not as precise as the result of Megretskii–Peller–Treil or even that of Khruscëv–Peller;
this is apparently due to the non-linearity of the dependence with respect to the symbol for
the class of composition operators, contrary to the case of the Hankel class. This latter lower
bound improves several previously known results on “non-Schattenness” of those operators (see
Corollary 4.2) and also answers in the positive to a question which was first asked to us by Le
Merdy [25] in the OT Conference 2008 of Timisoara, concerning the bad rate of approximation of
compact composition operators. Those theorems are, to our knowledge, the first individual results
on approximation numbers an of composition operators (in the work of Parfenov [37], some
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good estimates are given for the approximation numbers of the Carleson embedding operator in
the case of the space H2

= B−1, but they remain fairly implicit, and are not connected with
composition operators), whereas all previous results where in terms of symmetric norms of the
sequence (an), not on the behavior of each an .

Before describing our results, let us recall two definitions. For every ξ with |ξ | = 1 and
0 < h < 1, the Carleson window W (ξ, h) centered at ξ and of size h is the set

W (ξ, h) = {z ∈ D; |z| ≥ 1 − h and | arg(zξ)| ≤ πh}.

Let µ be a positive, finite, measure on D; the associated maximal function ρµ is defined by:

ρµ(h) = sup
|ξ |=1

µ

W (ξ, h)


. (1.5)

The measure µ is called a Carleson measure for the Bergman space Bα , or an (α+ 2)-Carleson
measure (including the case B−1 = H2), if ρµ(h) = O (h2+α) as h → 0. For any Schur
function ϕ, we shall denote by mϕ the image ϕ∗(m) of the Haar measure m of the unit circle
under the radial limits function ϕ∗(u) = limr→1− ϕ(ru) of ϕ, |u| = 1, and by Aϕ,α+2 the
image of the probability measure (α+ 1)(1 − |z|2)αd A(z) under ϕ. The corresponding maximal

function will be denoted by ρϕ,α+2. This notation is justified by the fact that mϕ
def
= Aϕ,1 is a

1-Carleson measure and Aϕ,α an (α + 2)-Carleson measure for α > −1, in view of the famous
Carleson embedding theorem which, expressed under a quantitative and generalized form,
states the following, implicit as concerns ∥ j∥ and with different notations, but fully proved in
[46, Theorem 1.2], for the case α > −1 (see [34, page 153]).

Theorem 1.2 (Carleson’s Theorem). For any (α + 2)-Carleson measure µ, the canonical
inclusion mapping j : Bα → L2(µ) is defined and continuous, and its norm satisfies

C−1 sup
0<h<1


ρµ(h)

h2+α
≤ ∥ j∥ ≤ C sup

0<h<1


ρµ(h)

h2+α
. (1.6)

The paper is organized as follows. Section 1 is this introduction. In Section 2, we prove
some preliminary lemmas. Our first theorems concern lower bounds. In Section 3, we prove
(Theorem 3.1) that the convergence of the approximation numbers an(Cϕ) of a composition
operator Cϕ : Bα → Bα cannot exceed an exponential speed: for some r ∈ (0, 1) and some
constant c > 0, one has an(Cϕ) ≥ c rn . More precisely, with the notations (1.3) and (3.1), one
has β(Cϕ) ≥ [ϕ]

2. Moreover, this speed of convergence is only attained if the values of ϕ do not
approach the boundary of the unit disk: ∥ϕ∥∞ < 1 (Theorem 3.4). On the other hand, the speed
of convergence to 0 of an(Cϕ) can be arbitrarily slow; this is proved in Section 4. The proof is
mainly an adaptation of the one in [7], but is fairly technical at some points, and will require
several additional explanations. In Section 5, we prove an upper estimate (Theorem 5.1), and
give three applications of this theorem. In the final Section 6, we test our general results against
the example of lens maps, which are known to generate composition operators belonging to all
Schatten classes.

2. Preliminary lemmas

In this section, we shall state several lemmas, which are either already known or quite
elementary, but turn out to be necessary for the proofs of our Theorems 3.1 and 4.1.

For the proof of Theorem 3.1, we shall need the Weyl lemma [4, Proposition 4.4.2, page 157].
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Lemma 2.1 (Weyl Lemma). Let T : H → H be a compact operator. Suppose that (λn)n≥1 is the
sequence of eigenvalues of T rearranged in non-increasing order. Then, we have:

n
k=1

ak(T ) ≥

n
k=1

|λk |.

We recall [6,13, pages 194–195], [33, pages 302–303] that an interpolation sequence (zn)with
(best) interpolation constant C is a sequence (zn) (necessarily Blaschke, i.e.,


∞

n=1(1 − |zn|) <

∞) in the unit disk such that, for any bounded sequence (wn) of scalars, there exists a bounded
analytic function f (i.e., f ∈ H∞) such that:

f (zn) = wn, ∀n ≥ 1, and ∥ f ∥∞ ≤ C sup
n≥1

|wn|.

The Carleson constant δ of a Blaschke sequence (zn) is defined as follows:

δn =


j≠n

ρ(zn, z j ); δ = inf δn = inf
n≥1
(1 − |zn|

2)|B ′(zn)|, (2.1)

where B is the Blaschke product with zeros zn, n ≥ 1 and ρ( ., . ) is the pseudo-hyperbolic
distance, defined below in (2.8). The interpolation constant C is related to the Carleson constant
δ by the following inequality [10, page 278], in which λ is a positive numerical constant:

1
δ

≤ C ≤
λ

δ


1 + log

1
δ


. (2.2)

This latter inequality can be viewed as a quantitative form of the Carleson interpolation theorem.
Interpolation sequences and reproducing kernels of Bα are related as follows [33, pages
302–303].

Lemma 2.2. Let (zn)n≥1 be an H∞-interpolation sequence of the unit disk, with interpolation
constant C. Then, the sequence ( fn) = (Kzn/∥Kzn ∥) of normalized reproducing kernels at zn
is C-equivalent to an orthonormal basis in Bα , namely we have for any finite sequence (λn) of
scalars:

C−1


n

|λn|
2

1/2

≤

n
λn fn


α

≤ C


n

|λn|
2

1/2

. (2.3)

The proof in [33] is only for H2, therefore we indicate a simple proof valid for Bergman spaces
Bα as well. Let S =


λn Kzn be a finite linear combination of the kernels Kzn , ω = (ωn) be

a sequence of complex signs, Sω =

ωnλn Kzn and g ∈ H∞ an interpolating function for the

sequence (ωn), i.e., g(zn) = ωn and ∥g∥∞ ≤ C . If f ∈ Bα and ∥ f ∥α ≤ 1, we see that:

⟨Sω, f ⟩ =


ωnλn f (zn) =


λn( f g)(zn) =


λn⟨Kzn , f g⟩ = ⟨S, f g⟩,

so that using (1.2):

|⟨Sω, f ⟩| ≤ ∥S∥α∥ f g∥α ≤ ∥S∥α∥g∥∞∥ f ∥α ≤ C∥S∥α
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and passing to the supremum on f , we get ∥Sω∥α ≤ C∥S∥α . Since the coefficients λn are
arbitrary, this implies that ( fn) is C-unconditional, namely:

C−1
ωnλn fn


α

≤

 λn fn


α

≤ C
ωnλn fn


α
.

Now, squaring and integrating with respect to random, independent, choices of signs ωn’s, we
get (2.3). �

We also recall [13, pages 203–204] that an increasing sequence (rn) of numbers such that
0 < rn < 1 and 1−rn+1

1−rn
≤ ρ < 1 (i.e., verifying the so-called Hayman–Newman condition) is

an interpolation sequence (see also [34]). In the following, let (rn) be such a sequence verifying
moreover the backward induction relation:

ϕ(rn+1) = rn . (2.4)

Set fn = Krn/∥Krn ∥ and W = span( fn). Let (en)n≥1 be the canonical basis of ℓ2, ϕ a Schur
function and h ∈ H∞ a function vanishing at r1. Denote by Mh : Bα → Bα the operator
of multiplication by h. Then, we have the following basic lemma, which shows that some
compression of C∗

ϕ is a backward shift with controlled weights [7].

Lemma 2.3. Let J : ℓ2
→ W be the isomorphism given by J (en) = fn . Then, the operator

B = J−1C∗
ϕM∗

h J : ℓ2
→ ℓ2 is the weighted backward shift given by:

B(en+1) = wnen and B(e1) = 0, where wn = h(rn+1)
∥Krn ∥

∥Krn+1∥
. (2.5)

To exploit Lemma 2.3, we shall need the following simple fact on approximation numbers of
weighted backward shifts.

Lemma 2.4. Let (en)n≥1 be an orthonormal basis of the Hilbert space H and B ∈ L(H) the
weighted backward shift defined by

B(e1) = 0 and B(en+1) = wnen, where wn → 0.

Assume that |wn| ≥ εn for all n ≥ 1, where (εn) is a non-increasing sequence of positive
numbers. Then B is compact, and satisfies:

an(B) ≥ εn, ∀n ≥ 1. (2.6)

Proof. The compactness of B is obvious. Let R be an operator of rank <n. Then ker R is of
codimension <n, and therefore intersects the n-dimensional space generated by e2, . . . , en+1 in
a vector x =

n
j=1 x j e j+1 of norm one. We then have:

∥B − R∥
2

≥ ∥Bx − Rx∥
2

= ∥Bx∥
2

=

n
j=1

|w j |
2
|x j |

2

≥

n
j=1

ε2
j |x j |

2
≥ ε2

n

n
j=1

|x j |
2

= ε2
n .

This ends the proof of Lemma 2.4. �
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Now, in view of (1.1) and (2.5), the weight wn roughly behaves as


1−rn+1
1−rn

, so we shall need
good estimates on that quotient, before defining the sequence (rn) explicitly.

We first connect this estimate with the hyperbolic distance d in D. We denote (see [12] or [15]
for the definition) by d(z, w; U ) the hyperbolic distance of two points z, w of a simply connected
domain U . It follows from the generalized Schwarz–Pick lemma [15, Theorem 7.3.1, page 130]
applied to the canonical injection U → V that the bigger the domain the smaller the hyperbolic
distance, namely:

U ⊂ V and z, w ∈ U H⇒ d(z, w; V ) ≤ d(z, w; U ). (2.7)

Moreover, as is well-known,

0 ≤ r < 1 H⇒ d(0, r; D) =
1
2

log
1 + r

1 − r
.

Recall that the pseudo-hyperbolic and hyperbolic distances ρ and d on D are defined by:

ρ(a, b) =

 a − b

1 − ab

 , d(a, b) =
1
2

log
1 + ρ(a, b)

1 − ρ(a, b)
, a, b ∈ D. (2.8)

In the sequel, we shall omit the symbol D as far as the open unit disk is concerned. For this unit
disk, we have the following simple inequality [7].

Lemma 2.5. Let a, b ∈ D with 0 < a < b < 1. Then:

e−2d(a,b)
≤

1 − b

1 − a
≤ 2 e−2d(a,b). (2.9)

Finally, before proceeding to the construction of our Schur function ϕ in Section 4, it will be
useful to note the following simple technical lemma.

Lemma 2.6. Let (εn) be a non-increasing sequence of positive numbers of limit 0. Then there
exists a decreasing and logarithmically convex sequence (δn) of positive numbers, with limit 0,
such that δn ≥ εn for all n ≥ 1.

Proof. Provided that we replace εn by εn +
1
n , we may assume that (εn) is decreasing. Let us

define our new sequence by the inductive relation:

δ1 = ε1; δ2 = ε2; δn+1 = max

εn+1, δ

2
n/δn−1


.

This sequence is log-convex by definition, i.e., δ2
n ≤ δn+1δn−1. By induction, it is seen to be

decreasing. Therefore, it has a limit l ≥ 0. If δn = εn for infinitely many indices, l = 0.
Otherwise, for n large enough, we have the inductive relation δn+1 = δ2

n/δn−1, which implies
that δn = exp(λn + µ) for some constants λ,µ. Since (δn) is decreasing, we must have λ < 0
and again we get l = 0. �

In the sequel, we may and will thus assume, without loss of generality, that (εn) is decreasing
and logarithmically convex.

3. Lower bounds

We first introduce a notation. If

ϕ#(z) = lim
w→z

ρ(ϕ(w), ϕ(z))

ρ(w, z)
=

|ϕ′(z)|(1 − |z|2)

1 − |ϕ(z)|2
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is the pseudo-hyperbolic derivative of ϕ, we set:

[ϕ] = sup
z∈D

ϕ#(z) = ∥ϕ#
∥∞. (3.1)

In our first theorem, we get that the approximation numbers cannot supersede a geometric
speed.

Theorem 3.1. For any Schur function ϕ, there exist positive constants c > 0 and 0 < r < 1
such that, for Cϕ : Bα → Bα , we have:

an(Cϕ) ≥ c rn, n = 1, 2, . . . . (3.2)

More precisely, one has β(Cϕ) ≥ [ϕ]
2 and hence, for each κ < [ϕ], there exists a constant

cκ > 0 such that:

an(Cϕ) ≥ cκκ
2n . (3.3)

We shall see in Proposition 6.1 that this estimate is actually rather crude in general because
[ϕ] may be arbitrarily small, though an(Cϕ) decays “slowly”.

For the proof, we need the following lemma.

Lemma 3.2. Let T : H → H be a compact operator. Suppose that (λn)n≥1, the sequence of
eigenvalues of T rearranged in non-increasing order, satisfies, for some δ > 0 and r ∈ (0, 1):

|λn| ≥ δrn, n = 1, 2, . . . .

Then there exists δ1 > 0 such that

an(T ) ≥ δ1r2n, n = 1, 2, . . . .

In particular β(T ) ≥ r2.

Proof. By the Weyl inequality (Lemma 2.1), we have
n

k=1

ak(T ) ≥

n
k=1

|λk | ≥ δnrn(n+1)/2.

Since ak(T ) is non-increasing and ak(T ) ≤ ∥T ∥ for every k, changing n into 2n, we get:

∥T ∥
nan(T )

n
≥

2n
k=1

ak(T ) ≥ δ2nrn(2n+1)

and therefore an(T ) ≥
δ2r
∥T ∥

r2n
= δ1r2n , as claimed. �

By applying this lemma to composition operators, we get the following result, which ends the
proof of Theorem 3.1.

Proposition 3.3. For every composition operator Cϕ : Bα → Bα of symbol ϕ: D → D, we have
β(Cϕ) ≥ [ϕ]

2.

Proof. For every a ∈ D, let Φa be the (involutive) automorphism of the unit disk defined by

Φa(z) =
a − z

1 − az
, z ∈ D.
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Observe that we have

Φa(a) = 0, Φa(0) = a, Φ′
a(a) =

1

|a|2 − 1
, Φ′

a(0) = |a|
2
− 1.

Define now ψ = Φϕ(a) ◦ ϕ ◦ Φa . We have that 0 is a fixed point of ψ , whose derivative is, in
modulus, by the chain rule:

|ψ ′(0)| = |Φ′

ϕ(a)(ϕ(a))ϕ
′(a)Φ′

a(0)| =
|ϕ′(a)|(1 − |a|

2)

1 − |ϕ(a)|2
def
= ϕ#(a). (3.4)

By the Schwarz lemma, we know that |ψ ′(0)| ≤ 1 and so |ϕ′(a)|(1−|a|
2)

1−|ϕ(a)|2
≤ 1 (the Schwarz–Pick

inequality).
Let us first assume that the composition operator Cϕ is compact. Then, so is Cψ , since we

have

Cψ = CΦa ◦ Cϕ ◦ CΦϕ(a) . (3.5)

If ψ ′(0) ≠ 0, the sequence of eigenvalues of Cψ is

[ψ ′(0)]n


n≥0 ([44, page 96]; the result given

for the space H2 holds for Bα ⊂ H2, and would also hold for any space of analytic functions in
D on which Cψ is compact). Lemma 3.2 then gives us:

β(Cψ ) ≥ |ψ ′(0)|2 = [ϕ#(a)]2
≥ 0.

This trivially still holds if ψ ′(0) = 0.
Now, since CΦa and CΦϕ(a) are invertible operators, (3.5) clearly implies that β(Cϕ) = β(Cψ ),

and therefore, with the notation of (3.4):

β(Cϕ) ≥ [ϕ#(a)]2, for all a ∈ D.

By passing to the supremum on a ∈ D, we end the proof of Proposition 3.3, and that of
Theorem 3.1 in the compact case. If Cϕ is not compact, the proposition trivially holds. Indeed,
in this case, we have β(Cϕ) = 1 ≥ [ϕ]

2. �

Remark. It is easy to see that the composition operator Cϕ is always of infinite rank, contrary
to the case of a Hankel operator, so that in some sense it refuses to be approached by finite-rank
operators. Theorem 3.1 quantifies things: it is a well-known and easy fact (see for example [44,
page 25] and see Theorem 5.1 to come) that, in the case ∥ϕ∥∞ < 1, we have an(Cϕ) ≤ c∥ϕ∥

n
∞

(and hence β(Cϕ) ≤ ∥ϕ∥∞ < 1), showing that the approximation numbers can decrease at an
exponential speed. Theorem 3.1 shows that this speed is the maximal possible one. The next
theorem says that this maximal speed is only obtained when ∥ϕ∥∞ < 1. Observe that ∥ϕ∥∞ = 1
if and only if the pseudo-hyperbolic diameter of ϕ(D):

diamρ


ϕ(D)


= sup{ρ(a, b); a, b ∈ ϕ(D)}

is equal to 1.

Theorem 3.4. For every α ≥ −1, there exists, for any 0 < r < 1, s = s(r) < 1, satisfying
limr→1− s(r) = 1, such that, for Cϕ : Bα → Bα , one has, with the notation coined in (1.3):

diamρ


ϕ(D)


> r H⇒ β(Cϕ) ≥ s2. (3.6)
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In particular, the exponential speed of convergence to 0 of the approximation numbers of a
composition operator Cϕ of symbol ϕ takes place if and only if ∥ϕ∥∞ < 1; in other words,
we have:

∥ϕ∥∞ = 1 ⇐⇒ β(Cϕ) = 1. (3.7)

Let us remark that one cannot replace diamρ


ϕ(D)


> r by ∥ϕ∥∞ > r in (3.6). In fact, if

for every t ∈ (0, 1), one takes an automorphism ψt : D → D such that ψt (0) = t and if one sets
ϕt (z) = ψt (z/2), then ∥ϕt∥∞ ≥ t , but β(Cϕt ) = 1/2 (in fact, if u(z) = z/2, it is easy to see that
an(Cu) = 1/2n−1 and, since Cψt is invertible, β(Cϕt ) = β(Cu)).

The proof will proceed through a series of lemmas. Observe that given two points a, b ∈ D,
with r = ρ(a, b), there exists an automorphism ψ of D such that ψ(a) = 0 and ψ(b) = r . As
β(Cϕ) = β(Cψ◦ϕ), we may assume, without loss of generality, throughout that proof, that 0 and
r belongs to ϕ(D).

Lemma 3.5. Let K be a compact subset of ϕ(D) and µ be a probability supported by K . Then,
there exists a constant δ > 0 such that, if Rµ: Bα → L2(µ) denotes the restriction operator, we
have:

an(Cϕ) ≥ δ an(Rµ).

In particular:

β(Cϕ) ≥ β(Rµ).

Proof. Since ϕ is an open map, there exists a compact set L ⊂ D and a Borel subset A ⊂ L such
that ϕ(A) = K and ϕ: A → K is a bijection (see [38, Chapter I, Theorem 4.2]). Then µ = ϕ(ν),
where ν = ϕ−1(µ) is a probability measure supported by L , and we have automatically ∥Rν∥ <
∞. Then, for every f ∈ Bα:

∥ f ∥
2
L2(µ)

=


K

| f |
2 dµ =


L

| f ◦ ϕ|
2 dν = ∥Cϕ f ∥

2
L2(ν)

.

This yields ∥Rµ f ∥ = ∥(Rν ◦ Cϕ) f ∥, so we have Rµ = j RνCϕ , where j : L2(ν) → L2(µ) is an
isometry, and the lemma follows, since we have then:

an(Rµ) = an(Rν ◦ Cϕ) ≤ ∥Rν∥ an(Cϕ)

for every n ≥ 1. �

Observe that this provides a new proof of Theorem 3.1. Indeed, if K ⊂ ϕ(D) is a small closed
ball of center 0 and radius t > 0, we can take as µ the normalized area measure on K ; then
Parseval’s formula easily shows that β(Rµ) ≥ t in that case.

The strategy of the proof of Theorem 3.4 will consist of refining this observation. More
precisely, we shall show that the situation can be reduced to the case K = [0, r ], and that an
appropriate choice of µ can be made in that case, giving a sharp lower bound for β(Rµ). We
begin with explaining that choice in the next two lemmas.

Lemma 3.6. For every r ∈ (0, 1) there exists s = s(r) < 1 and f = fr ∈ H∞ with the
following properties:

(1) limr→1− s(r) = 1;
(2) ∥ f ∥∞ ≤ 1;
(3) f ((0, r ]) = s ∂D in a one-to-one way.
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Proof. Let ρ =
1−

√
1−r2

r . Then r =
2ρ

1+ρ2 and the automorphism ϕρ(z) =
ρ−z
1−ρz maps [0, r ]

onto [−ρ, ρ]. We define ε = ε(r) and s = s(r) by the following relations:

ε(r) =
π

log 1+ρ
1−ρ

, and s = e−επ/2. (3.8)

Let now

χ(z) = ε log
1 + ϕρ(z)

1 − ϕρ(z)
(3.9)

and

f (z) = s eiχ(z). (3.10)

Note that f = eh , where

h(z) = iε log
1 + ϕρ(z)

1 − ϕρ(z)
− ε

π

2

is a conformal mapping from D onto a small vertical strip of the left-half plane. This function f
fulfills all the requirements of the lemma. Indeed, we have | f (z)| ≤ 1 for all z ∈ D and

h([0, r ]) =


−iε log

1 + ρ

1 − ρ
, iε log

1 + ρ

1 − ρ


− ε

π

2
= [−iπ, iπ ] − ε

π

2
,

so that f ((0, r ]) = {w = seiθ
; −π ≤ θ ≤ π}, in a one-to-one way. �

Lemma 3.6 allows a good choice of the measure µ as follows.

Lemma 3.7. Let f be as in Lemma 3.6. Then, there exists a probability measure µ = µr
supported by [0, r ] and a constant δr > 0 such that, for any integer n ≥ 1 and any choice
of scalars c0, c1, . . . , cn−1, we have:n−1

j=0

c j Rµ( f j )


L2(µ)

≥
sn

√
n

n−1
j=0

c j f j


H2

≥
sn

√
n

n−1
j=0

c j f j


Bα

.

As a consequence, we can claim that, for Cϕ : Bα → Bα:

ϕ(D) ⊃ [0, r ] H⇒ β(Cϕ) ≥ s = s(r). (3.11)

Proof. With our previous notations, we know that χ is a bijective map from ]0, r ] onto the
interval ] − π, π]. Let m be the normalized Lebesgue measure on ] − π, π] and µ = χ−1(m) be
the image of m by χ−1. We have, thanks to (3.10) and by definition of µ:n−1

j=0

c j Rµ( f j )


2

L2(µ)

=

 r

0

n−1
j=0

c j f j (x)


2

dµ(x) =

 r

0

n−1
j=0

c j s
j ei jχ(x)


2

dµ(x)

=

 π

−π

n−1
j=0

c j s
j ei jθ


2

dθ

2π
=

n−1
j=0

|c j |
2s2 j

≥ s2n
n−1
j=0

|c j |
2.
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Now, ∥ f j
∥H2 ≤ ∥ f j

∥∞ ≤ 1, so that we have, using the Cauchy–Schwarz inequality:n−1
j=0

c j f j


H2

≤

n−1
j=0

|c j | ∥ f j
∥H2 ≤

n−1
j=0

|c j | ≤
√

n


n−1
j=0

|c j |
2

1/2

,

giving the first inequality, since ∥ ∥H2 ≥ ∥ ∥Bα
. Finally, let R: Bα → L2(µ) be an operator of

rank <n. We can find a function g =
n−1

j=0 c j f j such that ∥g∥Bα
= 1 and R(g) = 0. The first

part of the proof gives:

∥Rµ − R∥ ≥ ∥Rµ(g)− R(g)∥ = ∥Rµ(g)∥ =

n−1
j=0

c j f j


L2(µ)

≥
sn

√
n

n−1
j=0

c j f j


Bα

=
sn

√
n
.

Therefore an(Rµ) ≥ sn/
√

n and, in view of Lemma 3.5, the last conclusion of Lemma 3.7
follows. �

The next lemma explains how to reduce the situation to the case K = [0, r ] when we only
know that 0 and r belongs to ϕ(D). It was inspired to us by the proof of the Lindelöf theorem
that convergence along a curve implies non-tangential convergence for functions in Hardy spaces
[41, page 259, Theorem 12.10].

Lemma 3.8. Suppose that 0 and r belong to ϕ(D), with 0 < r < 1. Let µ be a probability
measure carried by [0, r ]. Then, there exists a probability measure ν carried by a compact set
K ⊂ ϕ(D) such that, for any f ∈ H(D):

[0,r ]

| f (x)|2 dµ(x) ≤
1
2


K


| f (z)|2 + | f (z̄)|2


dν(z). (3.12)

Proof. Since ϕ(D) is open and connected and 0, r ∈ ϕ(D), there is a curve with image K ⊂ ϕ(D)
connecting 0 and r . Put K̃ = {z̄; z ∈ K }. Then, there exists a compact set L such that [0, r ] ⊂ L
and whose boundary ∂L ⊂ (K ∪ K̃ ).1 Now, the existence of ν carried by K will be provided
by an appropriate application of the Pietsch factorization theorem. To that effect, let X be the
real subspace of C(L) formed by the real functions which are harmonic in the interior of L . By
the maximum principle for harmonic functions, X can be viewed as a subspace of C(K ∪ K̃ ).
Now, the inclusion map j of X into L2(µ) has 2-summing norm less than one ([2, page 208],
or [26, Chapitre 5, Proposition I.3]). Therefore, the Pietsch factorization theorem ([2, page 209],
or [26, Chapitre 5, Théorème I.5]) implies the existence of a probability σ on K ∪ K̃ such that,
for every u ∈ X :

∥u∥
2
L2(µ)

=


[0,r ]

u2 dµ ≤


K∪K̃

u2 dσ. (3.13)

For any harmonic function u on D, we can apply (3.13) to u(z) and u(z̄) to get:

2


[0,r ]

u2 dµ ≤


K∪K̃


u2(z)+ u2(z̄)


dσ(z) =


K∪K̃


u2(z)+ u2(z̄)


dσ̃ (z),

1 The existence of L is not so obvious and we shall prove it in Appendix.
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where σ̃ is the symmetric measure of σ , defined by σ̃ (E) = σ(Ẽ). There is a probability ν on K
such that ν + ν̃ = σ + σ̃ . For this probability ν, we thus have, for any real harmonic function u
on D:

2 ∥u∥
2
L2(µ)

≤


K


u2(z)+ u2(z̄)


dν(z). (3.14)

Now, given f ∈ H(D), we use (3.14) with u the real and imaginary parts of f , and sum up to
get (3.12). �

We can now finish the proof of Theorem 3.4 as follows.
Suppose that diamρ


ϕ(D)


> r . Then we may assume, as explained before Lemma 3.5, that

0, r ∈ ϕ(D). Let µ be as in Lemma 3.7. Using Lemma 3.8, we find a probability measure ν,
compactly supported by ϕ(D), such that (3.12) holds. This inequality shows that:

∥Rµ f ∥
2

≤
1
2


∥Rν f ∥

2
+ ∥Rν̃ f ∥

2,
so that Rµ = A(Rν ⊕ Rν̃) with ∥A∥ ≤ 1/

√
2 ≤ 1. Therefore, by the ideal and sub-additivity

properties (1.4):

a2n(Rµ) ≤ a2n(Rν ⊕ Rν̃) ≤ an(Rν)+ an(Rν̃) = 2 an(Rν),

implying β(Rν) ≥ β(Rµ)2. Finally, Lemmas 3.5 and 3.7 give:

β(Cϕ) ≥ β(Rν) ≥ β(Rµ)
2

≥ s(r)2,

and this ends the proof of Theorem 3.4. �

Remark. The proof of Theorem 3.4 is strongly influenced by the papers [9,47]. In the first one,
it is proved that, if K is a continuum of a connected open set Ω and if the doubly connected
region Ω \ K is conformally equivalent to the annulus 1 < |z| < R, then there exists a linearly
independent sequence ( fn) in H∞(Ω) satisfying, for all scalars c j : n

j=1

c j f j


H∞(Ω)

≤ Rn

 n
j=1

c j f j


C(K )

.

As a consequence, the author proves that limn→∞ d1/n
n = 1/R, where the numbers dn are the

Kolmogorov numbers (see [4, page 49] for the definition) of the restriction map H∞(Ω) →

C(K ). This statement led us to Lemma 3.7. In the second paper, it is proved that, for the same
operator, one has limn→∞ d1/n

n = e−1/C(K ,Ω), where C(K ,Ω) is the Green capacity of K
relative to Ω . So that one has 1/R = e−1/C(K ,Ω). In the case we were interested in, namely
Ω = D and Kr = [−r, r ], it seemed to us, for topological and analytic reasons, that R should
tend to 1 as r → 1, in other terms that we should have limr→1− C(Kr ,D) = ∞. This is indeed
the case [42, Example II.1], but the proof is fairly involved, and the desire to get a reasonably
simple and self-contained proof of Theorem 3.4 led us to the previous series of lemmas, once we
were sure that the result was true.

4. Slow decay

In this section, we shall see that the convergence to 0 of the approximation numbers of a
compact composition operator can be as slow as one wants. This answers in the positive to a
question which was first asked to us by Le Merdy [25] in the OT Conference 2008 of Timisoara.
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Theorem 4.1. Let (εn)n≥1 be a non-increasing sequence of positive real numbers of limit zero.
Then, there exists an injective Schur function ϕ such that ϕ(0) = 0 and Cϕ : Bα → Bα is
compact, i.e., an(Cϕ) → 0, but:

lim inf
n→∞

an(Cϕ)

εn
> 0. (4.1)

Equivalently, we have for some positive number δ > 0, independent of n:

an(Cϕ) ≥ δ εn for all n ≥ 1.

As in the case of Hankel operators, an immediate consequence of Theorem 4.1 is the
following:

Corollary 4.2. There exists a composition operator Cϕ : H2
→ H2 which is compact, but in no

Schatten class.

This corollary, which Theorem 4.1 reinforces and precises, was an answer to a question of
Sarason, and has been first proved in [7]. Other proofs appeared in [1,14,18,19,49] (for a positive
result on Schattenness, we refer to [29]).

The construction of the symbol ϕ in Theorem 4.1 follows that given in [7], but we have to
proceed to some necessary adjustments. In order to exploit (2.9), we shall use, as in [7], the
following two results due to Hayman [12] concerning the hyperbolic distance d(z, w; U ) of two
points z, w of a simply connected domain U (see also [15]), whose proof uses in particular the
comparison principle (2.7):

Proposition 4.3. Suppose that U contains the rectangle

R = {z ∈ C; a1 − b < Re z < a2 + b, |Im z| < b},

where a1 < a2 and b > 0. Then, we have the upper estimate:

d(a1, a2; U ) ≤
π

4b
(a2 − a1)+

π

2
. (4.2)

Proposition 4.4. Suppose that U contains the rectangle

R = {z ∈ C; a1 − c < Re z < a2 + c, |Im z| < c},

where a1 < a2 and c > 0, but that the horizontal sides

{z ∈ C; a1 − c ≤ Re z ≤ a2 + c, |Im z| = c}

of that rectangle are disjoint from U. Then, we have the lower estimate:

d(a1, a2; U ) ≥
π

4c
(a2 − a1)−

π

2
. (4.3)

We now proceed to the construction of our Schur function ϕ.
We first define a continuous map ψ : R → R as follows. Let (An) be an increasing sequence

of positive numbers, which is concave for n ≥ 1, and which tends to ∞. Let A: [0,∞) → [0,∞)

be the increasing piecewise linear function on the intervals (0, 1) and (en−1, en) such that

A(0)
def
= A0 = 0, A(en−1)

def
= An for n ≥ 1, and 2K = 1/A(1).
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The sequence of slopes An−An−1
en−en−1 is decreasing, since An+1 − An ≤ An − An−1 ≤ e (An − An−1).

The function A is hence increasing and concave on (0,∞) and vanishes at 0. This implies that
A(t)/t is decreasing on (0,∞).

We set:

ψ(t) =


K (1 + |t |) if |t | ≤ 1
|t |/A(|t |) if |t | > 1.

By the previous discussion, ψ is increasing on (1,∞).
We then define a domain Ω of the complex plane by:

Ω = {w ∈ C; |Imw| < ψ(|Rew|)}. (4.4)

Let σ : D → Ω be the unique Riemann map such that σ(0) = 0 and σ ′(0) > 0. This map exists
in view of the following simple fact.

Lemma 4.5. The domain Ω defined by (4.4) is star-shaped with respect to the origin and
σ : (−1, 1) → R is an increasing bijection such that σ(−1) = −∞ and σ(1) = ∞.

Proof. The star-shaped character of Ω will follow from the implication:

|Imw| < ψ(|Rew|) and 0 < λ < 1 H⇒ |Im (λw)| < ψ(|Re (λw)|).

We may assume that both Rew, Imw are positive, and it is enough to prove:

λψ(x) ≤ ψ(λx), ∀λ ∈ [0, 1], ∀x > 0. (4.5)

This is easy to check separating three cases:

(1) x ≤ 1; then λψ(x) = λK (1 + x) ≤ K (1 + λx) = ψ(λx);
(2) λx ≤ 1 < x ; then, since A(x) > A(1),

λψ(x) = λ
x

A(x)
< 2Kλx ≤ K (1 + λx) = ψ(λx);

(3) λx > 1; we then have, since A increases,

λψ(x) = λ
x

A(x)
≤

λx

A(λx)
= ψ(λx)

and this ends the proof of (4.5). Now, since σ is determined by the value of σ(0) and the sign of
σ ′(0), we have σ(z) = σ(z) for all z ∈ D, so that σ [(−1, 1)] ⊂ R. And since the derivative of an
injective analytic function does not vanish and σ ′(0) > 0, we get that σ is increasing on (−1, 1).
Finally, if w ∈ R and w = σ(z), we have w = w, so that σ(z) = σ(z) and z = z, which proves
the surjectivity of σ : (−1, 1) → R. �

We now choose An as follows, η > 0 denoting a positive numerical constant to be specified
later.

An = η log
1
εn
, n ≥ 1. (4.6)

Observe that this is an increasing, concave sequence tending to ∞ since we assumed that (εn) is
log-convex and decreasing to 0.

Finally, we define our Schur function ϕ and our sequence (rn) under the form of the following
lemma, in which the increasing character of ψ is important.
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Lemma 4.6. Let ϕ be defined by

ϕ(z) = σ−1(e−1σ(z)),

and let rn = σ−1(en). Then we have:

1. ϕ is univalent and maps D to D, (rn) increases, and ϕ(0) = 0;
2. ϕ(rn+1) = rn;
3. 1−rn+1

1−rn
→ 0 and therefore (rn) is an interpolation sequence;

4. Cϕ : Bα → Bα is compact.

Proof. 1. Since Ω is star-shaped, e−1σ(z) ∈ Ω when z ∈ D, so ϕ is well-defined and maps D to
itself in a univalent way. Moreover, ϕ(0) = σ−1(0) = 0, and (rn) increases since σ−1 increases
on R.

2. We have ϕ(rn+1) = σ−1
 1

eσ(rn+1)


= σ−1
 1

e en+1


= σ−1(en) = rn .
3. This assertion is more delicate and relies on Proposition 4.4 as follows.
Set dn = ψ(en). We have clearly en+1

+ dn+2 < en+2 for large n (recall that ψ(t) = o (t) as
t → ∞), so that ψ(en+1

+ dn+2) < ψ(en+2) = dn+2 since ψ is increasing. By the intermediate
value theorem for the function ψ(en+1

+ x) − x , we can therefore find a positive number
cn < dn+2 such that ψ(en+1

+ cn) = cn .
Now, consider the open sets:

Rn = {z ∈ C; en
− cn < Re z < en+1

+ cn and |Im z| < cn}, Un = Rn ∪ Ω .

Those sets Un satisfy the assumptions of Proposition 4.4 in view of (4.4). Indeed, if z belongs to
the horizontal sides of Rn , we have z ∉ Un since

en
− cn ≤ Re z ≤ en+1

+ cn H⇒ ψ(Re z) ≤ ψ(en+1
+ cn) = cn = |Im z|.

This proposition then gives, since Ω ⊂ Un and cn < dn+2, and since the hyperbolic metric is
conformally invariant,

d(rn, rn+1) = d(en, en+1
;Ω) ≥ d(en, en+1

; Un) ≥
π

4cn
(en+1

− en)−
π

2

≥ c
en+2

ψ(en+2)
= cA(en+2) ≥ cAn,

where c is a positive constant. Now, we use Lemma 2.5 to obtain:

1 − rn+1

1 − rn
≤ 2 e−2d(rn ,rn+1) ≤ 2 e−2cAn ,

which proves that 1−rn+1
1−rn

→ 0, and implies that (rn) is an interpolation sequence.
4. Since ϕ is univalent, the compactness of Cϕ : Bα → Bα amounts to proving that

lim|z|→1
1−|ϕ(z)|

1−|z| = ∞. For α > −1, this follows from [31, Theorem 3.5] and for α = −1
from [44, page 39]. By the Julia–Carathéodory Theorem [44, page 57], this in turn is equivalent
to proving that for any u, v on the unit circle, the quotient ϕ(z)−vz−u has no finite limit as z tends to
u radially. This latter fact requires some precise justification.

First, we notice that σ extends continuously to an injective map of the open upper half of
the unit circle onto the upper part of the boundary of Ω (and similarly for lower parts). This
follows from the Carathéodory extension theorem [41, page 290], applied to the restriction of
σ−1 to the Jordan region limited by ∂Ω and two vertical lines Rew = ±R where R > 0 is
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arbitrarily large. Now, let u ∈ ∂D with u ≠ ±1. Then, σ(ru) → w ∈ ∂Ω as r → 1−, so
that e−1σ(ru) → e−1w = w′

∈ Ω and that ϕ(ru) → σ−1(w′) ∈ D. Therefore the image of
ϕ touches the unit circle only at ±1, and the assumption of the Julia–Carathéodory Theorem is
fulfilled if u ≠ ±1. By symmetry, it remains to test the point u = 1 for which we have:

lim sup
r

<
−→ 1

1 − ϕ(r)

1 − r
≥ lim sup

n→∞

1 − ϕ(rn+1)

1 − rn+1
= lim sup

n→∞

1 − rn

1 − rn+1
= ∞

by the preceding point 3. Since |v − ϕ(r)| ≥ 1 − ϕ(r), this ends the proof of Lemma 4.6. �

We now want a good lower bound for the weights wn appearing in (2.5). To that effect, we
apply Proposition 4.3 with

U = Ω , a1 = en, a2 = en+1 and bn = ψ(en−1),

as well as

R′
n = {z ∈ C; en

− bn < Re z < en+1
+ bn and |Im z| < bn}.

We have en
− bn > en−1 for large n, since this amounts to

en
− en−1 > bn =

en−1

A(en−1)
, or e − 1 >

1

A(en−1)
,

which holds for large n since A(t) tends to ∞ with t . We then observe that R′
n ⊂ Ω . Indeed,

z ∈ R′
n H⇒ Re z > en

− bn > en−1 and, since ψ is increasing, we have ψ(Re z) > ψ(en−1) =

bn > |Im z|. Therefore, we can apply (4.2) and get, for all n ≥ 1:

d(en, en+1
;Ω) ≤

π

4ψ(en−1)
(en+1

− en)+
π

2
≤ C0 A(en−1) = C0 An,

where C0 is a numerical constant. By conformal invariance, we have as well d(rn, rn+1) ≤ C0 An .
It then follows from (2.9) that:

1 − rn+1

1 − rn
≥ exp


−2d(rn, rn+1)


≥ exp(−2C0 An). (4.7)

Now, we take h(z) = z−r1 in Lemma 2.4 and use the ideal property (1.4) of the approximation
numbers. We get, denoting by C the interpolation constant of the sequence (rn), and using the
fact that ∥Mh∥ = ∥h∥∞ ≤ 2:

an(B) ≤ ∥J−1
∥ an(Cϕ) ∥Mh∥ ∥J∥ ≤ 2C2an(Cϕ). (4.8)

Next, we choose η = 1/C0 in (4.6) and we set d = (r2−r1)/
√

2. Using Lemma 2.3 and relations
(1.1), (2.5) and (4.7), we see that the weights wn associated with B verify:

|wn| = h(rn+1)
∥Krn ∥

∥Krn+1∥
= h(rn+1)


1 − r2

n+1

1 − r2
n

≥
r2 − r1

√
2


1 − rn+1

1 − rn

≥ d exp(−C0 An) ≥ dεn for all n ≥ 1. (4.9)

Finally, using Lemma 2.4, (4.8) and (4.9):

an(Cϕ) ≥
1

2C2 an(B) ≥
1

2C2 d εn
def
= δεn for all n ≥ 1.

We thus get the desired conclusion (4.1) of Theorem 4.1. �
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5. An upper bound

We do not obtain a fairly good upper bound, and we shall content ourselves with the following
result, whose proof is quite simple and, for the case α = −1, partly contained in [37], but under
a very cryptic form which is not easy to decipher.

Theorem 5.1. Let ϕ be a Schur function and α ≥ −1. Then, we have for the approximation
numbers of Cϕ : Bα → Bα the upper bound:

an(Cϕ) ≤ C inf
0<h<1


n
α+1

2 (1 − h)n +


ρϕ,α+2(h)

h2+α


, n = 1, 2, . . . (5.1)

where C is a constant. In particular, if
ρϕ,α+2(h)

h2+α ≤ e−h/A(h), where the function A: [0, 1] →

[0, 1] is increasing, with A(0) = 0 and with inverse function A−1, we have:

an(Cϕ) ≤ Cn
α+1

2 e−n A−1(1/2n), n = 1, 2, . . . . (5.2)

The proof of (5.1) uses a contraction principle which was first proved for α = −1 [20] and
α = 0 [21], but is also valid for any α ≥ −1, as follows from the forthcoming work [27].

To prove Theorem 5.1, it will be convenient to prove first the following simple lemma.

Lemma 5.2. Let n be a positive integer, g ∈ Bα and f (z) = zng(z). Then, we have:

∥g∥α ≤ Cn
α+1

2 ∥ f ∥α. (5.3)

Proof. Let wn =
n!Γ (2+α)
Γ (n+2+α)

. We first observe that

wk

wk+n
≤ Cnα+1, ∀k ≥ 0, ∀n ≥ 1. (5.4)

Indeed, we have:

wk

wk+n
=

k!

(k + n)!

Γ (k + α + 2 + n)

Γ (k + α + 2)
=

n
j=1

(k + j + α + 1)
(k + j)

≤

n
j=1

j + α + 1
j

=

n
j=1


1 +

α + 1
j


≤ exp


(α + 1)

n
j=1

1
j


≤ Cnα+1,

which proves (5.4).
Now, if f (z) =


∞

k=n ak zk , we have g(z) =


∞

k=0 ak+nzk so that, using (5.4):

∥g∥
2
α =

∞
k=0

|ak+n|
2wk =

∞
l=n

|al |
2wl−n ≤ Cnα+1

∞
l=n

|al |
2wl = Cnα+1

∥ f ∥
2
α,

proving (5.3). �

We shall now majorize an+1(Cϕ), but provided that we change the constant C , this makes no
difference with majorizing an(Cϕ). The choice of the approximating operator R of rank ≤ n for
Cϕ is quite primitive, but in counterpart we shall estimate ∥Cϕ − R∥ rather sharply. We denote
by Pn the projection operator defined by Pn f =

n−1
k=0 f̂ (k)zk and we take R = Cϕ ◦ Pn , i.e., if

we have f (z) =


∞

k=0 f̂ (k)zk
∈ Bα , then R( f ) =

n−1
k=0 f̂ (k)ϕk , so that (Cϕ − R) f = Cϕ(r),
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with, making use of (5.3):

r(z) =

∞
k=n

f (k)zk
= zns(z), with ∥s∥2

α ≤ Cnα+1
∥r∥

2
α, ∥r∥α ≤ ∥ f ∥α. (5.5)

Assume that ∥ f ∥α ≤ 1, fix 0 < h < 1 and denote by µh the restriction of the measure Aϕ,α+2
to the annulus 1 − h < |z| ≤ 1. Then, we have:

∥(Cϕ − R) f ∥
2
α = ∥Cϕ(r)∥

2
α =


D

|r(z)|2d Aϕ,α+2(z)

≤ (1 − h)2n


|z|≤1−h
|s(z)|2d Aϕ,α+2(z)+


1−h<|z|≤1

|r(z)|2d Aϕ,α+2(z)

≤ (1 − h)2n


D
|s(z)|2d Aϕ,α+2(z)+


D

|r(z)|2 dµh(z)

= (1 − h)2n
∥Cϕ(s)∥

2
α +


D

|r(z)|2dµh(z)

≤ C


(1 − h)2n

∥s∥2
α +


D

|r(z)|2dµh(z)



≤ C


nα+1(1 − h)2n

+ sup
0<t≤h

ρϕ,α+2(t)

t2+α


if we use (5.5), as well as (1.6) under the form

D
|r(z)|2dµh(z) ≤ C sup

0<t≤h

ρϕ,α+2(t)

t2+α
∥r∥

2
α,

and we know that ∥r∥α ≤ ∥ f ∥α ≤ 1.
To get rid of the supremum with respect to t , we make use of the following inequality, which

holds for h ≤ 1 − |ϕ(0)| and 0 < ε ≤ 1:

ρϕ,α+2(εh) ≤ Cεα+2ρϕ,α+2(h). (5.6)

For α = 0 or α = −1, this follows respectively from [20, Theorem 4.19, p. 55], and from
[21, Theorem 3.1]. The general case is proved in [27]. Setting t = εh for 0 < t ≤ h, this also
reads ρϕ,α+2(t)

tα+2 ≤ C
ρϕ,α+2(h)

hα+2 , and we can forget the supremum in t in the previous inequalities.
Taking square roots, we get the relation (5.1).

When ρϕ,α+2(h)
h2+α ≤ e−h/A(h), let us take for h the nearly optimal value h = A−1(1/2n), so that

h/A(h) = 2nh. We then have from (5.1), since (1 − h)2n
≤ e−2nh :

an+1(Cϕ)
2

≤ ∥Cϕ − R∥
2
α ≤ Cnα+1

[e−2nh
+ e−h/A(h)

] ≤ 2Cnα+1e−2n A−1(1/2n),

proving (5.2), and ending the proof of Theorem 5.1. �
Let us now indicate three corollaries, which improve results of [18,22,21] respectively.

Corollary 5.3. Suppose that ρϕ,α+2(h) ≤ Ch(2+α)β for some β > 1. Then:

an(Cϕ) ≤ Cn−
(β−1)(α+2)

2 (log n)
(β−1)(α+2)

2 .

In particular, Cϕ belongs to the Schatten class Sp = Sp(Bα) for each p > 2
(β−1)(α+2) .
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Proof. Set γ = (β − 1)(α + 2)/2, a = (α + 1)/2, and c = a + γ . If we apply (5.1) of
Theorem 5.1 with the value h = c log n/n which satisfies nae−nh

= n−γ , as well as the
inequality (1 − h)n ≤ e−nh , we get:

an(Cϕ) ≤ C


n−γ

+


log n

n

γ
≤ C


log n

n

γ
,

ending the proof. �

In [18], we had only the assertion on Schatten classes, for the single value α = −1, and not
the upper bound for the individual approximation numbers an(Cϕ).

Corollary 5.4. Let (εn) a sequence of positive numbers which tends to 0. Then, there exists a
Schur function ϕ with the following properties:

1. ϕ: D → D is surjective and 4-valent;
2. an(Cϕ) ≤ Ce−nεn , n = 1, 2, . . . .

In particular, we can get an(Cϕ) ≤ Ce−
n

log(n+1) and Cϕ is in every Schatten class Sp(Bα), p > 0.

Notice that the sequence (εn) in the statement cannot be dispensed with. Indeed, if ϕ is
surjective, we surely have ∥ϕ∥∞ = 1! And we know from Theorem 3.4 that β(Cϕ) = 1 in
that case.

We begin with a lemma of independent interest.

Lemma 5.5. Let δ: (0, 1] → R be a positive and non-decreasing function. Then there exists a
Schur function ϕ with the following properties:

1. ϕ: D → D is surjective and 4-valent;
2. ρϕ,α+2(h) ≤ δ(h), for h > 0 small enough.

Proof. We begin with the case α = −1. Set, for a = 1/2:

Φa(z) =
a − z

1 − az
, B = Φ2

a ,

and C =
1+a

2(1−a) = 3/2. Note that B
 2a

a+1


= B(0). Let now

bn =
1

4nπ
, ε(h) =

1
2
δ(h/C), εn = ε(bn+1).

In the proof of Theorem 4.1 of [22], using an argument of harmonic measure and of barrier, we
have found a 2-valent symbol ϕ1 with ϕ1(D) = D∗ such that, noting ρϕ for ρϕ,1:

bn+1 < h ≤ bn H⇒ ρϕ1(h) ≤ εn . (5.7)

This gives ρϕ1(h) ≤ ε(bn+1) ≤ ε(h). Let now, as in [22], ϕ = B ◦ ϕ1. This Schur function is
surjective (since ϕ(D) = B(D∗) = B(D) = D), and 4-valent. Moreover, if I = (u, v) is an arc
of T of length h < 1/2 and J = ( u

2 ,
v
2 ), we have B−1(I ) ⊂ Φa(J ) ∪ Φa(−J ) = I1 ∪ I2, where

I1, I2 are two arcs of T of length at most ∥Pa∥∞(h/2) = Ch, since Φa being an inner function,
we have [35], Pa being the Poisson kernel at a:

mΦa = Pam.
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Hence, using (5.7), we obtain:

mϕ(I ) = mϕ1(B
−1(I )) ≤ mϕ1(I1)+ mϕ1(I2) ≤ 2ρϕ1(Ch) ≤ 2ε(Ch) = δ(h),

and ρϕ(h) ≤ δ(h) for small h, by passing to the supremum on all I ’s.
For the general case α ≥ −1, we use the following extension of an inequality from [21]

(which treats the case α = 0, see Remark before Corollary 3.11):

Lemma 5.6. For small h, namely 0 < h < (1 − |ϕ(0)|)/4, we have, for every α > −1:

ρϕ,α+2(h) ≤ C[ρϕ(Ch)]α+2. (5.8)

Proof. Let us define, as in [43], the generalized Nevanlinna counting function Nϕ,α+2 by the
formula

Nϕ,α+2(w) =


ϕ(z)=w

[log(1/|z|)]α+2, w ∈ D \ {ϕ(0)}.

The case α = −1 corresponds to the usual Nevanlinna counting function, which will be denoted
by Nϕ . The partial Nevanlinna counting function Nϕ(r, w) is defined, for 0 ≤ r ≤ 1, by:

Nϕ(r, w) =


ϕ(z)=w

log+(r/|z|),

so that Nϕ(1, w) = Nϕ(w).
Since α + 2 ≥ 1, we have the obvious but useful inequality:

Nϕ,α+2(w) ≤ [Nϕ(w)]
α+2. (5.9)

We shall also make use of the following identity, due to Shapiro ([43, Proposition 6.6], where a
weight 1/r is missing), and which can easily be checked after two integrations by parts:

Nϕ,α+2(w) = (α + 2)(α + 1)
 1

0
Nϕ(r, w)[log(1/r)]α

dr

r
. (5.10)

As it was noticed in [21, Theorem 3.10], this formula reads, for w close to the boundary, as
follows, for 0 < h < (1 − |ϕ(0)|)/4 and |w| > 1 − h:

Nϕ,α+2(w) = (α + 2)(α + 1)
 1

1/3
Nϕ(r, w)[log(1/r)]α

dr

r
. (5.11)

Under the same conditions on h and w, this obviously implies:

Nϕ,α+2(w) ≥
1
C

 1

1/3
Nϕ(r, w)(1 − r2)αrdr =

1
C

 1

0
Nϕ(r, w)(1 − r2)αrdr.

Now, using the same arguments as in [21, Theorem 3.10] and in particular using (5.11) for
ϕr (z) = ϕ(r z), the identity Nϕ(r, w) = Nϕr (w) and an integration in polar coordinates, we
get:

sup
|w|≥1−h

Nϕ,α+2(w) ≥
1
C
ρϕ,α+2(h/C). (5.12)
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The end of the proof is easy: changing h into Ch and using successively (5.12) and (5.9), we get
for small h, depending on ϕ:

ρϕ,α+2(h) ≤ C sup
|w|≥1−Ch

Nϕ,α+2(w) ≤ C sup
|w|≥1−Ch

[Nϕ(w)]
α+2

≤ C[ρϕ(Ch)]α+2,

the last inequality coming from [23, Theorem 3.1]. This ends the proof of (5.8). �

Going back to the proof of Lemma 5.5, if we apply the already settled case α = −1 to the

function δ̃(h) = [δ(h/C)/C]
1
α+2 , we obtain a surjective and 4-valent Schur function ϕ such that:

ρϕ,α+2(h) ≤ C[ρϕ(Ch)]α+2
≤ C[δ̃(Ch)]α+2

= δ(h),

for h small enough. �

Proof of Corollary 5.4. Set a = (α + 1)/2. Provided that we replace (εn) by the decreasing
sequence (ε′n)with ε′n =

1
n +supk≥n εk ≥ εn , we can assume that (εn) decreases. Let A: [0, 1] →

[0, 1] be a function such that A(0) = 0, and which increases (as well as A(t)/t) so slowly that
A(εn + a(log n/n)) ≤ 1/2n; therefore A−1(1/2n) ≥ εn + a(log n/n) and

nae−n A−1(1/2n)
≤ e−nεn .

We now apply Lemma 5.5 to the non-decreasing function δ(h) = h2+αe−h/A(h) to get the result,
in view of (5.2) of Theorem 5.1. �

Our last corollary involves Hardy–Orlicz spaces Hψ and Bergman–Orlicz spaces Bψ . For the
definitions, we refer to [20].

Corollary 5.7. There exists a Schur function ϕ and an Orlicz function ψ such that Cϕ : Hψ
→

Hψ is compact whereas Cϕ : Bψ
→ Bψ is not compact. Moreover, the approximation numbers

an(Cϕ) of Cϕ : Bα → Bα satisfy the upper estimate an(Cϕ) ≤ ae−b
√

n where a, b are positive
constants independent of n, and therefore Cϕ belongs to


p>0 Sp(Bα).

Proof. Let α ≥ −1 be fixed. The Schur function constructed in the proof of Theorem 4.2 of [21]
satisfies the two first assertions, as well as ρϕ(h)/h ≤ e−d/h for some positive constant d > 0.
We now apply (5.8) to get for small h:

ρϕ,α+2(h)

hα+2 ≤ C
[ρϕ(Ch)]α+2

hα+2 ≤ Cα+3e−(α+2)d/Ch
≤ ae−b/h

for positive constants a and b. We can thus apply (5.2) of Theorem 5.1, for some δ > 0, with the
increasing function A(h) = h2/δ (hence A−1(x) =

√
δx) to get the result, diminishing slightly

b to absorb the power factor n
α+1

2 . �

Remark. Let us alternatively consider the entropy numbers en(Cϕ) (see [3] or [17, page 69] for
the definition) of composition operators. Those numbers are also a very good indicator of the
“degree of compactness” of general operators T : X → Y where X, Y are Banach spaces and are
smaller than the approximation numbers, in the following weak sense [40, page 64].

sup
1≤k≤n

[kαek(T )] ≤ Cα sup
1≤k≤n

[kαak(T )], ∀α > 0. (5.13)

(an(T )) ∈ ℓq H⇒ (en(T )) ∈ ℓq , ∀q > 0. (5.14)
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The converse of (5.14) does not hold in Banach spaces, but it does for operators between
Hilbert spaces, by polar decomposition. More precisely, we have [40, page 68] an(T ) ≤ 4en(T )
and, in particular, (en(T )) ∈ ℓq if and only if (an(T )) ∈ ℓq .

We now have the following improved version of Theorem 3.1. Recall that ϕ#(z) =

|ϕ′(z)|(1−|z|2)
1−|ϕ(z)|2

and [ϕ] = ∥ϕ#
∥∞.

Theorem 5.8. Let T = Cϕ be a compact composition operator on Bα , and γ (T ) =

lim infn→∞[en(T )]1/n . Then:

γ (T ) ≥ [ϕ]
1/2. (5.15)

Proof. We proceed as in the proof of Theorem 3.1. First, recall that the entropy numbers en(T )
also have the ideal property [17, page 69], namely:

en(AT B) ≤ ∥A∥en(T )∥B∥.

Then, we use an improved Weyl-type inequality for entropy numbers, due to Carl and Triebel [5],
in which (λn(T ))n≥1 denotes the sequence of eigenvalues of T rearranged in non-increasing
order of moduli and C =

√
2:

n
k=1

|λk(T )|

1/n

≤ Cen(T ). (5.16)

It should be noted that this inequality can itself be improved [11]:
n

k=1

ak(T )

1/n

≤ Cen(T ). (5.17)

Yet, the tempting similar inequality
n

k=1 |λk(T )|
1/n

≤ Can(T ) is wrong (even the inequality

|λn(T )| ≤ Can(T ) is wrong) as follows from an example of [17, pages 133–134]. Note that
(5.17) implies the following:

an(T ) ≥ δrn
H⇒ en(T ) ≥

δ

C
r1/2rn/2.

This might explain why a square root appears in (5.15), and tends to indicate that [ϕ] should
appear instead of [ϕ]

2 in Theorem 3.1.
Now, for every a ∈ D, let again Φa be defined by Φa(z) =

a−z
1−az , for z ∈ D. Set b = ϕ(a) and

defineψ = Φb◦ϕ◦Φa . We already know that 0 is a fixed point ofψ and that Cψ = CΦa ◦Cϕ◦CΦb .
We may assume that |ψ ′(0)| = ϕ#(a) ≠ 0. The sequence of eigenvalues of Cψ is then, as we
have seen, (ψ ′(0)n)n≥0 [44, p. 96]. The Eq. (5.16) then gives us, setting r = |ψ ′(0)| = ϕ#(a):

en(Cψ ) ≥
1
C


n−1
k=0

rk

1/n

=
1
C

r (n−1)/2.

This clearly gives us γ (Cψ ) ≥
√

r . Now, since CΦa and CΦb are invertible operators, the relation
Cψ = CΦa ◦ Cϕ ◦ CΦb and the ideal property of the numbers en(T ) imply that γ (Cϕ) = γ (Cψ ),

and therefore, with the notation of (3.4), γ (Cϕ) ≥

ϕ#(a)

1/2, for all a ∈ D. Passing to the
supremum on a ∈ D, we end the proof of Theorem 5.8. �
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6. The explicit example of lens maps

To ease notation, we shall suppose in this section that α = −1, i.e., we are concerned with
the Hardy space H2. Fix 0 < θ < 1. Denote by H = {z ∈ C; Re z > 0} the right half-plane, by
T : D → C\ {−1} the involutive transformation defined by T (z) =

1−z
1+z , which maps D to H, and

by τθ the transformation z ∈ H → zθ ∈ H. Recall that the associated lens map ϕθ : D → D is:

ϕθ = T ◦ τθ ◦ T .

It is known that the associated composition operator on H2 is in all Schatten classes
Sp [45, Theorem 6.3]. Alternatively, one could use Luecking’s criterion [28]. Therefore, its
approximation numbers decrease rather quickly. Still more precisely, adapting techniques of
Parfenov [37, page 511], we might show the following (where βθ , γθ , . . . are positive constants):

an(Cϕθ ) ≤ γθe−βθ
√

n . (6.1)

We do not detail this adaptation of Parfenov’s methods from Carleson embeddings to
composition operators here (see the forthcoming paper [24]), but shall dwell on the converse
inequality, which is not proved in [37]. First, we show that there is no converse to the inequality
of Theorem 3.1.

Proposition 6.1. The value of [ϕθ ] for the lens map is

[ϕθ ] = θ. (6.2)

In particular, [ϕθ ] can be as small as we wish, although β(Cϕθ ) = 1.

Recall that β is defined in (1.3) and [ϕ] in (3.1).

Proof. First note the simple

Lemma 6.2. Let z ∈ D and v = T (z) ∈ H. Then:

|T ′(z)|(1 − |z|2) = 2Re (T (z)) and
|T ′(v)|

1 − |T (v)|2
=

1
2Re v

.

The two equalities are the same because |T ′(v)| =
1

|T ′(z)| in view of T = T −1. For the first one,
we have:

|T ′(z)|(1 − |z|2) =
2(1 − |z|2)

|1 + z|2
= 2Re (T (z)).

Let now z ∈ D and w = T (z) ∈ H. By the chain rule, we have:

ϕ′
θ (z) = T ′(τθ (w))τ

′
θ (w)T

′(z).

Taking moduli and using the lemma with z and v = τθ (w), we obtain:

|ϕ′
θ (z)|(1 − |z|2)

1 − |ϕθ (z)|2
=

|T ′(τθ (w))|

1 − |T (τθ (w))|2
|τ ′
θ (w)||T

′(z)|(1 − |z|2) =
|τ ′
θ (w)|Rew

Re (τθ (w))
.

Now, setting w = rei t with r > 0 and −π/2 < t < π/2, this writes as well:

ϕ#
θ (z) =

θr θ−1r cos t

r θ cos θ t
=
θ cos t

cos θ t
.
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Using the fact that w runs over H as z runs over D and that the cosine decreases on (0, π/2), we
obtain (6.2) by taking t = 0.

The proof of the second assertion is obvious in view of Theorem 3.4 since ∥ϕθ∥∞ = 1. �

We now give the following more precise form (the small Roman and Greek letters aθ , . . . ,
βθ , . . . will denote positive constants depending only on θ ):

Proposition 6.3. There exist constants bθ , cθ , βθ , γθ with bθ = π


2(1−θ)
θ

such that:

cθe−bθ
√

n
≤ an(Cϕθ ) ≤ γθe−βθ

√
n . (6.3)

In particular, we have β(Cϕθ ) = 1 and Cϕθ is in all Schatten classes Sp, p > 0 but its approxima-
tion numbers do not decrease exponentially.

The upper bound is (6.1). For the lower bound, we shall need two simple lemmas.

Lemma 6.4. Let 0 < σ < 1 and u = (u j ) be a sequence of points of D such that
1−|u j+1|

1−|u j |
≤ σ .

Then, the Carleson constant δu of the sequence u satisfies:

δu ≥ exp


−

a

1 − σ


, with a =

π2

2
.

Proof. We use the following fact [13, pages 203–204]:

δu ≥

∞
j=1


1 − σ j

1 + σ j

2

. (6.4)

This implies log δu ≥ 2


∞

j=1 log( 1−σ j

1+σ j ). Now, expanding the logarithm in power series and
permuting sums, we note that:

2
∞
j=1

log


1 + σ j

1 − σ j


= 4

∞
k=0

σ 2k+1

(2k + 1)(1 − σ 2k+1)

≤ 4
∞

k=0

1

(2k + 1)2(1 − σ)
=

a

1 − σ
,

where we used 1 − σ 2k+1
≥ (2k + 1)(1 − σ)σ 2k+1 and


∞

k=0
1

(2k+1)2
= π2/8. So that

δu ≥ exp

−a/(1 − σ)


, which was to be proved. �

The second lemma is similar.

Lemma 6.5. Let 0 < σ < 1, u j = 1 − σ j , v j = ϕθ (u j ) and v = (v j ). Then, the Carleson
constant δv of the sequence v satisfies:

δv ≥ exp


−

aθ
1 − σ


, with aθ =

π2

2θθ
.
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Proof. We first note that 1 − ϕθ (r) =
2(1−r)θ

(1+r)θ+(1−r)θ
, and so

1 − v j+1

1 − v j
= σ θ

σ jθ
+ (2 − σ j )θ

σ ( j+1)θ + (2 − σ j+1)θ
= σ j ,

with σ j ≤ σ ′
= 1 −

θ
2 2θ (1 − σ). To see this, observe that:

1 − σ j =
(2 − σ j+1)θ − (2σ − σ j+1)θ

σ ( j+1)θ + (2 − σ j+1)θ
def
=

N

D
≥ θ2θ−1(1 − σ) = 1 − σ ′.

Indeed, the function f (x) = xθ + (2 − x)θ increases on [0, 1], so D ≤ f (1) = 2. On the other
hand, the mean-value theorem gives N = 2(1 − σ)θcθ−1

≥ θ(1 − σ)2θ for some c ∈ (0, 2).
Lemma 6.4 then gives the result for the sequence v. �

Proof of Proposition 6.3. Fix an integer n ≥ 1, and take (u j ), (v j ) as in Lemma 6.5. We have
ϕθ (0) = 0, |ϕθ (z)| ≤ |z| and so for 0 < r < 1:

1 − r2

1 − ϕθ (r)2
≥

1 − r

1 − ϕθ (r)
=
(1 − r)[(1 − r)θ + (1 + r)θ ]

2(1 − r)θ
≥
(1 − r)1−θ

2
,

implying

1 − u2
j

1 − v2
j

≥
1
2
σ n(1−θ), for 1 ≤ j ≤ n.

Let now R be an operator of rank<n. There exists a function f =
n

j=1 λ j Ku j ∈ H2
∩ker R

with ∥ f ∥ = 1. We thus have, denoting by Cu and Cv the interpolation constants of the sequences
u and v, and using Lemma 2.2 twice:

∥C∗
ϕθ

− R∥
2

≥ ∥C∗
ϕθ
( f )− R( f )∥2

= ∥C∗
ϕθ
( f )∥2

=

 n
j=1

λ j Kv j


2

≥ C−2
v

n
j=1

|λ j |
2
∥Kv j ∥

2
= C−2

v

n
j=1

|λ j |
2

1 − v2
j

≥
1
2

C−2
v σ n(1−θ)

n
j=1

|λ j |
2

1 − u2
j

≥
1
2

C−2
u C−2

v σ n(1−θ)
∥ f ∥

2

=
1
2

C−2
u C−2

v σ n(1−θ).

Therefore, an(Cϕθ ) = an(C∗
ϕθ
) ≥

1
2 C−1

u C−1
v σ n(1−θ)/2. But it follows from (2.2), Lemmas 6.4

and 6.5 that Cu,Cv satisfy, provided that we now take the value aθ =
π2

θ
> π2

2 +
π2

2θ θ
, since

θ + 21−θ < 2, to absorb the logarithmic factor of (2.2):

CuCv ≤ c−1
θ exp


aθ/(1 − σ)


.

The preceding now gives us (cθ changing from line to line):

an(Cϕθ ) ≥ cθ exp


−

aθ
1 − σ


exp


n(1 − θ)

2
log σ


.
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Finally, adjust σ = 1−λn−1/2 so that aθ
λ

=
1−θ

2 λ, i.e., λ =


2aθ
1−θ

and use log(1− x) ≥ −x − x2

for 0 ≤ x ≤ 1/2; this gives (6.3) with the value

bθ =
2aθ
λ

=


2aθ (1 − θ) = π


2(1 − θ)

θ
,

and that ends the proof of Proposition 6.3. �

Remarks.

(1) The procedure used here to get lower estimates for the approximation numbers for lens maps
might be easily adapted to a general symbol, to provide a new proof of Theorem 3.1. But
the value of β(Cϕ) which we obtain in the general case is worse than the one obtained in
Section 3, therefore we did not think it useful to include this second proof.

(2) It is easy to see that, for the lens map ϕθ , one has ρϕθ (h) ≈ h1/θ . Then Corollary 5.3 gives

an(Cϕθ ) ≤ Cn−
1−θ
2θ (log n)

1−θ
2θ and so Cϕθ ∈ Sp for all p > 2θ/(1 − θ). On the other hand,

we know [45] that Cϕθ ∈


p>0 Sp, so that an(Cϕθ ) must be rapidly decreasing: an(Cϕθ ) ≤

Cqn−q for all q > 0. This shows that Theorem 5.1 is very imprecise in general, becoming
more accurate when ρϕ is very small, as this is the case in Corollary 5.7.

We hope to return to upper bounds for approximation numbers in another work.
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Appendix

In this Appendix, we prove the existence of the compact L claimed in the proof of Lemma 3.8.
Let γ : [0, 1] → ϕ(D) be a simple curve joining 0 and r , i.e., γ (0) = 0 and γ (1) = r ,

and consisting of segments parallel to the coordinate axes. This is always possible since ϕ(D)
is open and connected (for example, if γ had self-intersection points, we may add them and
obtain a graph going from 0 to r . Now, from any finite such graph, we can extract a maximal
tree rooted at 0 and finishing at r , and this tree generates the required simple curve). Denote
by K = γ ([0, 1]) ⊂ ϕ(D) the image of this curve, and set γ (t) = x(t) + iy(t). We define
inductively a sequence 0 = t0 < t1 < · · · < tM = 1 in the following way. Start from t0 = 0 and
γ (t0) = x(t0) = 0 and suppose that we have defined t0 < · · · < t j with γ (t j ) = x(t j ). If t j = 1,
we set M = j and we have finished. If t j < 1, we define t j+1 > t j as follows:

i. If the curve just after t j is followed by a horizontal segment of the real axis, until the time
t j+1, we say that j is an index of horizontal type and we have just defined t j+1.

ii. If the curve just after t j is followed by a vertical segment, we say that j is of vertical type
and we denote by t j+1 the first value of t > t j for which y(t) = 0. Such a value exists since
γ (1) = r , implying y(1) = 0. Set I j = [t j , t j+1]. If γ j is the restriction of γ to I j , we
complete it by symmetry with respect to the real axis in a closed, positively oriented Jordan
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curve δ j with image in K ∪ K̃ . This is possible since γ is simple and γ j intersects the real axis
only at x(t j ) and x(t j+1). The process must stop after a finite number M ≥ 1 of steps, and we
now set L j = {z; Ind (z, δ j ) ≠ 0} and L =

M−1
j=0 L j ∪ K (Ind denotes the winding number).

We claim that this set L has the following properties, which are exactly those required in the
proof of Lemma 3.8. First, L is obviously a compact subset of D. Then [0, r ] ⊂ L . In fact, first
observe that each segment [x(t j ), x(t j+1)] is a subset of L . Indeed, if j is of horizontal type,
this is obvious. If j is of vertical type, we may assume without loss of generality that x(t j ) <

x(t j+1). By definition, x < x(t j ) implies that x ∉ δ j , so that Ind (x, δ j ) = 0 by connection to
−∞. Therefore Ind (x, δ j ) = 1 for x(t j ) < x < x(t j+1) since the index changes by one when
one crosses orthogonally the boundary of a simple curve [36, page 551] and since δ j contains
a vertical segment passing through x(t j ). Now, by the intermediate value theorem, we see that
[0, r ] ⊂ x([0, 1]) ⊂

M−1
j=0 [x(t j ), x(t j+1)] ⊂ L . Finally, ∂L ⊂ E = K ∪ K̃ . Indeed, using

the Jordan curve theorem, we see that ∂L ⊂
M−1

j=0 ∂L j

∪ K ⊂

M−1
j=0 δ j


∪ K ⊂ K ∪ K̃ ,

since δ j ⊂ K ∪ K̃ by definition. �
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