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John's Criterion of Univalence and 
a Problem of Robertson 

JAN G. KRZYZ 

lnstytut Matematyki UMCS, Lublin, Poland 

Dedicated to Professor M. S. Robertson 

This paper deals iv;t!r wrnc unics!encc crrterra related 1 0  [he geor~~etl-ic dructure of the 
--,* 3 ~ :  --i - - J l w  , -.', .; r ' ! : ! :  ~ , z F D) where! I regular and locally univalcnl in the unit disk ID. 
One of these criteria 1s connected with a prohlem proposed hy M. S. Robertson. An 
estimate of the constant i j  ass(;ciated with t h ~ s  prohiem has h e w  giccri, 

AMS (MOS): 30A36 

0. INTRODUCTION. NOTATIONS 

Let Z' be the class of functions f  regular and locally univalent in the 
unit disk D and let 3 be the subciass of ji" cor~~isiiiig ~f ffinctions 
non-univalent in D. For any f  E 7t' the derivative f' is regular and 
does not vanish in IID. Consequently, a single-valued function log 1' is 
uniquely determined by an appropriate choice of log f'(0). While 
looking for univalence criteria, no loss in generality is caused by the 
assumption of local univalence since the equality f'(z,) = 0 eliminates 
f from the competition, so far as univalence is concerned. 

There is a general method of obtaining univalence criteria in If 
which is associated with a suitable non-negative functional iD(f), f  
E YY'. If a = inf{iD(f): f  E G )  > inf(@(f): f  E YY), then obviously 
the condition @ ( f )  < a (and even @ ( f )  < n in many cases) is suffi- 
cient for f E A/' to be univalent. One of the most important univa- 
lence criteria is associated with the functional 
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174 J. G. KRZYZ 

The exact value of the constant 

is still unknown, nevertheless the estimate 1 < fl i 1.21 (cf. e.g. [5] ,  p. 
172) yields Becker's univalence criterion: 

Obviously (0.1) may be expressed in terms of g = log f'. Another 
univalence criterion where log f '  intervenes, was suggested by F. John 
[3] and will be discussed in the next section. 

In this paper we deal with some related univalence criteria, one of 
these being connected with ar! extrernd prob!em proposed by M. S. 
Robertson. We give an estimate for Robertson's constant p associated 
with this problem. All ihese uiieria are periinent to a specific geomet- 
ric structure of the set 

Q, = {log f ' (z )  : z  E D )  (0.4) 

In what follows we aim at exhibiting geometric properties of the set 
involving univalence off E H. 

I. MODULAR AND ANGULAR JOHN CONSTANT 

Consider the functional 

where f E X .  If a , (  f)  < ~ / 2 ,  then the set a, is contained in a 
vertical strip of width a /2 .  On applying Becker's criterion (0.3) we 
readily deduce (cf. sect. 3) univalence of f. Hence we infer the 
existence of a constant y >/ e x p ( ~ / 2 )  such that inf{@,(f): f E G )  
= logy > ~ / 2 .  The exact value of the John constant is still unknown. 
In what follows we shall call y for obvious reasons the modular John 
constant. 

While considering Imlog f'(z) instead of Re log f'(z) we are led to 
the idea of the angular John constant associated with the functional 
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A PROBLEM OF. ROBERTSON 175 

However, in this case the determination of the exact value of 
inf{@,( f )  : j E G ; which may be called angular John constant, i v  
quite easy and is given in 

THEOREM 1 We have 

Proof Suppose that for some f E 3' and all z , ,  zi E D we have 

iarg f ' (z , )  - arg f"(i2)( < a ( 1.4) 

Obviously (1.4) implies boundedness of argl ' iz) .  Siippose that for 
some f i ~ p 6  branc:h of a rg , f f ( i )  = Imioe. f i r )  we have 8; = 

inf argJf '(z) and 8, = suparg r ( z ) ,  i t D; arg f " ( z )  being continuous 
on a c~iii:ected sc! n. it assume.. a t  scme point z ,  E D an intermedi- 
ate va!w 8,, = t ( B i  + H,) .  I t  follows from (1.4) that the values of f'(z) 
are situated in the half-plane { w : iargw - 6r,l -< a /2 j .  Therefore we 
have Re[exp(- iQ,)f'(z)] > 0 and this implies univaience off. 

In order to show that the value n is best possible we have to 
construct for each E > 0 a function f E G such that (arg f'(z,) - 
argj '(i ,)j  i a(1 + c)  for any i : . z2  ED. To this end consider f ( i )  
= ( I  + z)"'. If  zO = - 1 + rexp[ia/(? + <)I, then z,,L, E D  for r > 0 

la 20: sufficiently small. We have f(z,! =f(i?,) = - r'" su ilia: f :- 

univalent in D,  while larg f'(z)! < (a/?)(]  + t), i.e. larg]'(i,) - 
argf'(z,)l < a(1 + t )  for any r , . z2  Ed. This ends the proof. 

The domain L?, pertaining to the function J considered above 
corresponds after rotation by the angle a / 2  to the function h ( z )  
= exp{[(l + ~ ) i  + l]log(l + z ) }  which belongs to G .  In  fact, i t  is 
always possible to f ~ n d  z , , z ,  E D  ( z ,  # z,) satisfying the system of 
equations: 
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176 J. G. KRZYZ 

which implies h(z , )  = h(z2). On the other hand, 

This implies the estimate logy -< n obtained earlier and In a different 
way by Yamashita [7]. 

2, A PROBLEM OF ROBERTSON 

Consider the functional 

Obviousli @,:!: is thc d~anictcr  & a x  5;: ot :hz 7c: 5 ; .  A\  a n  immzdi- 
ate consequence o f  Theorem 1 we ohtain 

COROLLARY i ij 'f E G mid the ~ n e p u i l t y  

holds, then f is univulent in D. 

I t  is a n  open question whether the constant 77 is best possible in the 
univalence criterion (2.2). The answer to this question might be 
obtai~e:! by the de!e:r;.,:nat:c;n c;f :he constan: 

A related problem was proposed a few years ago by M. S. Robert- 
son (private communication to the present author): If f € X' and 
llog f'(z)( < 71/2, then obviously J is univalent because Re  f ' ( z )  > 0. 
Is the constant ~ / 2  best possible? Thus putting 

we are led to the determination of 

which may he called Robertson's constant. There is a simple relation 
between the constants K and  p. We have obviously a3( f )  < 2Q4( f )  
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A PROBLEM OF ROBERTSON 177 

and this implies 

I f  we were able to show that K > n. this wouid provide us wilh two 
essentially new criteria of univalence associated with functionals a, 
and @,, resp. 

We shall now derive an upper estimate for p which also, according 
to (2.6), gives an upper estimate for K. 

THEOREM 2 Let A > n / 2  = 1.57079 . . . be a constant such that each 
F E X sazisj~ing the inequaliy (log F f ( z ) l  < A in D, is univalent in D. 
Then 

Pro(</ Consider the p-symmetric function 

We have 

From the well-known estimate of the second coefficient of a bounded 
univalent function (cf. e.g. [5] ,  p. 23, Ex. 8) we readily obtain a 
corresponding estimate for a bounded p-symmetric function F ( z )  
= (f(ZP))I'" z + A A p + l ~ ~ l + I  + . . . : 

For f as given by (2.8) a corresponding inequality lakes the form 
A  < 2(1 + p ')[I - M ( A ,  p )  PI. In case the opposite inequality 

holds for some A i n / 2  a n d p  E N, it means that F, as given by (2.8); 
is not univalent in D. 
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178 

We shall now prove that 

J .  G.  KRZYZ 

We have from (2.9) 

and hence 

in  particuiar iim,,,M(A. p )  = I and t h ~ s  ~mpiies 

Cunsequently, limp_,p log M ( A ,  p )  = six ( e "  - I)dx and by expo- 
nentiation we obtain (2.1 1). 

From (2.10) and (2.1 1) we conclude that the function (2.8) is not 
univalent if p is large enough and A  satisfies the inequality 

The inequality (2.12) can be written in the following equivalent form: 
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A PROBLEM OF ROBERTSON 179 

have 

n(A) i A n / ( n .  n ! )  = 3.4920.. . >, 3.49003 . . . =log 
,, - 7 

whereas for A = 1.940 we have 

o(A) < A " / ( n  - n !  ) + (estimate of remainder) 
n < 6  

< 3.497 < 3.506. . . = log I - - ( ; 

3. UNWALENCE DOMAINS 

A domain CJ rn the finite piane C wiii he d i e d  a uriivaknce domain 
(for short: a U-domain) if the inclusion D, = {log f'!z) : z E 114 } c f2 
for f E 3' and some branch of log f' implies the univalence off in D. 

Obviously the strip { w : (Im w( < 57/21 is a U-domain. Moreover, 
any subdomain and any translation of a U-domain is also a U- 
domain. Each U-domain corresponds io a pariiciihr ciitci-ien of 
mivz!er?ce. a mnre detailed discussion of U-domains will be pre- 
ceded by some preliminaries. 

Let D be a domain in the finite plane possessing a Green's function 
(in the generalized sense) g(w, w,; 62) = g(w,woj, (cf. e.g. [2], p. 97). 
The finite limit lim, , , , [g (w,  MI,) + loglw - wol] which necessarily ex- 
ists, is called the Robin's constant y(w,; D), while r(wo; Q) 
= exp y(w,; Q) is called the inner radius of Q at w,. 

We shall need a lemma which is actually a variant of Theorem 4.7 
in [I]. 

LEMMA 1 Suppose is ui7all;tic in  D and the values of g! are contained 
in a domain $2 possessing a generalized Green's function. Then for any 

Z E D  

The .yign of equal iy  at some point z,, ED holds on& for the univalent 
function g! and f?r a simp& connected domain 62 = cy(D). 
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Proof We may obviously assume that cy +const. For a fixed 
zo E D consider the function 

which is harmonic in D apart from its isolated singularities. Evidently 
4 has a removable singularity at z, and positive logarithmic poles at 
all a # zo where cy(a) = ~(z,,). Moreover, liminf,,,,,$(z) 0, and 
consequently $(z) > 0 in 119. We have 

and this implies 

= - log( l - I~(~)lrp'(z,) 1 + log r (rp (z,); a) > 0. 

The inequality (3.1) is proved. 

If the sign of equality in (3.1) holds for some z,, then by the 
minimum principle IC, vanishes identically in D, i.e. 

Hence the univalence of cp and simple connectedness of Q immedi- 
ately follow. 

This lemma may be linked together with Becker's univalence crite- 
rion and the symmetrization principle in order to obtain some new 
criteria of univalence. As a matter of example we shall prove 

THEOREM 3 Let D be a domain in the finite plane intersecting each line 
v = const. in the w = u + iu plane in a set of intervals of total length at 
most 77/2. Then Q is a U-domain. 

Proof Let Q satisfy the assumptions stated above and let f E X 
be such that QJ c 8. Suppose that w, = log f'(z,). We may assume 
without loss in generality that w, is purely imaginary since this may 
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A PROBLEM OF ROBERTSON 181 

be achieved by a simultaneous horizontal translation of both S2 and 
Qi. After Steiner symmetrization of Q w.r.t. the imaginary axis we 
obtain a domain Q* contained in the strip !lo = { w  : (Rewl < m / 4 ) .  
On applying the lemma with rp = log f' and the symmetrizatior. 
principle (cf. [I], p. 84) we obtain 

and consequently, f is univalent by Becker's criterion. This ends the 
proof. 

COROI.I.ARY 2 If the inequalit?! P > I were true. the Theorem 3 would 
remain true under the assz;mprim r h ~ l  t.he ia id  kiig& o j  in:en~ais on 
intersection of Q ~ ! i t h  horhmnmi' i'ines does nor surpass / j 71 /2 .  Moreover; 
we would be ub[e lo improve in this case the lower estrrnate o j  ~ o h n ' . ~  
cnnstant as fillows: exp( /371/2) < y. 

I t  1s a n  i~iieiesiing open question, whether the assumption on 
that all the lines u = const. intersect Qf in a set of intervals of total 
length at  most m implies univalence off. If true, this statement would 
imply the univalence of J i g ( u ) d u ,  where g is a Gelfer function, 1.e. a 
function regular in D and such that g ( z  ,) + g(z2)  # 0 for any z ,  , z ,  
E E. 

We shall now prove another generalization of John's criterion. T o  
this end we need following 

LEMMA 2 Let Q be /he rectangle: (Re wl < a ,  ( l m  MI( < h such that 
r (0;  Q )  = 1. Then for the unique k  E (0: I) sutisfiing K r ( k ) / K ( k )  
= a /  b we have 

a = I K  2 ( k ) ,  h = + ~ ' ( k )  = + ~ ( k ' ) ,  k t  = J I k '  (3.3) 

where 

is the complete Legendre elliptic integral. Moreover, for an?, w E Q :  
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182 J .  G. KRZYZ 

Proof The elliptic function z = sn (w ,k ) ,  0 < k < 1 ,  maps the rec- 
tangle Q ,  : IRewl < K ( k ) ,  /Tm n.1 i K ' ( k )  onto the z-plane slit along 
the half-lines ( -  m: - I]. [ I :  + a), the latter domain having the Inner 
radius 2 at the origin. Since the inner radius at w, is invariant under 
conformal mappings g satisfying Ig'(w,)j = 1 ,  we see that r(0:  Q , )  
= 2. The similarity transformation w ++ $ w yields the rectangle 

Q' : (Re wl < K ( k ) ,  ( Im wl < 4 K 1 ( k )  with r ( 0 ;  Q ' )  = 1 .  

If k is chosen so that K ' ( k ) j K ( k )  = b j a ,  the similar rectangles Q, Q '  
are necessarily congruent due to the equality r(0; Q )  = r(0: Q ' )  = 1 .  
This proves (3.3). The inequality (3.5) is easily obtained by Ste~ner 
symmetrization. 

We may now state 

THEOREM 4 Suppose 2 is a domain in the finite w-plane, w = u + ir, 
which is contained in a horizontal .strip o-f ~ . i d t h  K ' !  k )  and intersrctc. on)' 
line c = const. in a set of intervals of total length ar most K ( k ) .   hen 62 
is a U-domain. 

Proof Suppose that f E 2 is such tha: G, c G. In view of 
Lemma 1 and Becker's criterion it is sufficient to show that r ( w ;  3) 
< 1 for all w E 3. As before we may assume that Re w = 0. After 
Steiner symmetrization w.r.t. the imaginary axis we obtain a domain 
2* cnnt~ined in I rectang!e 9 ef Lemma 2. Thcs r ( w ;  2) < r ( w ;  G*) 
& r ( w ;  Q )  < 1 in view of (3.5). This ends the proof. 

Obviously the r61e of u and c in Theorem 4 may be interchanged. 
In particular we have for k ,  = 1 /  42 : a ,  = K ( k , )  = K 1 ( k 0 )  = 

f T - ' / ~ I ' ~ ( ~  / 4 )  = 1.85406 . . . (cf. e.g. [4], Problem 4.7.12). This im- 
plies Corollary 3. If the set Qf is contained in the vertical strip of 
width a, and intersects each line u = const. in a set of intervals of 
total length at most a,, then f is univalent. 

The following problem is suggested by Theorem 4: Let Q be a 
domain in the finite plane which intersects every horizontal (and 
every vertical) line in a set of segments of total length at most K ( k )  
(or K 1 ( k ) ,  resp.). Is it true that r ( w ;  G) < 1 for any w E Q? 

The Schwarz symmetrization leads to the following, well-known 
result: Of all domains C2 having a given area jG/ and containing a 
given point w, [he disk wiih center w has the maximum inner radius 
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A PROBLEM OF ROBERTSON 183 

r ( ~ , ;  a), cf. [6]. p. 192. As a corollary we obtain Theorem 5. If L! is a 
domaln with area iRJ < 7 .   hen $2 is a C'-domain. 

4. FINAL REMARKS 

Professor Becker called my attention to a paper by C ,  D. Minda and 
D. J. Wright recently published in The Rocky Mountain Journal of 
Mathematics which also dealt with restrictions on QJ implying univa- 
lence off .  In particular they consider the case 3, c Q, where Q is a 
rectangle with sides parallel to the coordinate axis. This turns out to 
be a special case of Theorem 4. 

In connection with Theorem 2, Professor Pommerenke remarked 
(privaie corniiiunicaiion) :ha! :he estimate (2.7) of Robertson's con- 
stant iarr be improved as fo!lows 

This results from the fact that the function (2.8) with 4 = - 1.765 is 
not typically real (and hence not univalentj in D for all n E N. 
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