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ON NONMEASURABLE FUNCTIONS OF TWO VARIABLES
AND ITERATED INTEGRALS

ALEXANDER KHARAZISHVILI

Abstract. Following the paper of Pkhakadze [7], we consider some prop-
erties of real-valued functions of two variables, which are not assumed to
be measurable with respect to the two-dimensional Lebesgue measure on
the plane R2, but for which the corresponding iterated integrals exist and
are equal to each other. Close connections of these properties with certain
set-theoretical axioms are emphasized.
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According to the classical Fubini theorem, if a given function f : [0, 1]2 → R
of two real variables is bounded and Lebesgue measurable, then there exist the
corresponding iterated integrals and the equality

1∫

0

( 1∫

0

f(x, y)dx

)
dy =

1∫

0

( 1∫

0

f(x, y)dy

)
dx

holds true. In fact, both sides of this equality are identical with the double
Lebesgue integral

∫ 1

0

∫ 1

0
f(x, y)dxdy.

On the other hand, it is also well known that for these iterated integrals to
exist and coincide the Lebesgue measurability of f is not necessary.

Indeed, Sierpiński [9] was able to construct, by using the method of transfinite
recursion, an injective function φ : [0, 1] → [0, 1] whose graph Gr(φ) is thick in
[0, 1]2 with respect to the two-dimensional Lebesgue measure λ2. This means
that Gr(φ) meets every Borel subset of [0, 1]2 with strictly positive λ2-measure
(notice that similar constructions are presented, e.g., in [4] and [6]). Now,
denoting by g the characteristic function of Gr(φ), we see that g is not λ2-
measurable, but its iterated integrals do exist and both of them are equal to
zero (hence they are equal to each other).

At the same time, assuming the Continuum Hypothesis, Sierpiński [8] con-
structed a subset S of [0, 1]2 satisfying the following relations:

(i) for every x ∈ [0, 1], the set S ∩ ({x} × [0, 1]) is at most countable;
(ii) for every y ∈ [0, 1], the set ([0, 1]2 \S)∩ ([0, 1]×{y}) is at most countable;
Moreover, Sierpiński established in [8] that the existence of a set S with the

properties (i) and (ii) is equivalent to the Continuum Hypothesis. Thus the
Continuum Hypothesis is equivalent to the possibility of decomposing the unit

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



706 A. KHARAZISHVILI

square [0, 1]2 into two sets S and S ′ = [0, 1]2 \S such that S meets each vertical
line of the plane in countably many points and S ′ meets every horizontal line
of the plane in countably many points. This remarkable decomposition of the
square implies numerous nontrivial consequences (see [5] and [10]). For example,
an analogous decomposition of the product set ω1×ω1, where ω1 stands for the
least uncountable cardinal, yields the classical result of Ulam [11] stating the
non-real-valued measurability of ω1.

Remark 1. In a certain sense, one can say that both sets S and S ′ of Sier-
piński’s decomposition are absolutely nonmeasurable with respect to the class of
all those nonzero σ-finite continuous measures on [0, 1]2 for which the assertion
of the classical Fubini theorem is valid. In this context, let us especially stress
that there are many measures on R2 strictly extending λ2, for which the Fubini
theorem remains true.

Now, denoting by h the characteristic function of S, we can readily verify
that h admits both iterated integrals, but one of them is 0 and the other one
is 1. This fact indicates that, in general, the existence of the iterated integrals
does not imply their coincidence.

In view of these two important circumstances, it makes sense to consider the
class F of all those functions f : [0, 1]2 → R, for which both iterated integrals
exist and are equal to each other. Clearly, F is a vector space over the field of
all real numbers. Of course, the study of F includes the investigation of those
subsets Z of [0, 1]2, whose characteristic function χZ belongs to F , i.e., for χZ

we have the equality
1∫

0

( 1∫

0

χZ(x, y)dx

)
dy =

1∫

0

( 1∫

0

χZ(x, y)dy

)
dx. (∗)

As far as we know, the first deep study of sets Z ⊂ [0, 1]2, possessing the above-
mentioned property (∗), was carried out in the work of Pkhakadze [7]. Namely,
he extensively investigated the descriptive structure of sets Z in terms of their
intersections with the vertical and horizontal lines of the plane R2.

Let us denote by L the class of all sets Z ⊂ [0, 1]2 having the property (∗).
It was pointed out in [7] that:

(a) L is a monotone class of sets, i.e., L is closed under unions of increas-
ing sequences of its members and is closed under intersections of decreasing
sequences of its members;

(b) L is closed under unions of disjoint countable families of its members;
(c) if {Z1, Z2} ⊂ L and Z1 ⊂ Z2, then (Z2 \ Z1) ∈ L;
(d) if all intersections of Z ⊂ [0, 1]2 with the vertical and horizontal lines are

open (respectively, closed) in those lines, then Z ∈ L;
Moreover, it was established in [7] that, under the Continuum Hypothesis,

there exists a set Z ′ ⊂ [0, 1]2, whose all vertical sections are open, all horizontal
sections are of type Gδ, and both iterated integrals for χZ′ exist but are not equal
to each other (hence Z ′ does not belong to L). It follows from (a) and (d) that
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the set Z ′, being of type Gδ with respect to all vertical and horizontal lines in
R2, is not representable as the intersection of a sequence of sets which are open
with respect to all vertical and horizontal lines. In this context, the equality
between the iterated integrals, corresponding to the characteristic function of a
subset Z of [0, 1]2, may be treated as a certain invariant of descriptive properties
of Z.

The work [7] contains also a number of other interesting results which still
deserve to be examined and discussed from various points of view and, first of
all, from the point of view of set-theoretical approaches to qualitative problems
of analysis (cf., for instance, [1], [4], [5], and [6]). In particular, the following
question arises: is it true that A ∪ B ∈ L whenever A ∈ L and B ∈ L?
Surprisingly, this natural question was not considered in [7]. Nevertheless, the
approach suggested and elaborated in [7] can be successfully applied in order
to give an answer to the question. We are going to show here that, under the
same Continuum Hypothesis (or, more generally, under Martin’s Axiom), this
question admits a negative solution.

Our starting point is again Sierpiński’s above-mentioned decomposition of
the square [0, 1]2. Let λ (= λ1) denote the Lebesgue measure on the real line R.
We will need two simple auxiliary propositions.

Lemma 1. Assume the Continuum Hypothesis. Then, for any real number
r ∈ [0, 1/2[, there exist two subsets C1 and C2 of [0, 1]2 such that:

(1) the set C1(x) = {y ∈ [0, 1] : (x, y) ∈ C1} is at most countable for every
x ∈ [0, 1];

(2) the set C2(x) = {y ∈ [0, 1] : (x, y) ∈ C2} is at most countable for every
x ∈ [0, 1];

(3) the set C1(y) = {x ∈ [0, 1] : (x, y) ∈ C1} is closed in R for any y ∈ [0, 1]
and λ(C1(y)) = r;

(4) the set C2(y) = {x ∈ [0, 1] : (x, y) ∈ C2} is closed in R for any y ∈ [0, 1]
and λ(C2(y)) = r;

(5) C1(y) ∩ C2(y) = ∅ for each y ∈ [0, 1].

Proof. Consider Sierpiński’s set S ⊂ [0, 1]2. According to the definition of S,
for every y ∈ [0, 1], the set S ∩ ([0, 1]× {y}) is co-countable, so

λ(S ∩ ([0, 1]× {y})) = 1.

Consequently, there exist two closed sets C1(y) ⊂ pr1(S ∩ ([0, 1] × {y})) and
C2(y) ⊂ pr1(S ∩ ([0, 1]× {y})) satisfying the relations

C1(y) ∩ C2(y) = ∅, λ(C1(y)) = λ(C2(y)) = r.

Now, let us define

C1 = ∪{C1(y)× {y} : y ∈ [0, 1]}, C2 = ∪{C2(y)× {y} : y ∈ [0, 1]}.
Then it is obvious that the relations (3), (4), and (5) are satisfied. Besides,
from the definition of the sets C1 and C2, we have

C1 ⊂ S, C2 ⊂ S,
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from which it immediately follows that the relations (1) and (2) are also fulfilled.
This completes the proof. ¤

Lemma 2. Assume the Continuum Hypothesis. Then, for any real number
r ∈ [0, 1[, there exists a subset D of [0, 1]2 such that:

(1) the set D(y) = {x ∈ [0, 1] : (x, y) ∈ D} is at most countable for every
y ∈ [0, 1];

(2) the set D(x) = {y ∈ [0, 1] : (x, y) ∈ D} is closed in R for every x ∈ [0, 1]
and λ(D(x)) = r.

The proof of this proposition is very similar to the proof of Lemma 1, so it is
omitted here.

Theorem 1. Under the Continuum Hypothesis, there exist two subsets A and
B of the square [0, 1]2, both belonging to L but such that their union A∪B does
not belong to L.

Proof. Fix a real number r ∈ ]0, 1/2[. Let C1 and C2 be as in Lemma 1, and let
D be as in Lemma 2. We put

A = C1 ∪D, B = C2 ∪D

and we are going to show that A and B are the required sets. Indeed, for each
x ∈ [0, 1] we have

card(C1(x)) ≤ ω, card(C2(x)) ≤ ω,

the set D(x) is closed and λ(D(x)) = r. These relations imply that

1∫

0

( 1∫

0

χA(x, y)dy

)
dx =

1∫

0

( 1∫

0

χB(x, y)dy

)
dx = r.

At the same time, for each y ∈ [0, 1] we have card(D(y)) ≤ ω, the sets C1(y)
and C2(y) are closed, and the equalities

λ(C1(y)) = λ(C2(y)) = r

are satisfied. Obviously, these relations imply that

1∫

0

( 1∫

0

χA(x, y)dx

)
dy =

1∫

0

( 1∫

0

χB(x, y)dx

)
dy = r

and, consequently, both sets A and B belong to the class L.
Now, consider the union A ∪B. For each x ∈ [0, 1] we may write

(A ∪B)(x) = C1(x) ∪ C2(x) ∪D(x).

Since C1(x) and C2(x) are at most countable, D(x) is closed and λ(D(x)) = r,
we readily deduce

1∫

0

( 1∫

0

χA∪B(x, y)dy

)
dx = r.
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Further, for each y ∈ [0, 1] we may write

(A ∪B)(y) = C1(y) ∪ C2(y) ∪D(y), C1(y) ∩ C2(y) = ∅.

Since D(y) is at most countable, C1(y) and C2(y) are closed and λ(C1(y)) =
λ(C2(y)) = r, we see that

λ((A ∪B)(y)) = λ(C1(y) ∪ C2(y)) = λ(C1(y)) + λ(C2(y)) = 2r,

whence it follows that
1∫

0

( 1∫

0

χA∪B(x, y)dx

)
dy = 2r.

This immediately implies that
1∫

0

( 1∫

0

χA∪B(x, y)dy

)
dx 6=

1∫

0

( 1∫

0

χA∪B(x, y)dx

)
dy,

i.e., (A ∪B) 6∈ L. Theorem 1 has thus been proved. ¤
Recall that F denotes the class of all those functions f : [0, 1]2 → R, which

satisfy the relation (∗). If f ∈ F and g ∈ F , then f + g ∈ F . In this context,
the next statement is of interest.

Theorem 2. Under the Continuum Hypothesis, there exist two functions h1

and h2 belonging to F such that:
(1) h1 · h2 does not belong to F ;
(2) min(h1, h2) does not belong to F .

Proof. Let A and B be as in Theorem 1. Consider the sets

A′ = [0, 1]2 \ A, B′ = [0, 1]2 \B.

It can be easily verified that A′ ∈ L, B′ ∈ L and A′ ∩B′ 6∈ L (for this purpose,
it suffices to apply Theorem 1 and relation (c) indicated at the beginning of the
paper). Let us put:

h1 = the characteristic function of A′;
h2 = the characteristic function of B′.
Then we have the equalities

h1 · h2 = min(h1, h2) = χA′∩B′ ,

which yield at once the desired result.
By the way, we get (h1 + h2) ∈ F but (h1 + h2)

2 /∈ F . ¤
Remark 2. As already mentioned, Theorems 1 and 2 are also valid under

Martin’s Axiom which is significantly weaker than the Continuum Hypothesis.
Assuming MA instead of CH, the proofs of Theorems 1 and 2 do not essentially
change (actually, the argument remains almost the same). In addition, it should
be noticed that none of these two theorems can be proved within ZFC theory.
This follows from the fact that in [3] a model of set theory is indicated, in which,
for every function f : [0, 1]2 → [0, 1], the existence of iterated integrals for f



710 A. KHARAZISHVILI

necessarily implies the equality between them. Clearly, in such a model the
negation of the Continuum Hypothesis holds true. In this context, see also [2]
where certain axioms of symmetry are discussed, which turn out to be closely
connected with the negation of the Continuum Hypothesis and with iterated
integrals.
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