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Stochastic processes in discrete time are considered which develop through the successive application of inde-
pendent positive multipliers and also are martingales.

We construct optimal discretizations and derive properties of the Mellin-Stieltjes transforms of the cumula-
tive distribution functions of the multipliers. Discretization means approximation by positive random variables
with values in a given discrete set. It will be shown that the independence of the factors will be preserved in
this procedure. The important case that discretization leads to multipliers with values in some fixed geometric
progression allows one to write the Mellin-Stieltjes transforms as Laurent series.

The processes are then investigated by using the fact that the Mellin-Stieltjes transform of an independent
product is the product of the transforms of its factors.
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1 Introduction

We consider stochastic processes (Sn )n=0,1,... or (Sn )n=0,1,...,n0 which develop through successive application
of independent positive multipliers and have constant expectations, so that the processes are martingales. If the
process starts with S0 = 1 then

Sn = X1 · · ·Xn (n = 1, 2, . . .) with Xn =
Sn

Sn−1
.

The martingale property is expressed by E(Xn ) = 1. So our basic entity is the space M of the cumulative
probability distributions

F (x) = P(X ≤ x) (0 ≤ x < ∞)

of positive random variables X with E(X) = 1.
Processes of this kind occur if the conditions that prevail cause the increase and decrease of quantities to

be proportional to their present sizes, as is the case for financial assets. The prices Sn at the end of the n-th
trading period are positive random variables on some probability space. Under the usual hypothesis that there is
no arbitrage, the fundamental theorem of asset pricing asserts that there is a measure with respect to which (Sn )n

is a martingale if the prices are discounted with a risk free interest rate, see for example [4, p. 232], [7, p. 114] or
[9]. The well-known formula for the price p(x) of a put option at strike price x,

p(x) =
∫ x

0
F (y) dy , (1.1)

shows that, in principle, F can be recovered from public market data. This example suggests that it is essential to
allow for not identically distributed Xn .
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In Sections 2 and 3 we consider only a single random variable. In Section 2, we derive the basic properties of
M and study discretizations F̂ of the F ∈ M relative to a given increasing sequence (xk )k∈Z, which we call
canonical. They preserve the expectation and can be characterized by the property that they minimize

‖F − H‖2 =
∫ ∞

0

(
F (x) − H(x)

)2dx

among all cumulative probability distributions H ∈ M of positive random variables with values in {xk : k ∈ Z}.
We show that we may assume that the discretized functions F̂ are cumulative distribution functions of random
variables X̂ which are defined on the same probability space as X , and that the proximity of X̂ to X matches
that of F̂ to F .

The main analytical tool in Section 3 will be the Mellin-Stieltjes transform

Φ(s) = E(Xs) =
∫ ∞

0
xsdF (x),

see the book of Galambos and Simonelli [5], and, for example, [10]. It would, of course, be possible to replace
the Mellin transform of X by the more familiar Laplace transform of Y = log X , thereby transforming products
of independent positive variables into sums of independent variables. Nevertheless, the multiplicative version
together with the Mellin transform are superior in our setting since the hypothesis E(X) = 1 does not transform
into E(Y ) = 0, so we do not arrive at the familiar case of centered random variables. Equivalently, the condition
E(X) = 1 means that Φ(1) = 1, but there is no simple correspondent for the Laplace transform of Y .

In Section 4 we turn to products Yn = X1 · · ·Xn of independent random variables Xn > 0 with E(Xn ) = 1.
Our construction of the X̂n preserves independence. The distribution function Gn of Yn is the n-fold multiplica-
tive convolution and its Mellin-Stieltjes transform is∫ ∞

0
xsdGn (x) = E

(
Xs

1 · · ·Xs
n

)
= Φ1(s) · · ·Φn (s).

We consider the analogous expressions for the discretizations X̂1 · · · X̂n . Among all discrete random variables,
those whose values lie in a geometric sequence are the only ones that uniformly preserve the discrete structure
under multiplication and therefore lead to a comparably simple structure of the products. Their Mellin-Stieltjes
transform can be written as a Laurent series [8]

ϕ(z) =
∑
k∈Z

akzk with z = us , u > 1 fixed.

2 The space M and the canonical discretization

We need the following well-known elementary facts. We write F (+∞) = limx→∞ F (x) .

Proposition 2.1 Let F be nondecreasing in [0,∞) and let F (+∞) = 1. If α > 0 and 0 ≤ a < ∞ then∫ ∞

a

(x − a)α dF (x) = α

∫ ∞

a

(x − a)α−1(1 − F (x)) dx. (2.1)

If α > 0 and
∫ ∞

0 xα dF (x) = b < ∞ then

xα (1 − F (x)) ≤ b (x > 0) , xα (1 − F (x)) −→ 0 (x −→ ∞). (2.2)

Let M denote the space of cumulative distribution functions

F (x) = P(X ≤ x) (0 ≤ x < ∞) (2.3)

of random variables with values in (0,∞) and expectation E(X) = 1. A nondecreasing function F belongs to
M if and only if it is continuous from the right and satisfies

F (0) = 0 , F (+∞) =
∫ ∞

0
dF (x) = 1 ,

∫ ∞

0
xdF (x) =

∫ ∞

0
(1 − F (x)) dx = 1; (2.4)

see (2.1) with α = 1 and a = 0. The condition F (0) = 0 holds because X is strictly positive.

www.mn-journal.com c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1464 G. Jensen and C. Pommerenke: Discretizations of distribution functions

Let (xk )k∈Z be a fixed doubly infinite sequence with

0 < xk < xk+1 < ∞ (k ∈ Z), xk −→ 0 (k −→ −∞), xk −→ ∞ (k −→ +∞) . (2.5)

For F ∈ M we define F̂ (x) as the mean value in the interval [xk , xk+1) that contains x, that is

F̂ (x) =
1

xk+1 − xk

∫ xk + 1

xk

F (y) dy =
∫ 1

0
F ((1 − t)xk + txk+1)) dt (2.6)

for xk ≤ x < xk+1 . We call F̂ the canonical discretization of F with respect to (xk ). By definition, F̂ is
continuous from the right in (0,∞). The second integral in (2.6) shows that F̂ is nondecreasing, and since
F (xk ) ≤ F̂ (x) ≤ F (xk+1) for xk ≤ xk < xk+1 it follows from (2.4) and (2.5) that F̂ (0) = 0 and F̂ (+∞) = 1.
The definition of F̂ as the mean value of F in each interval [xk , xk+1) implies that (2.4) is satisfied for F̂ .
Therefore we have F̂ ∈ M.

If we use the function p defined by (1.1) then

F̂ (x) =
p(xk+1) − p(xk )

xk+1 − xk
for xk ≤ x < xk+1 .

Therefore p̂(x) :=
∫ x

0 F̂ (y) dy turns out to be the linear interpolation of p with support points xk . This is a simple
and natural choice in two contexts:

(i) The empirical data are given in terms of the function p, for instance as known prices of put options in
financial mathematics.

(ii) The empirical data and therefore F are not smooth. Then passing to the integral p has a smoothing effect
prior to the discretization.

In other contexts different discretizations may be more suitable.
Next we show that F and F̂ are the distribution functions of random variables on a common probability space

which are close-by to each other, parallel to the closeness of their distribution functions. It is easily seen that

G(x, y) =
∑

xk ≤x

∫ y

0

(∫ 1

0
1((1−t)xk −1 +txk , (1−t)xk +txk + 1 ](z) dt

)
dF (z)

is the distribution function of a probability measure in (0,∞)2 with marginal distributions G(∞, y) = F (y) and
G(x,∞) = F̂ (x). Therefore G is the joint cumulative distribution function of random variables X ′, X̂ ′ with
distribution functions F and F̂ . Since we are less interested in the random variables themselves but rather in their
distributions and joint distributions, we replace the original X by X ′, rename X ′ as X and set X̂ = X̂ ′. Then the
joint distribution of X and X ′ satisfies

X̂ = xk =⇒ xk−1 < X ≤ xk+1 or, in other words, X ∈ (xk , xk+1] =⇒ X̂ ∈ {xk , xk+1}. (2.7)

Now we introduce a metric in M such that F̂ can be characterized as a best approximation to F with respect
to this metric. It is convenient to define it for the larger space M of nondecreasing functions F in [0,∞) that are
continuous from the right and satisfy

F (0) ≥ 0 , F (+∞) = F (0) +
∫ ∞

0
dF (x) = 1 ,

∫ ∞

0
xdF (x) =

∫ ∞

0

(
1 − F (x)

)
dx ≤ 1 . (2.8)

In view of (2.8), we can interpret F ∈ M as the distribution function of a nonnegative random variable. The
distance in M is defined by

‖F − G‖2 =
∫ ∞

0

(
F (x) − G(x)

)2dx for F,G ∈ M. (2.9)
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Since 0 ≤ F ≤ 1 and 0 ≤ G ≤ 1 we have (F − G)2 ≤ (1 − F ) + (1 − G) and it follows from (2.8) that
‖F −G‖ ≤ 2. This makes M into a metric space. In Proposition 3.4 we shall show that M is indeed the closure
of M.

The metric (2.9) defines the same topology as the weak convergence of (Fn ), see Proposition 3.3. For smooth
functions F , other metrics may be preferable, see for instance [3, p. 286, no. 12]. But this metric assigns the
distance 2 to the difference of the functions F1(x) = 1 for x ≥ 0 and F2(x) = 1 for x ≥ ε and = 0 otherwise,
whereas ‖F1 −F2‖ =

√
ε. The Levy metric [3, p. 285, no. 11] avoids this problem but is more difficult to handle.

The next theorem reflects the familiar connection between mean-values and the L2-norm.

Theorem 2.2 Let F ∈ M and let F̂ be its canonical discretization. Then

‖F − F̂‖ ≤ ‖F − H‖ (2.10)

for all H ∈ M that are constant in each interval [xk , xk+1). Equality only holds if H = F̂ .

P r o o f. By assumption H has the constant value H(xk ) in [xk , xk+1). Hence

‖F − H‖2 =
∑

k

∫ xk + 1

xk

(F (x) − H(xk ))2 dx .

Since
∫ xk + 1

xk
(F (x) − F̂ (xk )) dx = 0 by (2.6), we conclude that

‖F − H‖2 =
∑

k

∫ xk + 1

xk

(
F (x) − F̂ (xk )

)2 dx +
∑

k

∫ xk + 1

xk

(
F̂ (xk ) − H(xk )

)2 dx

= ‖F − F̂‖2 + ‖F̂ − H‖2 .

If G is an approximation to F then Ĝ is an even better approximation to F̂ , as the following theorem shows.

Theorem 2.3 Let F,G ∈ M and let F̂ and Ĝ be their canonical discretizations. Then∥∥F̂ − Ĝ
∥∥ ≤ ‖F − G‖ . (2.11)

P r o o f. Let xk ≤ x < xk+1 . By (2.6) and the Schwarz inequality we have

(
F̂ (x) − Ĝ(x)

)2 ≤ 1
xk+1 − xk

∫ xk + 1

xk

(F (y) − G(y))2dy

and therefore∫ xk + 1

xk

(
F̂ (y) − Ĝ(y)

)2dy ≤
∫ xk + 1

xk

(F (y) − G(y))2 dy .

Summing over k ∈ Z we obtain (2.11).

Theorem 2.4 If F̂ is the canonical discretization of F ∈ M then

∥∥F − F̂
∥∥2 ≤ 1

4

∑
k∈Z

(F (xk+1) − F (xk ))2(xk+1 − xk ) . (2.12)

P r o o f. Let H(x) = (F (xk ) + F (xk+1))/2 for xk ≤ x < xk+1 . Since F is nondecreasing we have
|F (x) − H(x)| ≤ (F (xk+1) − F (xk ))/2 for xk ≤ x < xk+1 and thus, by Theorem 2.2,

∥∥F − F̂
∥∥2 ≤ ‖F − H‖2 ≤ 1

4

∑
k∈Z

∫ xk + 1

xk

(F (xk+1) − F (xk ))2dx .
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Example 2.5 Let F (x) = 0 for 0 ≤ x < 1 and = 1 for 1 ≤ x < ∞, furthermore x0 < 1 and x1 = 2 − x0 .
Then F̂ (x) = 0 for 0 ≤ x < x0 , = x1 −1

x1 −x0
for x0 ≤ x < x1 and = 1 for x1 ≤ x < ∞. Hence we have∥∥F − F̂

∥∥2 = (x1 − x0)/4. It follows that (2.12) is best possible.

Example 2.6 Suppose that F ∈ M is linear in [xk , xk+1]. A short calculation shows that

∥∥F − F̂
∥∥2 =

1
12

∑
k∈Z

(F (xk+1) − F (xk ))2(xk+1 − xk ) , (2.13)

which is by a factor 3 smaller than the estimate (2.12). If G ∈ M then, by Theorem 2.3,∥∥G − Ĝ
∥∥ ≤ ‖G − F‖ +

∥∥F − F̂
∥∥ +

∥∥F̂ − Ĝ
∥∥ ≤ 2‖G − F‖ +

∥∥F − F̂
∥∥ ,

where
∥∥F − F̂

∥∥ is given by (2.13). If G is very smooth then ‖G − F‖ is small for suitable piecewise linear F .

Example 2.7 Suppose that F ∈ M is continuous and F (b) = 1 for some b < ∞. We determine xk

(k = 0, 1, . . . , m) such that F (xk ) = k/m for k < m and xm = b. Then it follows from Theorem 2.4 that∥∥F − F̂
∥∥ ≤

√
b/(2m).

Now we show that F̂ is close to F if the xk+1 − xk are small; for xk > 1 we only need that the log(xk+1/xk )
are small.

Theorem 2.8 Let F ∈ M. If xk+1 − xk ≤ δ max(1, xk ) (k ∈ Z) then

∥∥F − F̂
∥∥ ≤

√
δ/2 . (2.14)

If F̂n are the canonical discretizations of F with respect to (xn,k )k∈Z for n ∈ N and if

sup
k

[(xn,k+1 − xn,k )/max(1, xn,k )] −→ 0 as n −→ ∞, (2.15)

then F̂n converges weakly to F .

P r o o f. Since F (xk+1) − F (xk ) ≤ 1 we see from Theorem 2.4 that

∥∥F − F̂
∥∥2 ≤ 1

4

∑
k

(xk+1 − xk )(F (xk+1) − F (xk ))

≤ δ

4

∑
xk ≤1

(F (xk+1) − F (xk )) +
δ

4

∑
xk >1

xk (F (xk+1) − F (xk ))

≤ δ

4
+

δ

4

∑
k

∫ xk + 1

xk

xdF (x) ≤ δ

2

by (2.4). Furthermore, it follows from (2.15) that
∥∥F − F̂n

∥∥ → 0 as n → ∞ and we deduce from Proposition 3.3

that F̂n converges weakly to F .

3 The Mellin-Stieltjes transform

The Mellin-Stieltjes transform of F ∈ M is defined by

Φ(s) =
∫ ∞

0
xs dF (x) . (3.1)

It follows from (2.8) that Φ(0) = 1 − F (0) ≤ 1 and Φ(1) ≤ 1. If F ∈ M is given by (2.3) then

Φ(s) = E(Xs), Φ(0) = Φ(1) = 1 . (3.2)

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Proposition 3.1 Let F ∈ M. The Mellin-Stieltjes transform Φ is analytic and bounded by 1 in {s ∈ C : 0 <
Re s < 1} and continuous in {0 ≤ Re s ≤ 1}. If G ∈ M has the same Mellin-Stieltjes transform Φ as F , then
F = G.

P r o o f. By (2.8), we have for 0 ≤ σ ≤ 1

|Φ(σ + it)| ≤
∫ ∞

0
xσF (x) dx ≤

∫ ∞

0
((1 − σ) + σx) dF (x) ≤ 1 . (3.3)

Furthermore xs is continuous in 0 ≤ x < ∞ and analytic in {0 < Re s < 1}. Hence it follows from the estimate
in (3.3) that Φ is analytic in {0 < Re s < 1}. Now let 0 ≤ Re s ≤ 1 and let ε > 0 be given. By (2.8) we can
choose 0 < a < 1 < b < ∞ such that∣∣∣∣

∫ a

0
xs dF (x)

∣∣∣∣ ≤
∫ a

0
dF (x) = F (a) − F (0) < ε ,∣∣∣∣

∫ ∞

b

xs dF (x)
∣∣∣∣ ≤

∫ ∞

b

dF (x) < ε ,

note that F is right-continuous. If 0 ≤ Re s0 ≤ 1 it follows that

|Φ(s) − Φ(s0)| < 4ε +
∫ b

a

|xs − xs0 |dF (x) < 5ε

if |s − s0 | is sufficiently small. Hence Φ is continuous in {0 ≤ Re s ≤ 1}.
We obtain from (2.1) with a = 0 that

Φ(s) = s

∫ ∞

0
xs−1(1 − F (x)) dx (3.4)

holds for s ∈ (0, 1) and it follows from the identity theorem that (3.4) holds for 0 < Re s < 1. If F and G have
the same Mellin-Stieltjes transform Φ then it follows from (3.4) and the uniqueness theorem [2, p. 87] of the
standard Mellin transformation that F = G.

Theorem 3.2 Let Φ and Ψ be the Mellin-Stieltjes transforms of F ∈ M and G ∈ M, respectively. Then

‖F − G‖2 =
1
π

∫ ∞

−∞

∣∣∣∣Φ
(

1 + it
2

)
− Ψ

(
1 + it

2

)∣∣∣∣
2 dt

1 + t2
. (3.5)

P r o o f. We set f = F − G and ϕ = Φ − Ψ. Then we have

ϕ

(
1 + it

2

)
=

∫ ∞

0
x

1 + i t
2 df(x) for t ∈ R

and therefore∫ ∞

−∞

∣∣∣∣ϕ
(

1 + it
2

)∣∣∣∣
2 dt

1 + t2
=

∫ ∞

0

∫ ∞

0

(∫ ∞

−∞
x

1 + i t
2 y

1−i t
2

dt

1 + t2

)
df(x) df(y) ; (3.6)

note that all integrals converge absolutely in view of (3.3). The innermost integral is equal to

2(xy)
1
2

∫ ∞

0
cos

(
t

2
log

y

x

)
dt

1 + t2
= min(x, y) .

To prove this for 0 < x < y, we substitute τ = (t/2) log(y/x) and use that∫ ∞

0

a cos τ

a2 + τ 2 dτ =
π

2
e−a for a > 0.
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Hence the right-hand side of (3.6) is equal to∫ ∞

0

(∫ ∞

0
min(x, y) df(y)

)
df(x) =

∫ ∞

0

(∫ x

0
y df(y) + x

∫ ∞

x

df(y)
)

df(x) .

We integrate the first inner integral by parts and use that f(+∞) = F (+∞) − G(+∞) = 0. We obtain

−
∫ ∞

0

(∫ x

0
f(y) dy

)
df(x) =

∫ ∞

0
f(x)2 dx ;

the last equality follows by another integration by parts using that f(+∞) = 0 and that∣∣∣∣
∫ x

0
f(y) dy

∣∣∣∣ =
∣∣∣∣
∫ x

0

(
1 − G(y)

)
dy −

∫ x

0

(
1 − F (y)

)
dy

∣∣∣∣ ≤ 1

because of (2.8).

We assume that F is continuous from the right. The non-increasing functions Fn converge weakly to F on
(0,∞) if

Fn (x) −→ F (x) (n −→ ∞) on a dense subset of (0,∞) . (3.7)

It follows that Fn (x) converges to F (x) whenever F is continuous at x. If Fn ∈ M then F ∈ M; by (2.2) the
condition F (+∞) = 1 follows from

∫ ∞
0 xdF (x) ≤ 1. However Fn ∈ M does not imply F ∈ M.

The following proposition is related to many well-known theorems, see, for example, [5, Theorem 1.2]. One
difference is our moment condition in (2.8).

Proposition 3.3 Let Fn ∈ M and F ∈ M with Mellin-Stieltjes transforms Φn and Φ, respectively. Then the
following three conditions are equivalent:

(i) Fn −→ F (n −→ ∞) weakly,

(ii) Φn −→ Φ (n −→ ∞) locally uniformly in {0 < Re s < 1} ,

(iii) ‖Fn − F‖ −→ 0 (n −→ ∞).

P r o o f. (i) implies (ii). Let 0 < s < 1 and ε > 0. We choose b > 1 such that bs−1 < ε. Then, by (2.8),∣∣∣∣
∫ ∞

b

xs dFn (x)
∣∣∣∣ ≤ bs−1

∫ ∞

b

xdFn (x) ≤ bs−1 < ε ,

similarly to F . Hence, by (i), we have

|Φn (s) −→ Φ(s)| ≤
∣∣∣∣∣
∫ b

0
xs dFn (x) −

∫ b

0
xs dF (x)

∣∣∣∣∣ + 2ε < 3ε

for n > n0(ε, s). It follows that Φn (s) −→ Φ(s) for 0 < s < 1, and since |Φn (s) − Φ(s)| ≤ 2 this implies (ii)
by Vitali’s theorem [6, p. 324].

(ii) implies (iii). Let a > 0. Theorem 3.2 shows that

‖Fn − F‖2 ≤ 1
π

∫ a

−a

∣∣∣∣Φn

(
1 + it

2

)
− Φ

(
1 + it

2

)∣∣∣∣
2 dt

1 + t2
+

8
π

∫ ∞

a

dt

1 + t2
.

We choose a so large that the last term is < ε. By (ii) we can find n1 such that

∣∣Φn (s) − Φ(s)
∣∣ < ε for n > n1 , Re s =

1
2

, Im s ≤ a

2
.

We conclude that ‖Fn − F‖2 < 2ε for n > n1 , so that (iii) holds.
(iii) implies (i). It follows from (iii) and (2.9) that Fn → F in measure, and since Fn and F are nondecreasing

this implies (i).
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Proposition 3.4 The space M is compact and is the closure of M.

P r o o f. Let Fn ∈ M. By Helly’s selection theorem there is a sequence (nν ) such that Fnν
converges weakly.

The limit function F belongs again to M. Since M is a metric space it follows that M is compact.
Now let F ∈ M. We define F ∗

n by F ∗
n (x) = 0 for 0 ≤ x < 1/n and F ∗

n (x) = F (x) otherwise. We have

1 + δn :=
∫ ∞

0

(
1 − F ∗

n (x)
)
dx =

1
n

+
∫ ∞

1
n

(1 − F (x))dx ≤ 1 +
1
n

and thus δn ≤ 1/n. Now we set cn = (2/π)
(
1 − (n − 1)δn

)
and define

Fn (x) =
(

1 − 1
n

)
F ∗

n (x) +
1
n

x2

x2 + c2
n

for 0 ≤ x < ∞ .

Then cn > 0 and we check that
∫ ∞

0

(
1 − Fn (x)

)
dx = 1 . Hence Fn ∈ M and Fn converges weakly to F .

We see from (3.1) and (2.6) that the Mellin-Stieltjes transform of a discretization F̂ is

Φ̂(s) =
∑
k∈Z

akxs
k with ak = F̂ (xk ) − F̂ (xk−1) ≥ 0 (3.8)

for 0 ≤ Re s ≤ 1. This is an almost periodic analytic function [1].
The geometric discretization is the special case

xk = uk (k ∈ Z), u > 1, (3.9)

of the canonical discretization. We can apply Theorem 2.8 with δ = u − 1. Since xs
k = uks we see from (3.8)

that Φ̂ is now a periodic function. If we write z = us then (3.8) becomes

ϕ(z) := Φ̂(s) =
∑
k∈Z

akzk for 1 ≤ |z| ≤ u, (3.10)

where ak = F̂
(
uk+1

)
− F̂

(
uk

)
≥ 0. The series converges for z = 1 because ϕ(z) → 1 as z → 1− by

Proposition 3.1. Hence we have∑
k∈Z

ak = ϕ(1) = 1 ,
∑
k∈Z

akuk = ϕ(u) = 1 . (3.11)

In the next section we show that the random variables with values in a fixed geometric progression have a property
that singles them out among other discrete random variables.

4 Products of independent random variables

Now we consider a sequence of processes. In the framework of asset pricing, this means that we consider a
multi-period market. For n ∈ N let Xn be random variables with values in (0,∞) and expectation 1. Then their
distribution functions belong to M. The random variables

Yn = X1 · · ·Xn (n ∈ N) (4.1)

are the factors by which the original values S0 have changed at time n. Their distribution functions are

Gn = P(Yn ≤ x) (0 ≤ x < ∞) (4.2)

and their Mellin-Stieltjes transforms are

Ψn (s) = E
(
Y s

n

)
=

∫ ∞

0
xsdGn (x) (0 ≤ Re s ≤ 1). (4.3)

www.mn-journal.com c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1470 G. Jensen and C. Pommerenke: Discretizations of distribution functions

Now we make the key assumption that the random variables Xn are independent. Then we see from (4.1) and
(4.3) that

Ψn (s) =
n∏

ν=1

E
(
Xs

ν

)
=

n∏
ν=1

Φν (s) for n ∈ N; (4.4)

in particular we have Ψn (0) = Ψn (1) = 1 and thus Gn ∈ M.
Let (xk )k∈Z be a fixed doubly infinite sequence satisfying (2.5) and let F̂n be the canonical discretization

of Fn . We suppose that the same discretization is applied to all Xn . As pointed out in Section 2, we may sup-
pose that Fn and F̂n are the distribution functions of random variables Xn and X̂n on a common probability
space (Ωn ,Fn , Pn ) and the analogue to (2.7) holds for each pair Xn , X̂n . Let (Ω,F , P) be the product of the
(Ωn ,Fn , Pn ), further prn the projection maps and X ′

n (ω) := Xn (prn (ω)), X̂ ′
n (ω) := X̂ ′

n (prn (ω)). Then X ′
n

and X̂ ′
n are random variables on (Ω,F , P) with distribution functions Fn and F̂n , satisfying the analogue to (2.7).

Moreover, both {X ′
1 ,X

′
2 , . . .} and {X̂ ′

1 , X̂
′
2 , . . .} are independent sets of random variables. By an argument like

that in the discussion preceding (2.7) we finally rename X ′
n as Xn and X̂ ′

n as X̂n . Altogether, the Xn and X̂n are
all defined on a common probability space and the X̂n are independent as are the Xn .

Let Ŷn := X̂1 · · · X̂n for n ∈ N; this notation is somewhat misleading, it is not supposed to mean that Ŷn is
the canonical discretization of Yn defined in (4.1). Since the X̂n are independent, the Mellin-Stieltjes transforms
of the distributions of Ŷn satisfy

Ψ̂n (s) =
n∏

ν=1

Φ̂ν (s) =
n∏

ν=1

(∑
k∈Z

aν,k xs
k

)
(4.5)

where aν,k = F̂ν (xk ) − F̂ν (xk−1) ≥ 0 as in (3.8). Multiplying (4.5) out we see that Ψ̂n (s) is the sum of terms
of the form

a1,k1 · · · an,kn

(
xk1 · · ·xkn

)s
, kν ∈ Z (ν = 1, . . . , n). (4.6)

There is no cancellation because aν,kν
≥ 0.

The logarithms of the products xk1 · · ·xkn
form an additive semigroup H . By (2.5) it contains positive and

negative numbers. If there are arbitrary small positive or negative numbers in H then H is clearly dense in R

and the numbers xk1 · · ·xkn
approach any given point in (0,∞); we conclude that the distributions of the Ŷn

tend to become less and less discrete as n → ∞ and the series obtained from (4.5) become worthless for practical
purposes.

In the opposite case it is obvious that 0 < d := inf0<h∈H h = − sup0>h∈H h and neither d nor −d can be a
limit point of H . Hence d,−d ∈ H , therefore d Z ⊂ H , and finally d Z = H because of the minimality of d,
i.e., the xk take only values in a fixed geometric progression. We use the notation of (3.10) where z = us and put
a∗

ν,k = uk/2aν,k . Then we obtain from (4.5) and (4.6) that

ϕ1(z) · · ·ϕn (z) =
∑
k∈Z

P
(
X̂1 · · · X̂n = k

)
zk =

∑
k∈Z

( ∑
k1 +···+kn =k

a∗
1,k1

· · · a∗
n,kn

)
u− k

2 zk . (4.7)

It follows from ϕ(1) = ϕ(u) = 1 that a∗
ν,kν

≤ u− |k |
2 . Hence we see that the last inner sum converges well.

For processes with independent factors, it therefore seems that the only discretizations that preserve the discrete
structure are those which lead to variables X with values in a fixed geometric progression, represented by a
Laurent series

ϕ(z) =
∑
k∈Z

akzk , ak = P(X = uk ) , u > 1 . (4.8)

Proposition 4.1 Let F ∈ M and let u > 1. Suppose that F is constant in (1/u, u) except for a jump of height
a ∈ [0, 1] at 1. Then

Φ
(

1
2

)
≤ 1 − (1 − a)

(
√

u − 1)2

u + 1
(4.9)
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with equality exactly for the symmetric trinomial distribution

Φ(s) =
1 − a

u + 1
u1−s + a +

1 − a

u + 1
us , 0 ≤ a ≤ 1 . (4.10)

The assumptions are satisfied for a variable with values in a fixed geometric progression as in (4.8), in which
case we have a = a0 .

P r o o f. We have (x + 1)/
√

x ≥ (u + 1)/
√

u for 0 < x ≤ 1/u and for x ≥ u. Hence we obtain from the
definition (3.1) that

Φ
(

1
2

)
= a +

(∫ 1/u

0
+

∫ ∞

u

)
√

xdF (x) ≤ a +

(∫ 1/u

0
+

∫ ∞

u

)
√

u
x + 1
u + 1

dF (x)

= a +
√

u

u + 1
(Φ(1) − a + Φ(0) − a) ≤ a +

2
√

u

u + 1
(1 − a)

because Φ(0) ≤ 1 and Φ(1) ≤ 1. This implies (4.9).
Now suppose that equality holds in (4.9). Then F must be constant except for jumps in {u−1 , 1, u} and

furthermore Φ(0) = Φ(1) = 1. Hence Φ(s) = a−1u
−s + a + a1u

s where a−1 + a + a1 = 1 and a−1u
−1 +

a + a1u = 1 which implies (4.10). It is clear that equality in (4.9) holds for this function.

We denote the n-fold multiplicative convolution of F by F [n ] . Hence

F [n ](x) = P(X1 · · ·Xn ≤ x) , Xν independent and identically distributed. (4.11)

Theorem 4.2 Let F,G ∈ M. Suppose that the Mellin-Stieltjes transforms satisfy Φ
( 1

2

)
≤ α, Ψ

( 1
2

)
≤ β and

α ≤ β. Then

∥∥F [n ] − G[n ]
∥∥ ≤

(
1 +

α

β
+ · · · +

(
α

β

)n−1
)

βn−1‖F − G‖ ≤ nβn−1‖F − G‖ . (4.12)

P r o o f. We obtain from Theorem 3.2 and the independence hypothesis that

∥∥F [n ] − G[n ]
∥∥2 =

1
π

∫ ∞

−∞

∣∣∣∣Φ
(

1 + it
2

)n

− Ψ
(

1 + it
2

)n ∣∣∣∣
2 dt

1 + t2
.

Since |Φ
( 1+it

2

)
| ≤ Φ

( 1
2

)
≤ α and |Ψ

( 1+it
2

)
| ≤ β, we can estimate the expression within the last square by∣∣Φ( 1+it

2

)
− Ψ

( 1+it
2

)∣∣(αn−1 + αn−2β + · · · + βn−1
)

and (4.12) follows using again Theorem 3.2.

We can sometimes estimate Φ
( 1

2

)
and Ψ

( 1
2

)
by (4.9). Since Φ

( 1
2

)
< 1 except if X is deterministic, we

conclude that
∥∥F [n ] − G[n ]

∥∥ is not much greater than ‖F − G‖ and finally tends to 0.
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