
Hodges-Lehmann scale estimator for Cauchy
distribution

O.Y. Kravchuk∗, P.K.Pollett
SLCAFS, MASCOS

University of Queensland
Hartley Teakle Bld, University of Queensland,

Brisbane, QLD, 4072, Australia;
∗o.kravchuk@uq.edu.au;

phone: (61 7) 33652171; fax: (61 7) 33651177

topic area: rank tests, Hodges-Lehamnn estimator, scale estimation,
hyperbolic secant distribution

Abstract

We draw here on the relation between the Cauchy and hyperbolic
secant distributions to prove that the MLE of the scale parameter
of Cauchy distribution is log-normally distributed and to study the
properties of a Hodges-Lehmann type estimator for the scale parame-
ter. This scale estimator is slightly biased but performs well even on
small samples regardless of the location parameter. The asymptotic
efficiency of the estimator is 98%.

1 Introduction

The Cauchy distribution is a heavy-tail error distribution common
in physics, econometrics and engineering (refer to a brief overview in
[22]). This distribution often results from ratios of random variables
[1], a textbook example being the ratio of two independent standard
normal variables. The Cauchy distribution is a location-scale symmet-
ric distribution (denoted C(µ, σ) throughout the text); the standard

1



Cauchy distribution has a location of zero and a scale of one (C(0, 1)).

The problem of estimation of the location and scale parameters
of Cauchy distribution is challenging. The simple moment estima-
tors do not exist, and alternative estimators are often computation-
ally problematic. Many estimation approaches have been suggested
in the literature: joint maximum (and modified maximum) likelihood
[10, 25, 26], order statistics [5, 24], window estimates [12], empirical
characteristic function [16, 2, 20], minimum distance [3], Bayesian [15]
and linear rank estimators [4, 17]. Such a multitude of estimation pro-
cedures is an attempt to balance the ease of computations with the
efficiency, robustness and consistency of estimators.

The standard Cauchy variable has an interesting property that the
log-transformation of its absolute value (ln |C(0, 1)|) follows a symmet-
ric location-scale distribution – the standard hyperbolic secant distri-
bution (HSD(µ, σ) hereafter, the standard HSD is HSD(0,1)) [18, 17].
It was shown in [17] that the optimal location rank estimator for the
HSD is a fully efficient scale estimator for the Cauchy distribution with
the location parameter of zero. Moreover, it was also proven there that
the Hodges-Lehmann estimator calculated on the log-transformed ab-
solute values from C(0, σ) is more than 98% efficient for the scale pa-
rameter σ. In this paper, we study the asymptotic and small-sample
properties of that estimator and expand its application to the case of
non-centred Cauchy distribution C(µ0, σ) whose location parameter
µ0 6= 0 may or may not be known. Additionally, we add here to the
knowledge about the small-sample and asymptotic behaviour of the
maximum likelihood estimator of the scale parameter and correct the
current misconception that its asymptotic dustribution is normal [13].

The paper is organised in the following way. In Section 2, we
give a proof that the Cauchy maximum likelihood estimator of scale
is asymptotically log-normal. In Section 3, we discuss the distribu-
tion of the Hodges-Lehmann estimator on the log-transformed data
for C(µ, σ), where µ is known. In Section 4, we modify the Hodges-
Lehmann estimator for the case of unknown location parameter. In
Section 5, we compare the small-sample and asymptotic performances
of the maximim likelihood and Hodges-Lehmann estimators. In Sec-
tion 6, we step the reader through a real-life example for the scale
estimation procedures introduced in the paper and conclude the study.
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2 Asymptotic distribution of the MLE

of scale when the location is known

Let us consider a random variable X that follows a centred Cauchy
distribution, C(0, σ), of the density function f :

f(x) =
1

πσ

1
1 + (x/σ)2

, σ > 0.

The natural logarithm of the absolute value of this Cauchy variable
follows the hyperbolic secant distribution, Y = ln |X| ∼ HSD(lnσ, 1),
of the density function g:

g(y) =
1
π

sech(y − lnσ).

The location information number of the HSD is 1/2 [17].
The maximum likelihood estimator of the scale parameter for the
Cauchy distribution of a known location parameter µ0 has the fol-
lowing simple definition:

MLE(σ) =

(
σ̂ :
∑ σ̂2

(x− µ0)2 + σ̂2
=

n

2

)
. (1)

The solution to the maximum likelihood estimator of the scale param-
eter exists for n > 2 and is unique [6].

The exact percentiles of the ratio MLE(σ)/σ, derived by Monte-
Carlo simulations, are tabulated for sample sizes between 10 and 100
in [10]. It was also suggested there that the asymptotic distribution
of the ratio MLE(σ)/σ follows the normal distribution of mean 1 and
variance 2/n. On the other hand, it was informally demonstrated in
[15] that the distribution of the ratio is positively skewed for large
samples. We argue here that the asymptotic distribution of the ratio
is lognormal, with the mean and variance of the natural logarithm
of the variate being 0 and 2/n correspondingly. A proof for this is
outlined below.

Proposition 1: The asymptotic distribution of the MLE of scale
for a sample of n observations from a Cauchy distribution with any
known location parameter µ0, C(µ0, σ), is lognormal(ln σ, 2/n).
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Consider the log-likelihood function of location for a hyperbolic
secant distribution of a location parameter lnσ and the unit scale
parameter, Y ∼ HSD(lnσ, 1):

lnL = −n lnπ −
∑

ln cosh(y − lnσ)), σ > 0.

Hence
∂ lnL

∂ lnσ
=
∑(

1− 2
(exp(y − lnσ))2 + 1

)
,

and the maximum likelihood equation for ln(σ) is

∑(
exp(ln σ)2

exp(y)2 + exp(ln σ)2

)
=

n

2
.

Recalling that Y = ln |X − µ0| is distributed as HSD(lnσ, 1) if and
only if X ∼ C(µ0, σ), the maximum likelihood equation above may be
expressed in terms of X as

∑ σ2

σ2 + (x− µ0)2
=

n

2
,

which is exactly the MLE equation for the scale parameter σ of Cauchy,
(1). By Proposition 1 in [27], the MLE of the location parameter of
HSD is asymptotically unbiased and normally distributed with the
variance of 2/n. Therefore, the MLE of scale for the corresponding
Cauchy C(µ0, σ), where µ0 is known, is lognormal(ln σ, 2/n). This
ends the proof.

The expected value of the MLE of scale is E(MLE(σ)) = σ exp(1/n),
hence the estimator is positively biased. The bias is linear in the scale
parameter and diminishes quickly as n increases. The variance of this
biased estimator is proportional to the square of the true value of the
scale parameter, Var(MLE(σ)) = σ2 exp(2/n)(exp(2/n)− 1).

These results clarify several computational observations about the
properties of the MLE presented elsewhere. In particular, the bias
was estimated as E(MLE(σ)) − σ ∼= σ/n in [19], which corresponds
to the first-order expansion of its exact definition, exp(1/n) − 1 =
1/n+1/(2!n2)+· · ·. Let us also draw the reader’s attention to that, for
samples larger than n = 20, the exact percentiles of MLE(σ)/σ (Table
3, [10]) agree better with the log-normal asymptotic distribution than
with the normal(1,2/n) suggested earlier in [10]. For example, for
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n = 100, the exact 90%-confidence interval of the ratio (0.790, 1.267)
is much closer to the approximate log-normal (0.792, 1.262) defined
by Proposition 1 in this paper than the approximate normal (0.768,
1.232) proposed in [10].

The straightforward connection between the Cauchy distribution
and the HSD allows us to transform easily a location estimator for the
HSD into a scale estimator for the Cauchy distribution. In the fol-
lowing section, we discuss the properties of one of the most common
location rank estimators, the Hodges-Lehmann estimator, in applica-
tion to the scale estimation problem for the Cauchy distribution.

3 Hodges-Lehmann estimator of scale

when the location is known

There exists an optimal linear rank estimator of scale for Cauchy dis-
tribution. It was reported elsewhere that the second component of
the one-sample Cramer-von Mises statistic is fully efficient under the
scale alternative for the centred Cauchy distribution [3, 8]. Addi-
tionally, it was shown that the optimal scores for the rank estimator
of location for the HSD(µ, 1) correspond to the second component
of the Cramer-von Mises statistic [17]. The convergence, distribu-
tional and robustness properties of the optimal rank estimator for the
HSD were also discussed in [17], where it was pointed out that that
asymptotically fully efficient rank estimator does not have a closed
form solution and has to be found iteratively. On the other hand, the
Hodges-Lehmann estimator is 98.6% efficient for the HSD, and can
be easily and uniquely calculated. The asymptotic properties of the
Hodges-Lehmann estimator are also well-known. For the HSD, this
estimator is asymptotically unbiased and normally distributed with
the variance of π4/(48n) [17].

Hodges-Lehmann estimator is defined as a half of the median of
n(n + 1)/2 pairwise sums of observations [14]. For a log-transformed
centred Cauchy, C(0, σ), the corresponding estimator is thus defined as
a half of the median of n(n+1)/2 logarithms of the absolute values of
pairwise products of the Cauchy observations; let us call this estimator
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logHLE(σ):

logHLE(σ) =
1
2
med (ln |XiXj |) , 1 ≤ i, j ≤ n, i ≤ j.

As has been mentioned earlier, the expected value of the logHLE(σ)
is lnσ and its asymptotic variance is 2/(n(π2/4

√
6)2) ≈ 2/(0.986n).

The estimator is asymptotically normally distributed.

Let us define a back-transformed logHLE(σ) (denoted HLE(σ)
hereafter) simply as

HLE(σ) = exp(logHLE(σ)).

For Cauchy data, the HLE(σ) follows the corresponding log-normal
distribution, lognormal(lnσ,2/(n(π2/4

√
6)2)). The expected value and

variance of this back-transformed scale estimator are:

E(HLE(σ)) = σ
√

exp[Var(logHLE(σ))],

and

Var(HLE(σ)) = (exp[Var(logHLE(σ))]− 1) exp[Var(logHLE(σ))]σ2.

The HLE(σ) is a biased estimator. The asymptotic estimation of
the bias is

E(HLE(σ))− σ = σ(2 exp(π2/(4
√

6n))− 1) ≈ σ(exp(1/(0.986n)− 1).

This correction for bias is similar to that for the MLE. The magnitude
of the correction depends on the sample size as well as the scale pa-
rameter itself. The bias correction is between 10% and 1% for samples
with 10 – 100 observations and between 1% and 0.5% for 100 – 200
observations.

If the true location parameter of Cauchy is not known, the logHLE
is not consistent for lnσ. Some further adjustment to the procedure
has to be done in order to account for an unknown location parameter.

4 Hodges-Lehmann estimator of scale

when the location parameter is unknown

Let us start with deriving the distribution of the log-transform of a
non-centred Cauchy distribution.
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Proposition 2: The natural logarithm of the absolute value of a
non-centred Cauchy C(µ 6= 0, σ) follows a symmetric distribution with
the expected value being a function of both µ and σ, ln

√
µ2 + σ2.

Let X ∼ C(0, σ), then for any µ 6= 0, X + µ ∼ C(µ, σ). The
distribution function of Y = ln |X + µ| is easy to derive if we notice
first that

Pr(ln |X + µ| ≤ y) = Pr(X ≤ exp(y)− µ)− Pr(X ≤ − exp(y)− µ),

The expression for the density function g of Y is immediate:

g(y) =
exp(y)

πσ

(
1

1 + (exp(y)− µ)2/σ2
+

1
1 + (exp(y) + µ)2/σ2

)
.

Substituting w = exp(y) and using the Cauchy’s residue theorem for
complex variable, it is easy to show that the expected value of that
distribution is

µy = 2
σ

π

∞∫
0

ln(w)/(σ2 + (w − µ)2)dw = ln(
√

µ2 + σ2).

It is only left to show that

g(y) = g(2µy − y),

which is easy to see if we notice that

(µ2 + σ2) exp(y)
exp(y)2 + (µ2 + σ2 ± µ exp(y))2/σ2

=
exp(y)

1 + (exp(y)± µ)2/σ2
.

This ends the proof.

It is obvious that the HLE for a non-centred Cauchy sample is not
consistent with lnσ.

Several remedies have been proposed for estimating the scale pa-
rameter for a location-scale distribution, whose location parameter is
not known. One approach is to shift the observations by a consistent
and robust estimate of the location parameter [11]. In this section, we
demonstrate that it is sufficient to adjust a random Cauchy sample
by its sample median prior to taking the logarithm of the absolute
values of observations and computing the Hodges-Lehmann estimator
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of scale. One can immediately notice that for samples with an odd
number of observations, subtracting the median would cause the ill-
defined case of ln(0). To avoid this problem, for odd sample sizes, we
suggest using the average of the values adjacent to the median (drop-
ping one observation at random could be another option).

Our choice of the median is governed by the following: the sample
median is unbiased, easy to derive, robust and about 80% efficient
asymptotically for the Cauchy distribution. Additionally, for the pur-
poses of this paper, we are not interested in jointly estimating the
location and scale parameters but rather in the scale parameter alone;
the value of the median is thus of little interest, and is only used as
a means for achieving the HSD-like shape of the distribution of the
log-transformed sample.

The median-adjusted logHLE (denoted logHLEM hereafter) is de-
fined for X ∼ C(µ, σ) as follows:

logHLEM(σ) =
1
2
med(ln |(Xi −m)(Xj −m)|, 1 ≤ i, j ≤ n, i ≤ j,

where m is the sample median.

The variance of the sample median of Cauchy distribution is finite
for samples n ≥ 2, and for large samples it is π2/(4n) [7]. Therefore,
asymptotically, the median-adjusted estimator converges to the case of
known location parameter; the asymptotic distribution of the estima-
tor is thus normal(lnσ, 2/(n(π2/4

√
6)2). For small samples, we would

expect the variance of logHLEM to be larger than that of logHLE as
we introduce extra variation by subtracting the sample median.
In summary, the back-transformed estimator HLEM = exp(logHLEM(σ))
is asymptotically log-normally distributed, slightly biased, has a larger
variance for small samples, but is comparable to the HLE for large
samples. This is also illustrated in Figure 1.

5 Performances of the estimators for

small and large samples

There are two special cases of the MLE of scale, which are worth
mentioning here. The closed form solutions exist for samples of three
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and four observations [9, 21]. For these sample sizes, the closed form
expressions of the logHLE(σ) are also straightforward. We performed
a small simulation study in the R-project [23] on the properties of the
estimators. The study was based on random samples of sizes 3 or 4
generated with the rcauchy() function. Below, we give the explicit ex-
pressions for the MLE and logHLE for samples of 3 and 4 and briefly
discuss their behaviour.

Let three random observations (x, y and z) from a Cauchy distri-
bution be sorted, x < y < z. The MLE of scale is expressed as

MLE(σ) =
√

3
(z − y)(z − x)(y − x)

(z − y)2 + (z − x)2 + (y − x)2
,

or in a slightly re-arranged form,

MLE(σ) =
√

3
2

(
1

z − y
+

1
y − x

− 1
z − x

)−1

.

From the definitions above, it is immediate that the MLE is location-
invariant. The behaviour of the estimator is not consistent with its
asymptotic distribution. Our simulations suggest that the exact MLE
is unbiased. The estimator demonstrates extreme variability, and we
could not find a reliable estimate of its variance numerically in our
computational study. The log-transformation fails to normalise the
exact distribution of the MLE, with the Anderson-Darling test reject-
ing the hypothesis of normality, at the 5% significance, in about 350
from 500 runs (the ad.test() function in the nortest package in R, each
run contained 100 ln(MLE) calculated for n = 3 Cauchy random sam-
ples).

For the same three observations (x, y, z), let the logarithms of their
absolute values (a, b, c) be sorted, a < b < c. The logHLE of scale is
expressed as

logHLE(σ) =
2b + a + c

4
.

The logarithms of the absolute values follow HSD(ln σ, 1), whose vari-
ance is π2/4 [17]. The lower boundary of the variance of the logHLE
is thus 3π2/32. The distribution of the estimator is more normal than
the distribution of ln(MLE), although the normality is not yet satis-
fied at the nominal level. The Anderson-Darling test only rejected,
at the 5% significance, the hypothesis of normality in about 110 out
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of 500 runs (100 logHLE each). The back-transformed estimator of
scale, HLE(σ) is positively biased. The asymptotic estimation of the
bias factor is

√
exp(3π2/32) = 1.588, which is close to an empirical

estimate of 1.52 we derived numerically. In our computational study,
the variance of the HLE (with the bias-correction factor 1.52) was es-
timated to be about 1.77, which matches well its lower boundary of
1.66 under the lognormal approximation.

The variance of the minimum and maximum is unbounded for a
Cauchy sample, and the median-adjusted estimator, logHLEM, is not
defined in the case of n = 3.

For the sample size n = 4, let four random observations be sorted,
w < x < y < z. The MLE of scale is expressed as

MLE(σ) =
√

(z − y)(y − x)(x− w)(z − w)
|z − y + x− w|

.

This estimator is location-invariant and unbiased. A numerical esti-
mate of the variance is 1.90. The distribution is more heavily skewed
than log-normal; the hypothesis of normality was rejected by the
Anderson-Darling test on ln(MLE) in about 140 out of 500 runs at
the 5% level of significance.

For the same four observations, let the logarithms of their absolute
values (a, b, c and d) be sorted a < b < c < d. The logHLE(σ) is
expressed as

logHLE(σ) =


(b + 3c)/4, a + d > 2c
(a + b + c + d)/4, 2b < a + d < 2c
(3b + c)/4, a + d < 2b

The lower boundary of the variance of the logHLE(σ) in this
case is π2/16. The back-transformed estimator, HLE(σ), is positively
biased. The asymptotic estimation of the bias correction factor is√

exp(π2/16) = 1.366, which is close to our numerical estimate of
1.35. The lower boundary of the variance of HLE(σ = 1) is 1.581,
which is close to a numerical estimate of 1.70 from our simulations. In
our computational study, the log-normality was only rejected in about
50 from 500 runs at the 5% significance level.
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The HLEM(σ) is also positively, but less, biased. In our study,
we estimated the bias correction factor as 1.190. The variance of the
estimator is larger than that of HLE(σ), a numerical estimate is 2.90.
The log-normality was rejected in about 120 out of 500 runs at the
5% significance level.

The MLE(σ) and HLE(σ) are positively correlated but by no means
identical. The estimated Pearson coefficients of correlations are about
0.82 for both sample sizes of 3 and 4. However, as the exact distri-
butions are very skewed, we also estimated the Spearman coefficients,
which are about 0.70 and 0.75 correspondingly.

To re-iterate, in the case of known location parameter, for samples
n = 3 and n = 4, the HLE(σ) is less variable than the MLE(σ). The
distribution of HLE(σ) follows reasonably well a log-normal distribu-
tion. In contrast, the distribution of the MLE for n = 3 does not
resemble a log-normal distribution and is ill-behaved, with occasional
extreme values.

For larger samples, the performances of MLE, HLE and HLEM are
comparable. We estimated the parameters of the MLE numerically as
the averages of the corresponding parameters acquired in 100 runs of
1000 random and centred Cauchy samples. For each sample, the MLE
was found with the nlminb() function in R, the tolerance limit for the
objective log-likelihood function was set up at 10−3. The parameters
of HLE and the bias-corrected HLE were also estimated in a similar
computational study (100 runs of 1000 random samples each), where
logHLE was estimated as the median (median() function in R) of the
upper triangle of the cross-product matrix (outer() function in R) of
the logarithms of the absolute values. In Table 1, we show the variance
and expected value of the HLE(σ), MLE(σ) and the bias-corrected es-
timator, i.e. HLE(σ)/(bias factor), for the true scale parameter of
σ = 1 and σ = 3, and the location parameter µ = 0. The agreement
betweent the HLE and MLE is good even for samples as small as 20.

The parameters of the median-adjusted estimator were derived in
a similar computational study and are shown in Table 2 for even-
size samples from C(0, 1) and C(0, 3). The same parameters were
obtained for C(3, 1) and C(3, 3) (as would be expected) and are thus
not presented here. The estimator is less biased and slightly more
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variable for n < 20 in comparison to the other estimators.

6 Example and conclusion

In order to illustrate the estimation procedure, we use the example of
individual deviations from the mean of 15 observations of the verti-
cal semi-diameter of Venus given in [24]: (-0.30, +0.48, +0.63,-0.22,
+0.18, -0.44, -0.24, -0.13, -0.05, +0.39, +1.01, +0.06, -1.40, +0.20,
+0.10).

The maximum likelihood estimator of scale found with nlminb()
function in R2.7.2 is 0.2614. Assuming its log-normality and using
the estimate of the variance for this sample size for σ = 1 from Ta-
ble 1, 0.172, the approximate 95% confidence interval of the true
scale parameter is given by the 2.5% and 97.5% percentiles of the
lognormal(ln(0.2614), ln(0.172+1)) distribution. This 95% confidence
interval is (0.1106, 0.5271). Using the asymptotic variance of 2/15 for
the log-normal distribution of MLE, lognormal(ln(0.2614), 2/15), we
estimate an asymptotic 95% confidence interval to be (0.1278, 0.5347).
Finally, referring to a table of exact percentiles in [10] (Table 3, the
location parameter is known), the 95% confidence interval estimate is
(0.1268, 0.5526). As we can see, the widths of the estimates based
on both the exact percentiles in [10] and our estimation of the exact
variance are close, with the both intervals being only about 3% wider
than the asymptotic estimate.

The Hodges-Lehmann estimator on the logarithms of the absolute
values of the data in the example is logHLE(σ) = -1.3443. The back-
transformed HLE of scale is thus 0.2607. Assuming that the estimator
is log-normal and using the exact variance from Table 1, the approxi-
mate 95% confidence interval is (0.1086, 0.5311). The asymptotic 95%
confidence interval (assuming the variance of logHLE is 2/(0.986n)) is
(0.1268, 0.5360). The approximate confidence interval for HLE over-
laps with the exact confidence interval for MLE, and is only 1.5%
wider. The asymptotic confidence intervals for MLE and HLE are
very similar.

The median of the sample is an observed value of 0.06; the median
of the remaining observations is 0.025. The median-adjusted HLE is
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0.2656. With the conservative estimate of the variance for n = 14 from
Table 2 and assuming log-normality, the approximate 95% confidence
interval is (0.1060, 0.5563). Referring to the table of exact percentiles
for the case of unknown location parameter in [10] (Table 4), the 95%
confidence interval based on the MLE=0.2614 is (0.1327, 0.6254). The
interval based on logHLEM is 4% narrower.

As we can see the point estimates as well as the confidence inter-
vals are very similar for all three estimation procedures (MLE, HLE
and HLEM), and the estimates based on the HLE and HLEM are
comparable to their MLE counterparts.

In this paper, we discussed the option of using the common Hodges-
Lehmann estimation procedure for estimating the scale parameter of
Cauchy distribution. When the location parameter is not known, we
suggest adjusting the data by the sample median prior to conduct-
ing the computations for the scale estimation. We showed here that
the Hodges-Lehmann estimator is asymptotically fully efficient, log-
normally distributed and comparable to the maximum likelihood es-
timator for small and large samples of scale whether the location pa-
rameter is known or not. The asymptotic efficiency of the estimator
is more than 98%.

The results reported in this paper are of interest for researchers
working with Cauchy and hyperbolic secant distributions or in the
area of rank estimators.
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C(0, 1) C(0, 3)
expected value / variance expected value / variance

size, n HLE(σ) MLE(σ) HLE(σ)/bc HLE(σ) MLE(σ) HLE(σ)/bc
10 1.115/0.314 1.110/0.302 1.009/0.257 3.346/2.810 3.336/2.725 3.027/2.301
11 1.102/0.270 1.102/0.269 1.006/0.224 3.313/2.456 3.295/2.348 3.025/2.047
12 1.094/0.240 1.091/0.233 1.006/0.203 3.282/2.162 3.273/2.101 3.020/1.830
13 1.086/0.216 1.083/0.208 1.006/0.185 3.259/1.947 3.251/1.885 3.018/1.669
14 1.079/0.195 1.078/0.191 1.005/0.169 3.240/1.760 3.233/1.717 3.016/1.526
15 1.074/0.178 1.071/0.172 1.004/0.156 3.218/1.603 3.209/1.538 3.011/1.403
20 1.054/0.124 1.052/0.121 1.002/0.112 3.160/1.140 3.158/1.087 3.006/1.008
25 1.042/0.094 1.040/0.093 1.002/0.088 3.126/0.857 3.125/0.831 3.004/0.791
30 1.035/0.077 1.034/0.075 1.001/0.072 3.105/0.695 3.105/0.684 3.004/0.650
35 1.030/0.065 1.028/0.063 1.001/0.061 3.090/0.583 3.086/0.571 3.002/0.550
40 1.026/0.056 1.027/0.055 1.001/0.053 3.080/0.504 3.076/0.489 3.003/0.479
50 1.021/0.044 1.020/0.043 1.001/0.042 3.062/0.395 3.064/0.387 3.002/0.379
60 1.017/0.036 1.017/0.035 1.000/0.035 3.052/0.325 3.052/0.319 3.002/0.315
80 1.014/0.026 1.014/0.026 1.000/0.026 3.040/0.239 3.038/0.234 3.001/0.233
100 1.010/0.021 1.010/0.021 1.000/0.021 3.030/0.190 3.030/0.186 3.000/0.186

Table 1: The expected value/variance of the biased HLE and MLE and
bias-corrected HLE/(bias correction factor) for samples from centred Cauchy
distributions C(0, 1) and C(0, 3). The simulations were performed in the
R-project, R2.7.2; each parameter in the table is the average of 100,000
corresponding estimators.
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Figure 1: Exact distributions of the back-transformed HLE (upper his-
togram) and median-adjusted HLE (lower histogram) for samples of 10 obser-
vations, and the QQplot of the exact distributions of HLE(σ) and HLEM(σ)
for samples of 100 observations (100,000 samples from C(0, 1) generated with
rcauchy() in R2.7.2).
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size, n Expected value/variance
σ = 1 σ = 3

10 1.012/0.326 3.039/2.932
12 1.004/0.243 3.013/2.191
14 1.001/0.196 2.999/1.755
20 0.997/0.124 2.990/1.107
30 0.996/0.077 2.989/0.686
40 0.997/0.056 2.989/0.497
50 0.996/0.044 2.991/0.392
60 0.997/0.036 2.991/0.321
80 0.998/0.026 2.993/0.238
100 0.998/0.021 2.995/0.189

Table 2: Estimated expected value and variance of the median-adjusted
HLEM(σ) for small and large samples from Cauchy C(0, 1) and C(0, 3)
(100,000 runs of rcauchy() in R2.7.2).
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