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It is known [1, Chap. 4] that if the coefficients and the right-hand side of a linear uniformly
parabolic second-order equation belong to the anisotropic Hölder space Cm,α

(
D̄

)
, m = 0, 1, . . . ,

α ∈ (0, 1), in the layer D = R
n×(0, T ), 0 < T < ∞, and the initial function belongs to Cm+2,α (Rn),

then the bounded solution of the Cauchy problem belongs to the space Cm+2,α
(
D̄

)
. This assertion

fails for the anisotropic Lipschitz spaces Cm,1
(
D̄

)
. More precisely, if the right-hand side belongs

to the space Cm,1
(
D̄

)
, then the solution does not necessarily belong (even locally) to the space

Cm+2,1(D) [2]. For the heat equation, we have shown in [3] that the solution belongs to the slightly
wider anisotropic Zygmund space Hm+3

(
D̄

)
. In this result, the right-hand side and the initial

function are also assumed to belong to the Zygmund spaces Hm+1

(
D̄

)
and Hm+3 (Rn), respectively.

In the present paper, we generalize these results to parabolic equations with variable coefficients
that belong to the same anisotropic Zygmund space as the right-hand side. We show that, in this
case, the solution also belongs to the Zygmund space. Thus we have constructed a smoothness
scale for solutions of the Cauchy problem, which is a complete analog of the scale of Hölder spaces
for integer values of the smoothness exponent.

1. DEFINITIONS AND NOTATION

We introduce the following notation:

x = (x1, . . . , xn) ∈ R
n, |x| =

(
x2

1 + · · · + x2
n

)1/2
, k = (k1, . . . , kn) , |k| = k1 + · · · + kn.

We set ∂t = ∂/∂t, ∂i = ∂/∂xi, ∂ij = ∂i∂j , and ∂k
x = ∂k1

1 ∂k2
2 . . . ∂kn

n . The Cauchy problem is
considered in the layer D = R

n × (0, T ), 0 < T < ∞.
For a domain Ω ⊂ D, we set H0(Ω) = L∞(Ω) with the norm |f |0,Ω = vrai sup

Ω
|f |. For positive

integer a, we need the anisotropic Zygmund spaces Ha

(
Ω̄

)
. Let

Δxf(x, t) = f(x + Δx, t) − f(x, t),
Δ2

xf(x, t) = f(x + 2Δx, t) − 2f(x + Δx, t) + f(x, t).

The differences Δtf and Δ2
tf are defined in a similar way.

We set

[f ]1,Ω = sup
Ω

|Δ2
xf(x, t)|
|Δx| + sup

Ω

|Δtf(x, t)|
|Δt|1/2

and

〈f〉β,Ω = sup
Ω

∣∣Δβ
t f(x, t)

∣∣

|Δt|β/2
,

β = 1, 2. From now on, the least upper bound is taken over differences in which all points lie in
the domain Ω.
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We set
[f ]a,Ω =

∑

|k|+2s=a−1

[
∂k

x∂s
t f

]
1,Ω

for integer a ≥ 2,
〈f〉a,Ω =

∑

|k|+2s=a−2

〈
∂k

x∂s
t f

〉
2,Ω

for a ≥ 3, and
|f |a,Ω =

∑

|k|+2s≤a−1

∣
∣∂k

x∂s
t f

∣
∣
0,Ω

+ [f ]a,Ω + 〈f〉a,Ω

for positive integer a. By Ha

(
Ω̄

)
we denote the space of functions f defined in Ω such that the

derivatives ∂k
x∂s

t f , |k| + 2s < a, exist and |f |a,Ω is finite.
Functions f defined in a domain Q ⊂ R

n can be treated as functions f̃ in the domain
Ω = Q × (0, T ) ⊂ R

n+1 independent of t. This permits one to define isotropic Zygmund spaces
Ha(Q) with the use of the above-introduced notation; namely,

Ha(Q) =
{

f : Q → R | |f |a,Q =
∣
∣∣f̃

∣
∣∣
a,Ω

< ∞
}

.

The Zygmund spaces are obtained from the corresponding Lipschitz spaces if one replaces the
first-order differences in the definition by second-order differences. For example, for the function
f ∈ H1([0, 1]), we have |Δ2

xf(x)| ≤ C|Δx|. In this case, the first difference satisfies the inequal-
ity [4, p. 135]

|Δxf(x)| ≤ C|Δx|(| ln |Δx|| + 1). (1)

This estimate is sharp, as shown by the example f(x) = x ln x ∈ H1([0, 1]). On the other hand, the
function |x − 1/2| ln |x − 1/2| satisfies inequality (1) but does not belong to the space H1([0, 1]).
Thus functions belonging to Zygmund spaces cannot be characterized by their first modulus of
continuity.

Now we define weighted anisotropic Zygmund spaces H(b)
a (D) in the layer D. We set

b+ = max(b, 0), |f |(b)0,D = vrai sup
D

tb+/2|f |.

For positive integer a and for integer b ≥ −a, we set

[f ](b)a,D =
∑

|k|+2s=a−1

sup
(x,t)∈D

t(a+b)/2

∣
∣Δ2

x∂
k
x∂s

t f(x, t)
∣
∣

|Δx|

+
∑

|k|+2s=a−1

sup
(x,t)∈D,

0<Δt<T−t

t(a+b)/2

∣
∣Δt∂

k
x∂s

t f(x, t)
∣
∣

|Δt|1/2
,

〈f〉(b)1,D = sup
(x,t)∈D,

0<Δt<T−t

t(1+b)/2 |Δtf(x, t)|
|Δt|1/2

,

〈f〉(b)a,D =
∑

|k|+2s=a−2

sup
(x,t)∈D,

0<Δt<(T−t)/2

t(a+b)/2

∣∣Δ2
t∂

k
x∂s

t f(x, t)
∣∣

|Δt| if a ≥ 2,

|f |(b)a,D =
∑

|k|+2s≤a−1

∣
∣∂k

x∂s
t f

∣
∣(|k|+2s+b)

0,D
+ [f ](b)a,D + 〈f〉(b)a,D if b ≥ 0,

|f |(b)a,D = |f |−b,D +
∑

−b<|k|+2s≤a−1

∣∣∂k
x∂s

t f
∣∣(|k|+2s+b)

0,D
+ [f ](b)a,D + 〈f〉(b)a,D if b < 0.

(2)
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For nonnegative integer a and integer b ≥ −a, by H(b)
a (D) we denote the space of functions f

defined in D such that there exist all derivatives ∂k
x∂s

t f , |k| + 2s < a, and |f |(−b)
a,D is finite.

2. THE CAUCHY PROBLEM

In the layer D, we consider a second-order parabolic operator

Lu = ut − aij(x, t)∂iju − bi(x, t)∂iu − c(x, t)u (3)

whose coefficients satisfy the uniform parabolicity condition

(∃λ > 0) λ|ξ|2 ≤ aij(x, t)ξiξj ≤ λ−1|ξ|2, (x, t) ∈ D̄, ξ ∈ R
n, (4)

and the conditions
aij , bi, c ∈ Hm

(
D̄

)
, |aij |m,D , |bi|m,D , |c|m,D ≤ A (5)

for some positive integer m.
Consider the Cauchy problem

Lu = f in D, u|t=0 = ψ. (6)

Theorem 1. Let m be a positive integer, let the coefficients of the operator (3) satisfy condi-
tions (4) and (5), and let f ∈ Hm

(
D̄

)
and ψ ∈ Hm+2 (Rn). Then the bounded solution u of the

Cauchy problem (6) belongs to Hm+2

(
D̄

)
; moreover,

|u|m+2,D ≤ C(n,m, T, λ,A) (|f |m,D + |ψ|m+2,Rn) .

Proof. Consider the case m = 1. First, suppose that the lower-order coefficients are lacking
in the operator: Lu = ut − aij(x, t)∂iju. Let us prove the assertion of the theorem in the layer
Dτ = R

n×(0, τ), where τ is a sufficiently small positive number to be specified below. The assertion
of the theorem in the entire layer D is then obtained by a “step-by-step argument.”

If a function u(x, t) is a solution of the Cauchy problem (6) in Dτ , then the function ũ(x, t) =
u

(
τ 1/2x, τt

)
is a solution of the problem

∂tũ − ãij∂ij ũ = f̃ in D1, ũ|t=0 = ψ̃,

where ãij(x, t) = aij

(
τ 1/2x, τt

)
, f̃(x, t) = τ−1f

(
τ 1/2x, τt

)
, and ψ̃(x) = ψ

(
τ 1/2x

)
. Furthermore,

[ãij]1,D1
≤ τ 1/2A. Moreover, the space H1 (Rn) is continuously embedded in the Hölder space

C1/2 (Rn) [5, p. 274]; consequently,

[ãij(·, t)]1/2,Rn = sup
x∈Rn, |Δx|>0

|Δxãij(x, t)|
|Δx|1/2

= τ 1/4 [aij(·, τ t)]1/2,Rn

≤ Cτ 1/4 |aij |1,Dτ
≤ CAτ 1/4, 0 ≤ t ≤ 1.

Therefore, to prove the inclusion u ∈ H3

(
D̄τ

)
, it suffices to justify the desired assertion in the layer

D1 assuming that the coefficients aij satisfy the uniform parabolicity condition (4) and vary slowly:

[aij]1,D1
≤ τ 1/2A, [aij(·, t)]1/2,Rn ≤ CAτ 1/4, 0 ≤ t ≤ 1. (7)

Let us show that, for sufficiently small τ , the conditions aij ∈ H1

(
D̄1

)
, together with conditions (4)

and (7), imply the estimate

|u|3,D1 ≤ C(n, λ,A, τ) (|Lu|1,D1 + |u(·, 0)|3,Rn) (8)

for any function u ∈ H3

(
D̄1

)
. Then the solvability of the Cauchy problem in the space H3

(
D̄1

)

can be obtained from the solvability of the Cauchy problem for the heat equation in H3

(
D̄1

)
[3]

by the method of continuation with respect to a parameter.
First, let us prove some auxiliary assertions.
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Lemma 1. Let m ∈ N and f, g ∈ Hm

(
D̄

)
. Then fg ∈ Hm

(
D̄

)
, and the estimate

|fg|m,D ≤ C|f |m,D|g|m,D

is valid.

Proof. The inequality
|h1h2|l,Rn ≤ C |h1|l,Rn |h2|l,Rn (9)

was proved in [6, p. 120 of the Russian translation] for functions h1 and h2 belonging to the
isotropic Zygmund space Hl (Rn), l ∈ N. The functions f and g can be continued to functions
f̃ , g̃ ∈ Hm (Rn+1) such that |f̃ |m,Rn+1 ≤ C|f |m,D and |g̃|m,Rn+1 ≤ C|g|m,D [5]. By using the esti-
mate (9) for the derivatives f̃ g̃ separately with respect to space and time variables [and by also
using the estimate (9) for half-integer l, i.e., for Hölder spaces, in the latter case], we obtain the
assertion of the lemma.

Let ζ ∈ C∞ (Rn), 0 ≤ ζ(x) ≤ 1, be a function such that ζ(x) = 1 for |x| ≤ 1 and ζ(x) = 0
for |x| ≥ 2. We set ζξ

R(x) = ζ (R−1(x − ξ)) for R ≥ 1 and ξ ∈ R
n and ζY

R (x, t) = ζξ
R(x) for

Y = (ξ, χ) ∈ D̄1, and by GR(Y ) = {(x, t) ∈ R
n+1 | |x − ξ| < R, 0 < t < 1} we denote the cylinder

in D1 with axis passing through the point Y and with radius R.

Lemma 2. Let m ∈ N, f ∈ Hm

(
D̄1

)
, and R ≥ 1. Then

|f |m,D1 ≤ 4 sup
Y ∈D1

∣
∣ζY

R f
∣
∣
m,D1

.

Proof. First, let us verify the inequality

|f |m,D1 ≤ 4 sup
Y ∈D1

|f |m,GR(Y ). (10)

Indeed, if 2s + k ≤ m − 1, then
∣∣∂s

t ∂
k
xf

∣∣
0,D1

= supY ∈D1

∣∣∂s
t ∂

k
xf

∣∣
0,GR(Y )

. If 2s + k = m − 1 and
the points of the difference Δ2

x∂
s
t ∂

k
xf lie in some ball with radius 1 and center Y ∈ D, then∣

∣Δ2
x∂

s
t ∂

k
xf

∣
∣ ≤ |Δx|

∣
∣∂s

t ∂
k
xf

∣
∣
1,GR(Y )

. But if the difference step satisfies |Δx| > 1, then

∣
∣Δ2

x∂
s
t ∂

k
xf

∣
∣ ≤ 4

∣
∣∂s

t ∂
k
xf

∣
∣
0,D1

≤ 4|Δx| sup
Y ∈D1

|f |0,GR(Y ).

The differences with respect to t can be considered in a similar but simpler way. The proof of
inequality (10) is complete. It remains to note that |f |m,GR(Y ) ≤ |ζY

R f |m,D1
, since ζY

R = 1 in GR(Y ).
The proof of the lemma is complete.

Lemma 3. Let f, g ∈ H1

(
D̄1

)
, R ≥ 1, and Y ∈ D1. Then

|fg|1,GR(Y ) ≤ C|f |1,G2R(Y )|g|1,G2R(Y ).

Proof. For the difference with respect to t, we have

|Δt[f(x, t)g(x, t)]| ≤ |f(x, t)Δtg(x, t)| + |g(x, t + Δt)Δtf(x, t)|
≤ 2|Δt|1/2|f |1,GR(Y )|g|1,GR(Y )

for (x, t), (x, t + Δt) ∈ GR(Y ). The difference with respect to x satisfies the inequality
∣
∣Δ2

x[f(x, t)g(x, t)]
∣
∣ ≤ 4|Δx||f |0,GR(Y )|g|0,GR(Y )
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for |Δx| ≥ 1. If |Δx| < 1, then, by using the estimate (1) and the representation

Δ2
x[f(x, t)g(x, t)] = f(x + Δx, t)Δ2

xg(x, t) + g(x + Δx, t)Δ2
xf(x, t)

+ Δxf(x, t)Δxg(x, t) + Δxf(x + Δx, t)Δxg(x + Δx, t),

we obtain the inequality
∣∣Δ2

x[f(x, t)g(x, t)]
∣∣ ≤ |Δx||f |0,GR(Y )[g]1,GR(Y ) + |Δx||g|0,GR(Y )[f ]1,GR(Y )

+ C|Δx|2(| ln |Δx|| + 1)2|f |1,G2R(Y )|g|1,G2R(Y )

≤ C|Δx||f |1,G2R(Y )|g|1,G2R(Y ).

The proof of the lemma is complete.
Let us now prove inequality (8). We fix u ∈ H3

(
D̄1

)
, Y = (ξ, χ) ∈ D1, R ≥ 1, and let ζY

R be the
function occurring in Lemma 2. By L(Y ) = ∂t − aij(Y )∂ij we denote the parabolic operator with
coefficients “frozen” at the point Y . By using estimates for solutions of the Cauchy problem in the
Zygmund space H3

(
D̄1

)
for the heat equation [3], we obtain

∣
∣ζY

R u
∣
∣
3,D1

≤ C
(∣
∣ζξ

Ru(·, 0)
∣
∣
3,Rn +

∣
∣L(Y )

(
ζY

R u
)∣∣

1,D1

)

≤ C
(∣∣ζξ

Ru(·, 0)
∣∣
3,Rn +

∣∣ζY
R Lu

∣∣
1,D1

+
∣∣ζY

R (L − L(Y ))u
∣∣
1,D1

+ R−1|u|3,D1

)

≤ C

(

|u(·, 0)|3,Rn + |Lu|1,D1 +
n∑

i,j=1

∣
∣ζY

R (aij − aij(Y )) ∂iju
∣
∣
1,D1

+ R−1|u|3,D1

)

.

(11)

The estimate for the first two terms on the right-hand side in inequality (11) has been obtained
with the use of inequality (9) and Lemma 1, respectively, and the last term estimates all terms in
L(Y ) (ζY

R u) containing derivatives of the function ζY
R .

By applying Lemma 3 to the third term, we obtain
∣
∣ζY

R (aij − aij(Y )) ∂iju
∣
∣
1,D1

=
∣
∣ζY

R (aij − aij(Y )) ∂iju
∣
∣
1,G4R(Y )

≤ C
∣
∣ζY

R

∣
∣
1,G8R(Y )

|(aij − aij(Y ))|1,G16R(Y ) |∂iju|1,G16R(Y )

≤ C
∣
∣ζY

R

∣
∣
1,D1

|(aij − aij(Y ))|1,G16R(Y ) |u|3,D1 .

The norm |ζY
R |1,D1

is bounded above by a constant independent of R ≥ 1 and Y . By using
condition (7), we obtain

|(aij − aij(Y ))|0,G16R(Y ) ≤ C [aij(·, χ)]1/2,Rn τ 1/4R1/2 + [aij ]1,D1
≤ CA

(
τ 1/4R1/2 + τ 1/2

)
,

[(aij − aij(Y ))]1,G16R(Y ) = [aij ]1,G16R(Y ) ≤ [aij]1,D1
≤ Aτ 1/2.

Thus we have estimated the third term in (11), and inequality (11) acquires the form
∣
∣ζY

R u
∣
∣
3,D1

≤ C
(
|u(·, 0)|3,Rn + |Lu|1,D1 +

(
τ 1/4R1/2 + τ 1/2 + R−1

)
|u|3,D1

)
,

where C is independent of R, Y , and τ . By using Lemma 2, we obtain

|u|3,D1 ≤ C
(
|u(·, 0)|3,Rn + |Lu|1,D1 +

(
τ 1/4R1/2 + τ 1/2 + R−1

)
|u|3,D1

)
.

By choosing first R large enough and then τ small enough to ensure that the coefficient of |u|3,D1

on the right-hand side in the last inequality is equal to 1/2, we obtain inequality (8).
It remains to prove the assertion of the theorem for m = 1 for the case in which the operator L

contains lower-order terms bi, c ∈ H1

(
D̄

)
. We take an α ∈ (0, 1). Since Hl

(
D̄

)
⊂ C l−1,α

(
D̄

)
, l ∈ N
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[5, p. 274], where C l−1,α
(
D̄

)
are parabolic Hölder spaces, it follows that problem (6) is a Cauchy

problem with coefficients and right-hand side in C0,α
(
D̄

)
and with the initial function in C2,α (Rn).

Consequently [1, Chap. 4], u ∈ C2,α
(
D̄

)
; moreover, the norm of this solution in the space C2,α

(
D̄

)

admits the estimate

|u|2+α,D ≤ C (|f |α,D + |ψ|2+α,Rn) ≤ C (|f |1,D + |ψ|3,Rn) .

We set L0u = ut − aij∂iju. Then

L0u = f + bi∂iu + cu = F ∈ H1

(
D̄

)
, |F |1,D ≤ C (|f |1,D + |ψ|3,Rn) .

By virtue of preceding considerations, u ∈ H3

(
D̄

)
and

|u|3,D ≤ C (|f |1,D + |ψ|3,Rn) .

The proof of the theorem for m = 1 is complete.
For m ≥ 2, the proof goes by induction. Let the desired assertion be valid for some m ≥ 1,

and let the assumptions of the theorem with m replaced by m + 1 hold. Then the derivatives ∂iu,
i = 1, . . . , n, of the solution of problem (6) are the solutions of the Cauchy problems

Lv = Fi in D, v|t=0 = ∂iψ,

where the right-hand sides Fi = ∂if + L∂iu − ∂i(Lu) contain spatial derivatives of u of order ≤ 2,
and, by the induction assumption,

Fi ∈ Hm

(
D̄

)
, |Fi|m,D ≤ C

(
|∂if |m,D + |f |m,D + |∂iψ|m+2,Rn

)
.

This, together with the induction assumption, implies that

∂iu ∈ Hm+2

(
D̄

)
, |∂iu|m+2,D ≤ C (|f |m+1,D + |ψ|m+3,D) .

Since the derivatives with respect to t can be expressed via derivatives with respect to x and the
derivatives of the right-hand side, we have the desired assertion. The proof of the theorem is
complete.

Now consider the Cauchy problem with less smooth data. The right-hand side of the equation
is assumed to satisfy the Zygmund condition locally, and the weighted space containing it is chosen
so as to ensure that the solution belongs to the spaces H1

(
D̄

)
or H2

(
D̄

)
, which are analogs of the

Hölder parabolic spaces Cα
(
D̄

)
and C1+α

(
D̄

)
for α = 1. In this case, the highest derivatives of

the solution belong to the same space as the right-hand side.

Theorem 2. Suppose that l = 0, 1, f ∈ H
(l)
1 (D), ψ ∈ H2−l (Rn) , and the coefficients of the

operator L satisfy conditions (4) and (5) for m = 1. Then the bounded solution u of the Cauchy
problem (6) belongs to the space H(l−2)

3 (D), and

|u|(l−2)
3,D ≤ C(n,m, T, λ,A)

(
|f |(l)1,D + |ψ|2−l,Rn

)
.

In particular [see (2)], we have the inclusion u ∈ H2−l

(
D̄

)
.

This theorem was proved in [3] for the heat equation. The derivation of the inequality

|u|(l−2)
3,D ≤ C

(
|Lu|(l)1,D + |u(·, 0)|2−l,Rn

)

for an arbitrary function u ∈ H
(2−l)
3 (D) can be performed in the same way as in Theorem 1. Then,

by using the method of continuation with respect to a parameter, we obtain the assertion of the
theorem.
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