IS THE SUCCESS OF FUZZY LOGIC REALLY PARADOXICAL?
OR:
TOWARDS THE ACTUAL LOGIC BEHIND EXPERT SYSTEMS

Hung T. Nguyen*, Olga M. Kosheleva**** Vladik Kreinovich**

*Department of Mathematical Sciences, New Mexico State University
Las Cruces, NM 88003
** Computer Science Department, University of Texas at El Paso
EI Paso, TX 79968, USA, email viadik@cs.utep.edu
*** Department of Electrical Engineering, University of Texas at El Paso

El Paso, TX 79968, USA

Abstract. The formal concept of logical equivalence in fuzzy logic® 23, while theoreti-
cally sound, seems impractical. The misinterpretation of this concept has led to some
pessimistic conclusions®. Motivated by practical interpretation of truth values for fuzzy
propositions, we take the class (lattice) of all sub-intervals of the unit interval [0,1] as the
truth value space for fuzzy logic, subsuming the traditional class of numerical truth values
from [0,1]. The associated concept of logical equivalence is stronger than the traditional
one. Technically, we are dealing with much smaller set of pairs of equivalent formulas, so
that we are able to check equivalence algorithmically. The checking is done by showing

that our strong equivalence notion coincides with the equivalence in logic programming.

1. INTRODUCTION

Since fuzzy logic is a formalization of commonsense reasoning, statements that are “equiv-
alent” according to commonsense reasoning must have the same truth values in this logic.
This informal argument was used by several researchers in fuzzy logic®!3:25, How can one
formalize it? Definitely, this “commonsense equivalence” is not the same as equivalence
in 2-valued logic; this difference was noticed in the first papers on fuzzy logic, and it was
recently mentioned again by Elkan®. Is there any reasonable formalization of this “equiv-
alence”? In this paper, we solve this problem by providing a formal definition of such
“equivalence”. We also prove that this definition relates exactly the same pairs of formulas
as a definition that stems from logic programming. The very fact that two radically dif-
ferent approaches (fuzzy logic and logic programming) lead to exactly the same notion of
equivalence between propositional formulas, is, to our viewpoint, an additional indication
that both approaches lead to adequate descriptions of commonsense reasoning (at least as
far as equivalence goes). In addition to that, we provide an algorithm that enables us to
tell whether two given propositional formulas are equivalent in this sense or not.

In his 1993 paper?, Elkan describes the difficulties that he has encountered when he tried to
describe fuzzy logic formally. Elkan tried two different formalizations of this “equivalence”
based on two most well-known logical formalisms:

o two-valued propositional logic, and

e intuitionistic logic.
In both cases, he got a contradiction. This contradiction is easy to explain: in both logics
(two-valued and intuitionistic), vy V (v2&—w3) is equivalent to vy;. However, in fuzzy logic,

1

for truth values t(v1) = 0.3 and t(v2) = 0.4, we get t(—wv2) = 1 —t(v2) = 0.4 and therefore,
t(v2&—w2) = min(t(vy), t(—v2)) = min(0.6,0.4) = 0.4 # 0.3 = t(vy).

Since both his attempts of formalization (based on reasonable choices of logic) has
failed, Elkan concludes that fuzzy logic does not have consistent foundations and that
therefore, successes of fuzzy logic are paradoxical.

We do not agree with this pessimistic conclusion, for three reasons:

e First, researchers in mathematical foundations of fuzzy sets and fuzzy control do
not use the fact that if F and G are “equivalent” then their truth values coincide
(t(F) = t(@)) as an independent axiom (see, e.g.,16:17:9,14,18,23,26,20,21)

e Second, as far as we know, neither this “postulate” itself, nor any conclusions based on
this postulate have ever been used in any real-life fuzzy control applications!?-H 11,2127,

e Third, there exists a consistent formalization of this postulate, and this formalization
has been proposed by Goguen® and Schwartz?® (we will describe it in just a moment).

(other arguments against Elkan’s pessimism can be found in®).

In spite of this confusion, the notion of commonsense equivalence is useful and therefore,
worth formalizing. Definitely, this “commonsense equivalence” is not the same as equiv-
alence in 2-valued logic; this difference was noticed in the first papers on fuzzy logic®
(see also?®, and it was recently mentioned again by Elkan (see the above example). The
same example works if we identify this “commonsense equivalence” with equivalence in
intuitionistic logic (such examples were also originally given in®?2°).

Is there any reasonable formalization of this “equivalence”? A consistent formaliza-
tion of commonsense equivalence has been proposed by Goguen in® and later by Schwartz
in?%: according to Goguen and Schwartz, two propositional formulas F and G with vari-
ables v; are equivalent in fuzzy logic if for all possible assignments of truth values t(v;) to
their variables v;, the resulting truth values of these two formulas coincide: ¢(F') = ¢(G)
(actually, instead of using the interval [0,1], Goguen uses arbitrary lattices of truth values).

This formalization is not completely satisfactory for three reasons:

o First, it is not algorithmic. It follows closely the definition of equivalence in two-
valued logic, in which formulas are equivalent iff their truth values coincide for all
truth values t(v;) € {7, F'}. However, from the computational viewpoint, there is a
big difference between these two cases:

o In two-valued logic, each variable v; has only two possible truth values. Therefore,
we can actually enumerate all 2" combinations of truth values and thus check
whether the formulas ' and G are equivalent or not.

e In fuzzy case, each variable v; has infinitely many possible truth values (the set
of truth values coincides with the interval [0,1]). Therefore, it is impossible to
enumerate and test all possible combinations of truth values.

e Second, this definition is very formal. It would be nice to have some extra support for
the assumption that this definition reflects commonsense equivalence of two proposi-
tional formulas.

e Finally, it is not exactly clear what values of ¢(v;) we should use:

2

e If we use only real numbers from the interval [0,1], then we neglect the fact that
every estimation of the truth values is in itself approximate.

o If we use arbitrary lattices, then we are using mathematical model that may have
no relation whatsoever to commonsense reasoning.

The problem of describing a formalization of “commonsense equivalence” that is free from
these three drawbacks was, in effect, formulated in* in the following terms: It is an open
question how to choose a notion of logical equivalence that simultaneously (i) remains
philosophically justifiable, (11) allows useful inferences in practice, and (1ii) removes the
opportunity to prove results similar to Theorem 1 (i.e., inconsistency).

In this paper, we are going to address these three problems. Namely:

o First, we will choose the proper representation of the truth values as sub-intervals of
[0,1] (this idea also goes back to Goguen and Schwartz).

e Second, we will show that the resulting definition of equivalence of propositional for-
mulas is the same as the definition of equivalence stemming from an absolutely dif-
ferent area of Artificial Intelligence: namely, from logic programming. The fact that
two radically different approaches (fuzzy logic and logic programming) lead to exactly
the same notion of equivalence between propositional formulas is, to our viewpoint,
an indication that both approaches lead to adequate descriptions of commonsense
reasoning (at least as far as equivalence is concerned).

e Third, this equivalence enables us to design an algorithm that given two propositional
formulas F' and G, decides whether these formulas are equivalent or not.

2. PRELIMINARY DEFINITIONS: PROPOSITIONAL FORMULAS
AND EQUIVALENCE IN 2-VALUED LOGIC

To make the paper easier to read, let us start with reviewing the notion of equivalence in
a classical (2—valued) logical setting.

Definition 2.1. Assume that a finite set V = {vy,...,v,} is given. Its elements v; will be
called propositional (or Boolean) variables. A propositional formulae with n variables v; is
then defined as follows:
e every variable v; is a formula;
e if F is a formula, then =F (called not F') is also a formula;
o if F' and G are formulas, then the following are formulas:
o F&G (called F and G);
o 'V G (called F or G);
e nothing else is a formula.
Formulas that have been used in the construction of a formula F are called its subformulas.
Formulas different from variables are called composite formulas.

Examples of propositional formulas:

e vy V (—wy) is a propositional formula that has the following subformulas:
e vy, vg, and vs;
& Uy
o vy V(—w3).

e v1&(vy V 1) is a propositional formula that has the following subformulas:
® vy, Uy, and vs;
® Uy
o vy V —wy;
® ‘Ul&(‘vg \% _|‘Ul).

Definition 2.2. By an n—dimensional Boolean vector, or a Boolean array t, we mean a
function from the set V into the set of truth values {T, F'} (where T = 1 stands for “true”,
and F = 0 stands for “false”).

Definition 2.3. Let t be a Boolean vector. Then, for every formula F, we can define its
truth value t(F) for this Boolean vector t as follows:

o if F'=v;, then t(F) = t(v;);

o if = -G, then t(F) = —t(G);

o if = G&H, then t(F) = t(G)&t(H);

o f F=GVH, thent(F)=tG)Vt(H),
(where -, &, and V in the right hand sides mean standard operations with Boolean values

{T,F}).

Example. If t(v;) = T, and t(vy) = F, then for F' = vy V (—wy), the truth value ¢(F) is
defined as follows:

o t(-wy)=-F =T,

o t(F)=1t(vy V(-v2))=t(v1)Vi(-ve)=TVT=T.

Definition 2.4. We say that formulas F and G are equivalent in 2-valued logic if for every
Boolean vector t, t(F') = t(G).

3. FUZZY LOGIC: WHAT TRUTH VALUES SHOULD WE CHOOSE?

3.1. Traditional fuzzy logic

One of the main reasons for fuzzy logic is that we want to design computer systems that
would incorporate the knowledge of human experts. When applied for decision making,
such systems are called ezpert systems. When apply for control, they are called intelligent
control systems. Usually, the knowledge of an expert contains some statements that this
expert is not 100% sure about, and these statements form an essential part of the knowledge
base. If we want to use this knowledge base, it is important to know the degree of belief
that an expert has in each statement, so that, e.g., in case of conflicting conclusions we
will be able to choose the conclusion that is supported by the more convincing statements
from the knowledge base. So, an adequate computer representation of this knowledge must
include not only the representation of the experts’ statements themselves, but it must also
contain the computer representation of the experts’ degrees with which they believe in

4

these statements. Traditionally, these degrees of belief are represented by numbers from
the interval [0,1] (0 corresponds to “false”, and 1 to “true”).

There are several possible ways to assign a degree of belief to a statement (see, e.g.,??).
Let us just name three of them:

e We can ask an expert to estimate his degree of belief by a number on a scale from,
say, 0 to 5. If he marks 3, then we say that his degree of belief is 3/5 = 0.6.

e We can ask several experts whether they believe in a given statement, and as a degree
of belief, take a fraction of those who answered “yes”.

e Another way to get t(5) is to ask an expert to compare an alternative “$100 if S is true
else 07 with the lotteries in which this same amount of money ($100) is guaranteed
with a certain probability p. If there is a probability p for which the above alternative
and a lottery are equivalent, then we take p as ¢(.5).

In classical (2-valued) logic, it was sufficient to assign truth values to all basic statements
v;; then we can compute the truth value of any composite statement (that is formed from
v; by applying &, V, and =). In case of degrees of belief, it is no longer so. In general, the
degree of belief t(F&G) in a statement F&G is not uniquely determined by the degrees
of belief ¢(F') and t(G). Let us give an extreme example: assume that we know nothing
about a statement F'. Then, it is natural to assign both to F, and to its negation —F', the
degree of belief 0.5. Let us now consider two cases:
o If we take G = F, then we have t(F) = t(G) = 0.5. Here, F&G = F&F means the
same as F, so t(F&G) = 0.5.
o It we take G = —F, then ¢(F) = t(G) = 0.5, but F&G = F&-F is simply false, so
t(F&G) = 0.
In both cases, t(F') = t(G) = 0.5, but the values of {(F&G) are different.

In view of that, it would be nice to know not only the experts’ degrees of belief in elementary
statements vy, ..., v,, but also their degrees of beliefs in composite statements. This is, alas,
2 numbers,
which for large n is practically impossible. So, in practice, we only know the degrees of
belief ¢(v;) in the original statements v,. What should we do if the decision that we are

not feasible: even for pairs v;&v;, we need thus to acquire from experts ~ n

about to make must be based on the degree of belief in v;&wv;?

A natural approach to this problem is as follows. We must be able, given two numbers
t1 = t(F) and t; = t(G), to generate an estimate for ¢(F&G). As we have mentioned, there
can be different situations with these values ¢; that lead to different values of ¢(F&G). So,
to be on the safe side, it is natural to take the average of these values as the desired estimate
for t(F&G). There has been several experimental papers in which the corresponding
averages have been found!®22:2?, Tt turns out that in most situations, the average for & is
best described by either the product ¢y - t3, or by the minimum min(¢;,¢2). Similarly, the
best estimate for V is best described either by t; +t3 — #1 - t2, or by maximum max(ty,?2).

All four operations have been originally proposed by L. Zadeh in his pioneer paper on
fuzzy set theory?s.

In other words, if we know the degrees of belief in F' and in G, then, as an estimate

t(F&G) for the actual (unknown) degree of belief of F&G, we take either ¢(F') - t(G), or

5

min(¢(F),t(G)). In the present paper, we consider only the simplest case of min and max.
So, we arrive at the following definitions.

Definition 3.1. By an initial fuzzy truth value assignment, we mean a function t from
the set V into the set [0,1].

Definition 3.2. Let t be an initial truth value assignment. Then, for every formula F,
we can define its truth value t(F') as follows:

if F' = v;, then t(F) = t(v;);

if F'= -G, then t(F) =1 —t(G);

it = G&H, then t(F) = min(t(G),t(H));

if F =GV H, then t(F) = max(t(G),t(H)).

Example. If ¢(v;) = 0.3, and t(v2) = 0.6, then for F = vy V (—vz), the truth value ¢(F)
is defined as follows:

o t(-wy)=1-0.6=0.4

o t(F)=1t(vy V(-v2)) =t(vy)Vt(-vz)) = max(0.3,0.4) = 0.4.

3.2. Intervals are a more realistic representation
of degrees of belief than real numbers

The above definitions is based on the assumption that we can describe the degree of belief
in a statement by a precise number. However, this is an idealization of the real situation.
For example, suppose that we are getting the value ¢(S) by asking an expert to compare
an alternative “$100 if S is true else 07 with the lotteries in which this same amount of
money ($100) is guaranteed with a certain probability p. If there is a probability p for
which the above alternative and a lottery are equivalent, then we take p as ¢(.S). In some
cases, it is possible. In many other cases, it is difficult for a person to compare. In such
cases, instead of a single probability p, we get a whole interval of probabilities [p~, p™] for
which the above alternative is more or less indistinguishable from a lottery.

A similar problem occurs for other approaches. As a result, instead of a single value
t(F), we get an interval t(F) = [t~ (F),tT(F)] of possible values of degree of belief. So, it
is reasonable to describe the degree of belief in a statement by an interval.

What if we know the intervals t(F') and t(G) of possible values of degree of belief in
statements F' and G, and we are interested in the degree of belief in F&G? The fact that
we know t(F') means that any number ¢; from this interval can be the degree of belief for
F. Similarly, any number ¢; from the interval t(G) can be the degree of belief in G. If
we use min for &, then possible values min(¢y, ;) form an interval of possible values of

degrees of belief for F&G.

To be able to compute this interval, we must thus be able, given two intervals t and
s, to compute the interval of possible values of min(¢,s), where t € t and s € s. For V and
-, we must be able to compute similar sets for max and for 1 — ¢. Let us describe how to
do it.

Definition 3.3. Let f : R™ — R be an arbitrary function of n real variables, and let
X1,...,X;m be m intervals. Then, we denote

f(Xl, ...,Xm) = {f(.fl?l, ...,l‘n)|l'1 €X1,...,Tm € Xm}.

Comment. We will use this definition only for three functions 1 — ¢, min, and max that
correspond to three logical connectives -, &, and V.

PROPOSITION 1.
o For f(t)=1—t, we have 1 — [t_ t)=[1—-tT,1-¢t7].
e For f = min, we have min([t™,] [s™ 3+]) [mln(~,s7),min(tt, sT)].
e For f = max, we have max([t™,tT],[s7,s"]) = [max(t~,s™), max(tT,sT)].

Comments. This Proposition is easy to prove if we take into consideration that all three
functions 1 — ¢, min, and max are monotonic, and therefore, we can easily find the values
form the corresponding intervals for which this function attains its biggest or its smallest
value.

3.3. Practical (interval) fuzzy logic and
equivalence in practical fuzzy logic

With these definitions, we can now formulate the more realistic definition of the truth
value of a propositional formula:

Definition 3.4. By an initial practical fuzzy truth value assignment, we mean a function
t that assigns to every element v; from the set of variables V an interval t(v;) C [0, 1].

Definition 3.5. Let t be an initial practical truth value assignment. Then, for every
formula F, we can define its truth value t(F) as follows:

if F' = v;, then t(F) = t(v;);

if F'= -G, then t(F) =1 —t(G);

if = G&H, then t(F) = min(t(G), t(H));

it F =GV H, then t(F) = max(t(G),t(H)).

Comment. These definitions were originally proposed by Schwartz?

Example. If t(v;) = [0.2,0.4], and t(v2) = [0.6,0.7], then for F = v; V (—wy), the truth
value t(F') is defined as follows:
o t(-v2) =1 [0.6,0.7] = [1 — 0.7,1 — 0.6] = [0.3,0.4];
o t(F)=1t(vy V(-v2)) =t(v1)V t(—vy)) = max([0.2,0.4],[0.3,0.4]) =
[max(0.2,0.3), max(0.4,0.4)] = [0.3,0.4].

Definition 3.6. We say that formulas F and G are equivalent in practical fuzzy logic if
for every initial practical fuzzy truth value assignment t, we have t(F) = t(G).

Comment. In principle, there is another method to define the interval truth value of a
composite formula; this method, and its difference from Definition 3.5, is given in a special
Appendix,

4. THE SAME CONCEPT OF EQUIVALENCE
OF PROPOSITIONAL FORMULAS
STEMS FROM LOGIC PROGRAMMING

Another approach for representing commonsense reasoning (that is more traditional for
Artificial Intelligence) is based on logic programming. Several researchers argue that logic
programs, that were originally viewed as a representation of first order formulas, turned
out to be closer to commonsense reasoning than the original first order logic. Traditional
logic programming does not allow all propositional connectives (&, V, and =) to be used,
but recently, an extension of traditional logic programming has been proposed in which all
these connectives are well defined (see, e.g.,”). In application to propositional formulas,
this extension is defined as follows:

Definition 4.1. By a literal, we will mean either a variable v; or its negation —wv;. Let
a set W of literals be given. By induction over F, we can define when a propositional
formula F is true or false for W:
o A literal is true for W if it belongs to W, and it is false for W if its negation belongs
to W.
o —F is true for W iff F' is false for W, and —F is false for W ift F' is true for W.
o 'V G is true for W iff either F is true for W, or G is true for W; FV G is false for
W if both F and G are false for W.
o F&G is true for W iff both F and G are true for W; F&G is false for W iff either F
is false for W, or G is false for W.
We say that a set W is an answer set for a formula F if the following two conditions are
met:
o first, F is true for W, and
e second, F' is not true for any proper subset of W.

Comments.
1. One of the differences between logic programming and 2—valued logic is as follows:
e Logic describes the objective state of the world. Therefore, in logic, for the given
Boolean vector t, every formula F' is either true, or false.
e Logic programming describes our knowledge about the world. In this interpretation:
o “F is true for W” means that, if W is what we know, then we know that F' is
true.
e Similarly, “F is false for W” means that for the knowledge W, F' is known to be
false.
Since the knowledge need not be complete, for a given set of literals W and a given
formula F', in addition to two previous possibilities:
o that F'is true for W and
o that F is false for W,
we have two more options:
e that F' is neither true, nor false for W (meaning that if W is all we know, then
whether F' is true or not is unknown).
o that F is both true and false in W, meaning that the knowledge about F' that is
contained in W is inconsistent.

For example, if F' = vy V =y, and all we know is W = {v3} (i.e., that vs is true),
then we have no information about vy and v, at all, and therefore, it is reasonable
to conclude that F' is unknown. This is exactly what we will get from Definition 4.1:
that the given F' is neither true, nor false for the given W. For this same F, if we
take an inconsistent knowledge W = {vy, —v;1 }, then F is both true and false in W.

2. A formula can have several answer sets (see the example below).

Example. Let us consider the formula F' = v; V (-wvy). Then, the following two sets of
literals are answer sets for this formula: Wy = {v;} and Wy = {-wv2}. Let us check the
two conditions for Ws:
e For Wy, —vg is true and therefore, vy V (—v2) is also true for Wi.
e The only proper subset of W5 is an empty set W. For empty set, none of the formulas
vy and g is true; therefore, F' = vy V (—wy) is also not true.

A set W3 = {vy,v2} is not an answer set because although F' is true for W3, but F is also
true for a proper subset W, C Wj.

Definition 4.2. We say that propositional formulas F and G are equivalent in logic
programming if these two formulas have the same class of answer sets (i.e., if every answer
set of F' is an answer set of G, and vice versa).

Now, we are ready to formulate and prove our main result.

THEOREM 1. Let F and G be any propositional formulas. Then, F 1s equivalent to G

in practical fuzzy logic if and only if F' 1s equivalent to G in logic programming.

The proof of this theorem is lengthy; so, to make reading easier, we put all the proofs in
the last section.

Comments.
1. So, the desired definition of a logical equivalence that Elkan was looking for can be
taken right from logic programming.

2. This Theorem was announced in'? and!?.

3. What will happen if instead of the initial interval truth value assignments t, we only
consider the numerical truth value assignment (i.e., if all intervals t(v;) contain just one
number t(v;)? This situation is described by the following proposition:

Definition 4.3. We say that propositional formulas F' and G are equivalent in traditional
fuzzy logic if for every initial truth value assignment t, we have t(F) = t(G).

PROPOSITION 2.
o If the formulas F' and G are equivalent in practical fuzzy logic, then they are equivalent
in traditional fuzzy logic.
o There exist formulas F and G that are equivalent in traditional fuzzy logic but not
equivalent in practical fuzzy logic.

Comments.

1. In other words, there are some formulas that are equivalent as long as we only allow
numbers as truth values, but that stop being equivalent if we allow intervals as well.
Therefore, equivalence classes in practical fuzzy logic are, generally speaking, much smaller
than in the traditional fuzzy logic case.

2. In the next section, we will describe the algorithm that checks when the two given
formulas F' and G are equivalent in practical fuzzy logic. Suppose now that we are actually
interested in whether this they are equivalent in traditional fuzzy logic. To do that, we
will apply the algorithm for checking their equivalence in practical logic. Depending on
the result of this algorithm, we will have two possibilities:
o If F and G turned out to be equivalent in practical fuzzy logic, then, due to Proposition
2, they are equivalent in traditional fuzzy logic as well.
o If however, F and G are not equivalent in practical fuzzy logic, then we cannot make
any conclusion about whether they are equivalent in traditional fuzzy logic or not.

3. This Proposition states that the notions of equivalence in traditional and practical fuzzy
logics are different. Which of them is closer to commonsense reasoning? To our viewpoint,
equivalence in practical fuzzy logic is closer. Indeed, let us consider the following example
of formulas F' and G that are equivalent in traditional fuzzy logic, but not in the practical

one: F=v1&-w; and G = v1 &1 &= (v2&—02).

o Let us first show that these formulas are equivalent in traditional fuzzy logic. Indeed,

in traditional fuzzy logic, we have ¢(F') = min(t(vy),1 — ¢(v1)), and
t(G) = min(t(vy), 1—t(v1), 1 —min(¢t(vz), 1 —t(v2)) = min(¢(F), 1 —min(t(vy), 1 —t(v2)).
Let us consider two cases:

o If t(vy) <0.5, then 1 —t(vy1) > 0.5 > t(v1), and therefore, min(t(vy),1 —t(vy)) =

o If t(vy) > 0.5, then 1 —t(vy) < 0.5 < t(v1), and therefore, min(t(vy),1 —t(vy)) =

1~ t(v1) < 0.5.
In both cases, t(F') = min(t(vy),1 — t(v1)) < 0.5. Similarly, we have min(#(vy),1 —
t(vg)) > 0.5, hence, 1 — min(t(vy), 1 — t(vz)) > 0.5 > t(F), and therefore,
t(G) = min(t(F),1 —min(t(ve), 1 — t(vy)) = t(F).

e In interval fuzzy logic, these formulas are not equivalent: e.g., if we take t(vy) =
[0.5,0.5], and t(ve) = [0,1], we get t(F) = [0.5,0.5]; but min(t(vy),1 — t(v2)) =
min([0, 1], [0,1]) = [0,1] and therefore, G = min([0.5,0.5],[0,1]) = [0, 0.5] # t(F).

e We will now explain why from commonsense point of view these two formulas F' and
G are not exactly equivalent. To illustrate this point, we will give a commonsense
example of these two logical statements. For that, we need an interpretation of the
variables v;. We interpret vy as “young”, vy as “smart”. In this interpretation, F
would means “young and not young.” Informally, any person who is to some extent
still young, but at the same time, to some extent not young (i.e., who is in the
intermediate age category), satisfies the property F. Similarly, a person who is to
some extent smart (but not the smartest possible), but who is also to some extent
not smart (i.e., who is in the intermediate smartness category) satisfies the property

10

v2&—ws. In these terms, the property G means that a person is in the intermediate age
category, but that he is not in the intermediate smartness category. Now, if a person
belong to both the intermediate age category, and to the intermediate intelligence
category, then he satisfies the property F but not the property G. So, from the
commonsense viewpoint, these properties are indeed not equivalent.

5. AN ALGORITHM THAT CHECKS EQUIVALENCE
IN PRACTICAL FUZZY LOGIC

5.1. Why checking equivalence is a problem

Equivalence of propositional formulas F' and G in practical fuzzy logic have been defined
as t(F') = t(G@) for every initial practical fuzzy truth value assignment t. This definition
is ssmilar to the definition of equivalence in a 2—valued logic, where equivalence is defined
as t(F) = t(G) for every Boolean vector (i.e., for every initial 2—valued truth assignment)
t. However, if you want to use this definition for checking whether two given formulas F
and G are equivalent or not, there is a big difference between these two definitions:
e In 2-valued case, there are finitely many possible Boolean vectors, and therefore, we
can (potentially) check them all. This gives us the algorithmic way to check whether
F is equivalent to G or not.
e In practical fuzzy case, there are infinitely many possible initial fuzzy truth value
assignments, and it is impossible to check them all directly. So, to check whether F
and G are equivalent in practical fuzzy logic, we must find some indirect method.

5.2. Relationship with equivalence in logic programming
leads to an algorithm

In Section 4, we have shown that two formulas F' and G are equivalent in practical fuzzy
logic iff they are equivalent in logic programming. This result provides us with a hope that
equivalence can be algorithmically checked. Indeed, the whole idea of logic programming
was to develop a programming (hence, algorithmic) language that would be able to process
logical statements.

Equivalence in logic programming is indeed algorithmic. Indeed, we can check this equiv-
alence as follows:

o For each of the formulas F and G, and for every set of literals W, we can use Defi-
nition 4.1 to check whether a formula is true for W, false for W, or neither true nor
false for this W.

There are totally 2n literals:

e n variables vy, ..., v,, and

e n negations of literals —wvy, ..., 7v,.
Therefore, there are 22" possible sets of literals. We can (in principle) check them all.
As a result of this checking, we will have for each of the formulas F' and G, the list of
all sets of literals W on which this formula is true.

o Next, for each of the two formulas F' and G, we go through the list of all sets of literals
W for which this formula is true, and eliminate all sets that have proper subsets in
the same list. After this elimination, we have for each of the two formulas, the list of
all its answer sets.

11

o If these lists coincide, then these formulas are equivalent. If they differ, then the
formulas F' and G are not equivalent.

Example 1. Let us check whether the formulas F' = v1&-w; and G = —=(—v; V vg) are
equivalent. Here, n = 2, so we have to check 22" = 2% = 16 sets of literals. Let us list them
all. First, we will list the sets with no elements; then, the sets with one element, etc.:

set with no element: ¢;

sets with one element: {vy}, {va2}, {-vi}, {—v2};

sets with two elements: {vy, vy}, {v1, v}, {v1, 02}, {va, vy}, {ve, 7v2}, {—vy, 02 };
sets with three elements: {vy, vy, 7v1}, {v1, v, w2}, {v1, 01, 702}, {ve, 70y, v };

a set with four elements: {vy, vy, vy, 703 }.

For each set W, in order to check whether G is true for W, we must apply Definition 4.1
to all subformulas of G. Let us trace this procedure for W = {vy, vz }:

e v is true for W, because v; € W;

e vy is also true for W;

e since v is true for W, —wv; is false for W

e since vy 1s true for W, -y V vy is true for W;

e since -y V vy is true for W, the formula G = —(-wy V vq) is false for W.
After we check all these sets, we will have only one set of variables on which each formula
is true: {vy, w2}, So, this very set will be the only answer set for both formulas F' and
G. So, for F and G, the classes of answer sets coincide therefore, F' and G are equivalent.

Example 2. In the above example, F' and G are equivalent in 2—valued logic, and they
turned out to be equivalent for our case as well. Let us give another example in which
formulas are equivalent in 2—valued logic but not in practical fuzzy logic: F' = vy V vy, and
G =v1 Vuy V(v1&—vy). In this case:

e F'istrue for the following sets of literals: {vy}, {va}, {v1,v2}, {v1, 2}, and {—vy,v9}.
If we delete the proper supersets from this list, we will be left with only two answer
sets: {v1} and {v2}.

e G is true for the following sets of literals: {vi}, {v2}, {vi,v2}, {v1,~v2}, {—v1,v2},
and {vy, w1 }. If we delete the proper supersets from this list, we will be left with
three answer sets: {vy}, {v2}, and {vy,—vy}.

The resulting classes of answer sets differ, so, F' and G are not equivalent in logic pro-
gramming (hence, not equivalent in practical fuzzy logic).

5.3. The need for a faster algorithm

The algorithm that we have just described is very slow, because it requires checking all
22" possible sets of literals. For n = 4, we must check 2% = 256 cases; for n = 10, about a
million cases. This is too long. Therefore, it would be nice to present a faster algorithm
for checking whether two given formulas are equivalent. Let us present such an algorithm.

5.4. Second (faster) algorithm

This algorithm, like the one before, is related to our Theorem. The difference is that the
previous algorithm has been based on the formulation of the theorem, and this new one is
based on the proof of the theorem.

12

The main idea of this algorithm is as follows:

o first, we transform each of the formulas F and G to some simplified form, and

e then, we compare the results of these simplifications.
If the simplified formulas coincide, then F' and G are equivalent in practical fuzzy logic;
else, they are not.

The simplification of a formula A consists of two steps:

o First, if somewhere in the formula A, negation is applied to a composite subformula,

i.e., if A has a subformula of one of the following types

e ~(B&C),

e (AV (), or

e ~(—-B)
for some B and C), then we replace such a subformula by (correspondingly)

e "BV-C,

e - B&—-C, and

o B.
If after this procedure, we still have negations applied to composite formulas, we
repeat this procedure again and again until we reach a formula in which negation are
only applied to variables. After this, we move to the second step.

e On the second step, if the resulting formula has & applied to a composite formula
that is more complicated than a literal, i.e., if it contains a subformula A& (B V C') for
some A, B, and C, then we replace this subformula by (AV B)&(A Vv C). If after this
replacement, we still have & applied to a non-literal, we repeat this procedure again
and again. At the end, we get the formula in which & is applied only to literals, i.e.,
formula of the type C; V...V Cy,, where each Cj is an expression of the type a&...&b
with literals a, ..., b.

e Finally, we compare the resulting subformulas C;. If the set of literals of one of them
is a superset of the set of literals in another, then we delete the one with more literals
in it. As a result, we get a reduced formula Cy V ... V C,,.

In the Proof of Theorem 1, we have shown that this simplification replacements will even-
tually stop, and that to check whether F' and G are equivalent, it is sufficient to check
whether their resulting simplifications coincide (to be more precise, coincide modulo pos-
sible transpositions of literals and C;). So, after we simplify F' and G, we simply compare
the simplifications.

Let us trace this algorithm on the above two examples.

Example 1. The formula F' = v1&—wvs is already in the simplified form, with m = 1.
The formula G = —(—-v; V vy) has negation applied to a composite formula. After an
appropriate replacement, we get —(-wy)&—wy. Here, again, we have a negation applied
to a composite formula —vy. After replacing —(—-wvy) by v1, we finally get the simplified
formula vy &—wvy. Further simplification is not needed. Since we got the same simplified
form for both formulas, this means that F' and G are indeed equivalent.

Example 2. The formulas F = vy V vy and G = vy V vy V (v1&—wy) are already in the
simplified form, and they are different. So, F' and G are not equivalent in practical fuzzy
logic.

13

Comment. We can see from these examples that our second algorithm is indeed faster.

6. ANOTHER REASONABLE QUESTION:
WHEN IS A FORMULA F A CONSEQUENCE OF A FORMULA G?

If formulas F' and G are not equivalent, then a natural question to ask is: are these two
formulas independent from each other, or one of them is a consequence of another one?
In order to answer this question, we must first define what a consequence means. This
question is the easiest to answer for 2-valued logic:

Definition 6.1. In 2-valued logic, we say that F is a consequence of G if for every Boolean
vector t for which t(G) is true, t(F') is also true.

Comment. Since we identified 1 with “true”, and 0 with “false”, we can reformulate this
definition as follows:

Definition 6.1'. In 2-valued logic, we say that F is a consequence of G is for every
Boolean vector t, t(F') > t(G).

Comments.

1. Indeed, if t(G) = 0, i.e., if G is false in ¢, then this inequality is always true. If,
however, t(G) = 1, then this inequality implies that ¢(F') = 1. So, this modified definition
is equivalent to the original one.

2. In traditional fuzzy logic, in addition to the cases when t(G) = 0 and #(G) = 1, we can
have cases when 0 < ¢(G) < 1. Intuitively, if we have some reasons to believe in G, and F
is a consequence of G, then these same reasons can be also viewed as reasons to believe in
F. There may be also other reasons to believe in F', that are unrelated to G. Therefore,
if F is a consequence of GG, this means that in all cases, we have either the same or even
more reasons to believe in F' than in G. In other words, the degree of belief in F' must be
always not smaller than the degree of belief in G: t(F') > t(G). We can use this inequality
as a definition of the notion of consequence in traditional (non-interval) fuzzy logic:

Definition 6.2. In traditional fuzzy logic, we say that F is a consequence of G if for every
initial truth value assignment t, we have t(F') > t(G).

Comment. How to define “consequence” for practical (interval) fuzzy logic? If the degree
of belief in G is described by an interval [t~ (G),tT(G)], this means that the actual degree
of belief can take any value from this interval. For each of these degrees of belief, the
corresponding degree of belief in F' is greater than the degree of belief in G. In other
words, every possible degree of belief in F' (i.e., every number from the interval t(F')) must
be not smaller than some possible degree of belief in G (i.e., some number from the interval
t(F)). It is natural to make this condition a definition of a consequence in the practical
fuzzy case. We will describe this definition in two steps:

o First, we will describe the corresponding relation between the intervals.

e Second, we will use this relation to describe what a consequence means.

14

Definition 6.3. We say that an interval a = [a™,a™] is not smaller than the interval
b = [b7,b"] (and denote it by a > b) if the following two conditions are satisfied:

e for every value a € a, there exists a b € b such that a > b; and

e for every b € b, there exists a a € a such that a > b.

PROPOSITION 3. a>b iffat > b* and a= > b~.

Comments.
1. This statement is easy to prove.

2. This partial order among intervals coincides with the order imposed by the lattice
structure (min, max) on the set of all intervals, and is, therefore, in good accordance with
the original ideas of®:25,

Definition 6.4. In practical fuzzy logic, we say that F' is a consequence of G if for every
initial practical fuzzy truth assignment t, we have t(F) > t(G).

Comment. Similarly to Theorem 1, we will show that this definition is equivalent to a
similar definition from logic programming.

Definition 6.5. In logic programming, we say that F is a consequence of G if F' is true
for every answer set of G.

Comment. In Section 4, we have already described how to determine all answer sets of
a given formula, and how to check whether a given formula F' is true for a given set of
literals. These two algorithms enable us to check whether F' is a consequence of G in logic
programming.

THEOREM 2. Let F and G be any propositional formulas. Then, F 1s a consequence
of G in practical fuzzy logic if and only iof F 1s a consequence of G in logic programming.

Comment. Because of this theorem, we can apply the above-described method of checking
whether F'is a consequence of G in logic programming to check whether F' is a consequence
of G in the sense of practical fuzzy logic.

7. PROOFS
7.1. Proof of Theorem 1
7.1.1. The structure of the proof

Our theorem is about arbitrary propositional formulas. To simplify its proof, we will first
simplify the formulas. To be more precise, we will do two things:

e First, we will describe three transformations 7' of propositional formulas for which we
will prove that an arbitrary formula A is equivalent to the result T(A) of applying T
to A (equivalent in both senses).

e Second, we will show that consequent application of such transformation will indeed
simplify the original propositional formulas.

As a result, we will reduce the problem of checking equivalence for arbitrary propositional
formulas to the problem of checking equivalence for simplified ones.

15

7.1.2. First transformation

Let us first consider transformations that corresponds to De Morgan’s laws, and prove that
they keep the formula equivalent in both senses. In logic programming, we will also prove
that these transformations keep formulas equivalent in a somewhat stronger sense:

Definition 7.1. We say that propositional formulas A and B are strongly equivalent in
logic programmang if for every set of literals W, the following two conditions are true:

o A istruein W iff B is true in W, and

o A isfalse in W iff B is false in W.

The following Lemma shows that this definition is indeed stronger than equivalence in the
sense of Definition 4.2:

LEMMA 1. In logic programming, if formulas A and B are strongly equivalent, then they
are equivalent.

Proof of Lemma 1. According to Definition 4.2, formulas A and B are equivalent if
they have exactly the same answer set. But if A and B are strongly equivalent, then, in
particular, A and B are true or not true for exactly the same sets of literals W. Therefore,
their answer sets, i.e., the smallest sets of literals W for which the formula is true, are

exactly the same for A and for B. Q.E.D.

Let us now prove that De Morgan’s transformation do lead to an equivalent (and in the
logic programming case, even to a strongly equivalent) formula.

LEMMA 2;. In practical fuzzy logic, the following three equivalences hold:
i) =(AV B) is equivalent to (—mA)&(—B) for every two formulas A and B.
i) ~(A&B) s equivalent to (mA)V (=B) for every two formulas A and B.

i) —(—=A) is equivalent to A for every formula A.

LEMMA 2;. In logic programmang, the following three strong equivalences hold:
i) =(AV B) is strongly equivalent to (—A)&(=B) for every two formulas A and B.
i) ~(A&B) s strongly equivalent to (mA) V (=B) for every two formulas A and B.
i) —(—=A) is strongly equivalent to A for every formula A.

Proof of Lemma 2¢. We will proof part i) of this lemma. The other two statements are
proved similarly. The proof of part i) follows from the following sequence of steps:
e According to Definition 3.6, to prove this equivalence, we need to show that the
interval truth values t(—(A V B)) and t((—A)&(—B)) assigned to these two formulas
are the same for every initial practical fuzzy truth value assignment t.
o According to Definition 3.5:
o t(7(AV B))=1—min(t(A),t(B)), and
o t((—A)&(—B)) = max(l —t(A4),1 — max(1 — t(B)).
e We will now use Proposition 1 to express operations with intervals in terms of opera-
tions with their bounds. To do that, we will need denotations for the bounds of t(A)
and t(B):
e We will denote the bounds of the interval t(A4) by [a™,a™], and

16

e We will denote the bounds of the interval t(B) by [67,b7].
In these terms, we have the following formulas:

e t(=(AV B))=[1-max(at,b"),1 — max(a™,b7)].

e t((=4)&(=B)) = [min(1 —at,1 —b"),min(l —a=,1 —b7)].

e The function 1 — x is monotonically decreasing. Therefore, the value of 1 — z is the
smallest iff the value of z is the largest. So, min(1 —a*,1 —b7) =1 — max(a™, ™).
Hence, the lower bounds of the intervals that we want to prove to be equal really
coincide. Similarly, their upper bound coincide, so, the intervals are equal. Q.E.D.

Proof of Lemma 2;. We will only prove part i) of this lemma; the other two cases can
be proved similarly.

According to Definition 7.1, the desired equivalence means that the formulas =(AV B)
and (—A)&(—B) are true or false on exactly the same sets of literals.

The fact that A is true for W iff B is true for W, follows from the following sequence of
equivalences (extracted from Definition 4.1):
e According to Definition 4.1 (case of =), =(A V B) is true in W if and only if AV B is
false in W.

e This, in its turn, is (according to Definition of “true” for V) equivalent to both A and

B being false in W.

On the other hand, for (-A)&(—B), Definition 4.1 leads to the following sequence of
equivalences:
e By Definition 4.1 (part &), (-A)&(=B) is true for W iff both =A and =B are true
for W.
e This, in its turn, is (according to the — part of Definition 4.1) equivalent to both A
and B being false in W.

So, the first of our two composite formulas =(AV B) is true for W iff both A and B are false
for W. Similarly, the second of our composite formulas is true for W iff both A and B are
false in W. Therefore, the first composite formula is true for W iff the second composite
formula is true for W.

A similar proof works for falseness: namely, each of the composite formulas is false
for W iff either A if true for W, or B is true for W. Therefore, the first composite formula
is false for W iff the second composite formula is false for W. Q.E.D.

Comment. We want to use these transformations to transform the original propositional
formula A to some form that is simpler but still equivalent to the original formula A
(equivalent both in the sense of practical fuzzy logic and in the sense of logic programming).
It turns out that we can apply transformations not only to the formula itself, but to its
subformulas as well.

LEMMA 3. In practical fuzzy logic,
o If A is equivalent to A', then —A 1s equivalent to —A’.
o If A is equivalent to A', and B 1s equivalent to B', then AV B is equivalent to A'V B'.
o If A s equivalent to A', and B is equivalent to B', then A&B is equivalent to A'&B'.

17

LEMMA 3;. In logic programmaing,
o If A is strongly equivalent to A', then —A 1s strongly equivalent to —A'.
o If A s strongly equivalent to A', and B s strongly equivalent to B', then AV B 1s
strongly equivalent to A' vV B'.
o If A is strongly equivalent to A', and B 1is strongly equivalent to B', then A&DB 1is
strongly equivalent to A'&B’.

Proof of Lemma 3;. The proof of this lemma directly follows from the definition of
equivalence (Definition 3.6), and the definition of a truth value of a formula. For example,
for V, since A is equivalent to A’, we can conclude that t(A4) = t(A’) for all initial truth
value assignments t. Similarly, t(B) = t(B') for all initial truth value assignments t.

Therefore, t(A V B) = max(t(A),t(B)) = max(t(A'),t(B')) =t(A' v B"). Q.E.D.

Proof of Lemma 3;. The proof of this lemma directly follows from the definition of
strong equivalence (Definition 7.1). For example, let us consider the case of V. According
to Definition 7.1, we must prove that AV B and A’ V B’ are true or false for exactly the
same sets of literals. Let’s prove it for “true”. Indeed, according to Definition 4.1, AV B
is true for W iff either A, or B is true for W. But since A is strongly equivalent to A’, A is
true for W iff A’ is true for W. Similarly, B is true for W iff B’ is true for W. Therefore,
AV B is true for W iff either A" or B’ is true for W. But this exactly when A’V B’ is true.
So, AV B is true for W iff A’ v B’ is true for W. Similarly, we can prove that A V B is
false for W iff A’ v B' is false for W. So, AV B and A’ V B’ are strongly equivalent.

A similar straightforward proof can be proposed for two other cases. Q.E.D.

LEMMA 4. Assume that we have a formula A, its subformula B, and a formule B’
that 1s equivalent to B in the sense of practical fuzzy logic. Then, if we substitute B' into
A instead of B, we will get a new formula A' that 1s equivalent to A.

LEMMA 4. Assume that we have a formula A, its subformula B, and a formula B' that
is strongly equivalent to B in the sense of logic programming. Then, if we substitute B’
into A instead of B, we will get a new formula A' that is strongly equivalent to A.

Proof of Lemmas 4; and 4;. These results follow directly from Lemmas 3; and 3;, if
we use induction over the length of the formula to reduce the problem to shorter A’s and

A’s. Q.E.D.

As a result of Lemmas 2-4, we can simplify each of the given propositional formulas

F and G as follows.

LEMMA 5. For every propositional formula A, there exists a propositional formula Ty (A)
with the following three properties:

o in T1(A), negation is applied only to variables:

o T1(A) is equivalent to A in practical fuzzy logic; and

o T1(A) is strongly equivalent to A in logic programming.

Proof of Lemma 5. First, let us describe the desired simplification procedure. If a
formula A contains negation applied to a composite formula, then let us take the longest

18

composite formula to which negation is applied, and move this negation “inside” the for-
mula using one of the following transformations:
e If negation is applied to a formula AV B for some A and B, then we replace =(AV B)
by (—A)&(-B).
e If negation is applied to a formula A& B for some A and B, then we replace =(A& B)
by (-A4) Vv (-B).
e If negation is applied to a formula = A for some A, then we replace =(=A) by A.
If there are several longest formulas, then we choose one of them. In each case, according
to Lemmas 2-3, the transformed subformula has the following two properties:
e it is equivalent to the result of its transformation in practical fuzzy logic, and
e it is strongly equivalent to the result of its transformation in logic programming.
Therefore, due to Lemmas 4, the formula in which we made this replacement is equivalent
to the original formula in the same two senses.

If the resulting transformed formula still contains negation applied to a composite
formula, then we repeat this transformation once again, etc. Let us show that these
iterations will stop. Indeed, let us denote by L, the largest length of the subformula to
which negation is applied. Suppose that initially, there were n(L) negated formulas of
this maximal length L, and that we applied this transformation to an expression —A for
some subformula A of length L. After such a transformation, negation is applied to one
or two formulas of smaller length. So, in the resulting formula, the maximal length of the
negated subformula is still < L, and the total number of negated subformulas of length L
has decreased by one. Therefore, after < n(L) steps, we will eliminate all negated formulas
of length L. After that, if there still is a negated composite formula, its length is < L.
Therefore, the largest of the lengths of negated composite formulas is < L — 1.

If we repeat this iterative procedure again, we can transform our formula into a new
one in which the negated composite subformulas have lengths < L — 2, then < L — 3, etc.
When we bring this length to 1, this means that we have an equivalent formula in which
negation is not applied to any composite formula, and is, therefore, applied only to the

variables. This is the desired T1(A). Q.E.D.

Example. Suppose that the formula A is =(v1&—(v2&—w3)). Let us describe our trans-
formation from A to T1(A) step by step:

e In the original formula A, there are two negated composite subformulas: vo&—wvs and
v1&—(v2&—v3). The second negated subformula is longer, so we start our transforma-
tion with this longer subformula. As a result, we get the formula —vy V = (=(vy&—w3)).

e In this new formula, the longest negated subformula is =(vy&—vs). So:

e We apply the appropriate transformation to the negation —(=(v2&-ws)) of this
subformula, and get the equivalent subformula vy&—wvs3.

e Hence, if we substitute vo&—w3 instead of ~(—(vy&—w3)) into the formula —v; V
—(—(v2&—v3)) that we have obtained after the first transformation step, then we
get (due to Lemmas 4) an equivalent formula —v; V (ve&—w3).

In this resulting formula —wv; V (v2&—w3), negation is applied only to variables, so this

formula is the desired T1(A).

19

7.1.3. Second transformation step

Next, we will consider transformations that correspond to distributivity law.

LEMMA 6¢. In practical fuzzy logic, A&(B V C) is equivalent to (A&B) V (A&C) for
arbitrary three formulas A, B, and C.

LEMMA 6;. In logic programming, A&(BV C) is strongly equivalent to (A&B)V (A&C)
for arbitrary three formulas A, B, and C.

Proof of Lemma 6. This proof follows from the following sequence of steps.

e According to Definition 3.6, to prove this equivalence, we need to show that the
interval truth values t(A&(B V C)) and t((A&B) V (A&C)) assigned to these two

formulas are the same for every initial practical fuzzy truth value assignment t.

e Let us use Definition 3.5 and Proposition 1 to describe the intervals assigned to these
formulas. To do that, we will need denotations for the bounds of the intervals t(A),
t(B), and t(C):

e We will denote the bounds of the interval t(A4) by [a™,a™].

e We will denote the bounds of the interval t(B) by [67,b7].

e We will denote the bounds of the interval t(C) by [¢~, ¢T].
In these terms, we have the following formulas:

e t(BV (C))=max(t(B),t(C)) = [max(b~,c”), max(bT,ct)].

o t(A&(BV(C)) =min(t(A),t(BVC)) =

[min(a¢™, max(b~,¢™)), min(a*t ,max(et
o 4(ALB)) = min(t(4), 4(B)) = hmin(a=, b~), min(a*, b*)].
o ¢(4LC)) = min(t(4), ¢(C)) = [min(a™, ¢~), min(a®,c*)
o t((A&B)V x(

(A&C)) = max(t(A&B), t(A&C)) =
[max(min(a™, 57), min(a™, ¢™)), max(min(a™t, b¥), min(a™, cT))].
e So, to prove that these intervals coincide, it is sufficient to prove the equality
min(a, max(b, ¢)) = max(min(a, b), min(a, ¢)) for all a, b, and ¢. Then:
e applying this equality to a™, 67, and ¢~, we will prove that the lower bounds
coincide, and
e applying it for a™*, b+, and ¢, we will conclude that their upper bounds coincide.

So, let us prove the desired equality. We will prove it by considering all possible
orderings of a, b, and c:

o If a <banda<e¢ then a < max(b,c), and therefore, min(a, max(b,c)) = a. On
the other hand, min(a, b) = a, min(«a, ¢) = a, and thus,
max(min(a, b), min(a, ¢)) = max(a,a) = a. So, in this case, the desired equality
is true.

o If b < a < ¢, then max(b,¢) = ¢ > a, therefore, min(a, max(b,c)) = a. On
the other hand, min(a,b) = b, min(a, ¢) = ¢, and so max(min(a,b), min(a,c)) =
max(a,b) = a. In this case, the desired equality is also true.

o If ¢ < a < b, then this inequality is proved similarly.

o If b < ¢ < a, then max(b,¢) = ¢ and min(a, max(b,c)) = ¢. On the other hand,
min(a,b) = b, min(a, ¢) = ¢, and max(min(a, b), min(a, ¢)) = max(b,c) = ¢. The
equality is thus true.

20

e The only remaining case ¢ < b < a is treated similarly.

The equality is proved, so the intervals that correspond to the two composite formulas do

coincide. Q.E.D.

Proof of Lemma 6;. Applying Definition 4.1 twice, we can easily conclude that
A&(B Vv C) is true for W iff the following two statements is true:

o First, A is true for W.

e Second, either B is true for W, or C is true for W.

Similarly, we can conclude that (A&B) V (A&C) is true for W iff either A and B are both
true for W, or A and C' are both true for W.

One can see that these conditions are equivalent. Therefore, A&(B V C) is true for
W it (A&B) V (A&C) is true for W.

Similarly, we can prove that A& (B V C) is false for W iff (A&B) V (A&C) is false for
W. The strong equivalence is proved. Q.E.D.

Comment. Lemmas 6 lead to a possibility of a new transformation: A&(B V C) into
(A&B) Vv (A&C). Let us show how this transformation can simplify the original proposi-
tional formula.

Definition 7.2.
e By a conjunction C, we mean a propositional formula of the type a&...&b, where
a,...,b are literals (i.e., variables or their negations).
e By a formula in a disjunctive normal form, or in DNF, for short, we mean a proposi-
tional formula of the type Cy V ...V Cy,, where C; are conjunctions.

LEMMA 7. For every propositional formula A, there exists a propositional formula To(A)
with the following three properties:

o T5(A) is a formula in DNF;

o T5(A) is equivalent to A in practical fuzzy logic; and

o T5(A) is strongly equivalent to A in logic programming.

Proof of Lemma 7. To get T5(A), we do the following:
e First, we apply a procedure from Lemma 5 to the formula A and get an equivalent
formula T7(A) in which negations are only applied to variables.
e Then, we process Ti(A) in a manner similar to Lemma 5:
e Namely, if in 71(A), & is applied to a subformula that is more complicated than a
literal, i.e., if 71 (A) contains a subformula of the type A&(BVC'), then we replace
this subformula by an equivalent formula (A&B) V (A&C). Due to Lemmas 4,
the result of this replacement is equivalent to T7(A).
e If in this result, we still have & applied to a composite formula, we repeat this
procedure again, etc.
Similarly to the proof of Lemma 5, we can proof that these iterations will eventually stop.
In the resulting formula T5(A), & can be only applied to literals. Therefore, T5(A) is in
DNF. Q.E.D.

21

7.1.4. Third transformation

A formula in DNF can still be simplified:

e first, we will show that if a conjunction contains two identical literals, then we can
delete one of them (i.e., reduce v1&wvy to vy);

e second, we will show that if one conjunction is a, so to say, “superset” of another one,
then this larger conjunction can also be deleted; e.g., a formula vy V (v1&—w3) can be
reduced to a formula vy.

Let us describe the corresponding transformations in detail.

LEMMA 8¢. In practical fuzzy logic, A&A 1is equivalent to A for an arbitrary formula
A.

LEMMA 8;. In logic programming, A&A is strongly equivalent to A for an arbitrary
formula A.

Proof of Lemma 8. If we denote t(A4) by [a™,a™], then t(A&A) = min(t(A),t(A)) =
[min(a™,a”),min(a™,a™)] = [a7,a"] = t(4). Q.E.D.

Proof of Lemma 8;. According to Definition 4.1, A& A is true for W iff A is true for W
and A is true for W. In other words, A& A is true for W iff A is true for W. Similarly, for
false. Q.E.D.

LEMMA 9¢. In practical fuzzy logic, AV (A&B) s equivalent to A for arbitrary formulas
A and B.

LEMMA 9;. In logic programming, AV (A&B) is strongly equivalent to A for arbitrary
formulas A and B.

Proof of Lemma 9. This proof will be similar to the proofs of Lemmas 2y and 6. If
we denote t(A) by [a™,a™], and t(B) by [b—,b"],
then we get t(A&B) = [min(a™,b7), min(a™,b")], and

t(AV (A& B)) = max(a”,min(a”, b)), max(a’, min(a™, b1)).

But for every @ and b, a > min(a,b), and therefore, min(a, max(a,b)) = a. In particular,
max(a”,min(e”,57)) = @~ and max(at, min(a®,b7)) = a*, hence, t(AV(A&B)) = t(A4).
This means that these formulas are indeed equivalent. Q.E.D.

Proof of Lemma 9;. Let us first prove that AV (A& B) is true for W iff A is true for W.
Indeed, according to Definition 4.1, AV (A& B)) is true for W if one of the following two
conditions is true:

o A is true for W;

o A is true for W and B is true for W.
If A is true for W, then the first condition is satisfied. If any of these conditions is satisfied,
then A is true for W. Therefore, AV (A&B)) is true for W iff A is true for A.

Similarly, it can be proved that A V (A& B)) is false for W iff A is false for A. So,

these two formulas are strongly equivalent. Q.E.D.

22

Comment. The resulting transformation enables us to do a further reduction of the original
formula.

Definition 7.3.

o We say that a conjunction C' = ale...&b is irreducible if all its literals are different.

e We say that two irreducible conjunctions C and C' coincide, and denote it by C = C',
if they contain exactly the same literals (in other words, if C' can be obtained from
C' by a transposition of literals).

o We say that an irreducible conjunction C' is a superset of an irreducible conjunction
C' if the set of literals of C is a (proper) superset of the of literals of C'.

o We say that a formula in DNF is irreducible if the following two conditions are satisfied:

e First, each of its conjunctions is irreducible.
e Second, none of its conjunctions is a superset of another one.

e We say that two irreducible DNF formulas A and A' coincide (and denote it A = A') if
they contain the same number of conjunctions, and these conjunctions can be divided
into coinciding pairs (in other words, if A can be obtained from A' after an appropriate
transposition of conjunctions and transpositions of literals inside each conjunction).

LEMMA 10. For every propositional formula A, there exists an irreducible DNF formula
T5(A) that is equivalent to A in practical fuzzy logic, and that is strongly equivalent to A
in logic programmang.

Proof of Lemma 10. First, we apply Lemma 7 to reduce A to its DNF form T3(A).
Then, we consequently apply two reduction procedures:

e First, we make each conjunction irreducible. If one of the conjunctions contains a
repeating literal a, then we reduce a&a to a. On each step, we reduce the total length
of the formula. Therefore, this procedure will eventually stop. When we stop, this
means that all our conjunctions are irreducible.

e Next, if one conjunction is a superset of another one, then we (based on Lemmas 9)
eliminate the superset one. Again, each such elimination reduces the total length of
the formula, so sooner or later, we will stop.

At the end of this procedure, we have the desired irreducible DNF that is equivalent to
the original formula A. Q.E.D.

7.1.5. Final proof

Now, we are ready to prove the main theorem. Suppose that have two formulas F' and G,
and we know that in practical fuzzy logic, F' is equivalent to G. According to Lemma 10,
in practical fuzzy logic, F' is equivalent to T53(F"), and G is equivalent to T53(G). Therefore,
T5(F) is equivalent to T3(G) in practical fuzzy logic. If we will able to prove that T5(F)
is also equivalent to T5(G) in logic programming, then, due to the fact that in logic
programming, F' is equivalent to T5(F), and G is equivalent to T3(G), we will be able
to conclude that F' ~ T3(F) ~ T3(G) ~ G, and F ~ G.

Similar idea can work if we start with the assumption that ' and G are equivalent in
logic programming.

23

So, to complete our proof, it is sufficient to show that irreducible DNF formulas are

equivalent in practical fuzzy logic iff they are equivalent in logic programming. Let us
prove it.

LEMMA 11. Let A and B be irreducible formulas. Then, the following three conditions

are equivalent to each other:

i)
i)

iii)

A= B;
A s equivalent to B s practical fuzzy logic;
A s equivalent to B in logic programmaing.

Proof of Lemma 11. This proof will consist of four parts:

First, we will prove that i)—1ii);
Second, we will prove that ii)—1);
Third, we will prove that i)—1iii);
Finally, we will prove that iii)—1).

Let us first prove that 1)—w). If A = B, then B can be obtained from A simply by
transpositions. Transpositions do not change the truth values assigned to a formula.
Hence, t(A) = t(B), and so, formulas A and B are indeed equivalent in practical fuzzy
logic.

Let us now prove that 1i)—1). Suppose that irreducible formulas A and B are equiva-
lent to each other in practical fuzzy logic. Let us prove by reduction to a contradiction

that A = B.

Indeed, assume that A # B. This means that there exists a conjunction that belongs
to one of the formulas A, B, but that does not belong to another formula. If there
are several such conjunctions, let us take the shortest of them, and denote it by C.
There are two possibilities:

e C belongs to A but does not belong to B;

e C belongs to B and does not belong to A.
Without losing any generality, let us consider the first case (the second case will lead
to a similar contradiction). We assumed that A and B are equivalent in practical fuzzy
logic. This means that for every initial truth value assignment t, we have t(A) = t(B).
In particular, the upper bounds ¢T(A) and t*(B) of these interval must coincide. Let
us take the following initial truth assignment:

o If a variable v; is one of the literals from C, and its negation —v; does not belong

to C, then we take t(v;) = [1,1].

o If a literal —w; belongs to C, an v; does not belong to C, we take t(v;) = [0,0].

e If both the variable v; and its negation —v; belong to C, we take t(v;) = [0, 1].

o If neither the variable v;, nor its negation —w; belong to C, we take t(v;) =

[0.5,0.5].

The idea behind this assignment is that we want to make C true, and all other
conjunctions unknown (with degree of belief 0.5). Let us show how this arrangement
works. First, let us compute the upper bound t*(A) of the interval t(A4) assigned to
the formula A.

24

Because of our definition, for every literal a from C, we have [t~ (a),t"(a)] = t(a)
equal either to [1,1], or to [0,1]. In both cases, the upper bound ¢*(a) is equal
to 1.

According to Proposition 1, the upper bound tT(C) of the interval t(C) =
t(a&...&b) is equal to min(tt(a),...,tT (b)) for all literals a,...,b that form the
conjunction C. Since for all these literals, t*(a) = ... = t*(b) = 1, we have
tH(C) =1

Now, according to Proposition 1, the upper bound ¢+*(A) of the interval t(A) =
t(C1 V..V CV ..V Cp) assigned to the formula A is equal to tt(4) =
max(tt(Cy),...,tT(C),....,tT(Cp)). Since all these upper bounds are < 1, and
one of the them (namely, t7(C)) has been proven to be equal to 1, we can con-
clude that their maximum is equal to 1, i.e., that t7(A4) = 1.

Let us now arrive at a contradiction. This will be done in several steps:

Since we assumed that A and B are equivalent in practical fuzzy logic, we conclude
that t7(B) = 1.

The formula B is in DNF: B = C; V ... V Cy, for some conjunctions C. So,
according to Proposition 1, we have t*(B) = max(tT(C4),....,t7(Cy,)). Hence,
the fact that t7(B) = 1 means that the largest of the values t7(C;) is equal to
1. In other words, for one of the conjunctions C; from the formula B, we have
tt(Cj) = 1.

Let us denote by a, ..., b literals that form the conjunction C;. Then, C; is a&...&b
and therefore (according to Proposition 1), tt(C;) = min(t*(a),...,t*(b)). From
the fact that +7(C;) = 1, we can thus conclude that t*(a) = ... = t7(b) = 1 for
all literals from Cj;.

According to our choice of the initial truth assignment, t*(a) = 1 iff a belongs
to C (else, tT(a) = 0 or tT(a) = 0.5). So, the fact that t*(a) = 1 for all a from
C; means that all literals from C; are at the same time literals from C'. In other
words, either C' coincides with Cj, or C' is a superset of C;. Let us how that in
both cases, we get a contradiction.

If Cj coincides with C', then C' is a conjunction in both formulas A and B, and
we have chosen C' as a conjunction that belongs to A but not to B. So, this case
is impossible.

If C is a superset of Cj, then C; is shorter than C. Since we have chosen C' to
be the shortest of all conjunctions that belongs to only one of the formulas A
and B, and C is even shorter, this means that C'; cannot be from this class. In
other words, the conjunction C'; must belong to both formulas A and B. So, the
formula A contains both the conjunction C; and its superset C'. But we have
assumed that A is irreducible and therefore, it cannot contain two conjunctions,
one of which is a superset of another. So, in the second case, we also get a
contradiction.

So, in both cases, our assumption that A # B leads to a contradiction. Therefore,

A=

B.

25

o Let us now prove that 1)—1ii). If A = B, then evidently A is true for W iff B is true for
W, and similarly, for false. So, A and B are strongly equivalent in logic programming
and therefore (due to Lemma 1) they are equivalent in the sense of logic programming.

o Finally, let us prove that iii)—1). Suppose that A and B are equivalent in logic
programming. This means that they have the same class of answer sets. To prove
that A = B, let us show that an irreducible formula A = C; V ... V C,,, has exactly m
answer sets that correspond to C: namely, for every C' = a&..&b, the corresponding
answer set is {a,...,b}. To find out all answer sets, let us describe step by step when
A is true for a given set of literals W:

e According to Definition 3.6, A is true for W iff one of the formulas C is true for
wW.
o A formula C; = a&...&b, in its turn, is true for W iff all its literals «, ..., b are
true for W.
e Finally, a literal is true for W iff it belongs to W.
Combining these definitions, we conclude that A is true for W iff W contains all
the literals from one of the conjunctions C; of the formula A. We can make two
conclusions from here:
o First, that for every j from 1 to m, A is true for the set W; of all literals from
the yj—th conjunction C}.
e Second, that if A is true for W, then W contains W; for some j.
An answer set is defined as a set W such that A is true for W but not for any proper
subset of W. So, if W is an answer set, then A must be true for W and therefore, W
must be a superset of one of the sets W;. W cannot be a proper superset, because else
for W, there would exist a proper subset (namely, W;) for which A is also true. So,
only sets W; can be answer sets. Let us show that they all are answer sets. Indeed,
the only possibility for W} not to be an answer set for A is if A would have a proper
subset W for which A is also true. But for W to be such a subset, it must contain
Wy for some k. So, W; D W O Wy, hence W; D Wj. This inclusion contradicts
irreducibility of A.
So, the class of answer sets of A coincides with Wy, ..., W,,. Therefore, if we know the
answer sets, we can easily reconstruct C'; and thus, the formula A. Therefore, if two
formulas A and B has the same class of answer sets, this means that they consist of
exactly the same conjunctions, i.e., that A = B.

Comment. As we have already mentioned, proving Lemma 11 completes the proof of our

Theorem. Q.E.D.

7.2. Proof of Proposition 2
The first part of this proposition immediately follows from Definition 3.6, if we take de-
generate intervals t(v;) = [t(v;), t(v;)]. The desired example in the second part is provided

by the following two formulas: F' = vy V =y, and G = vy V —v1 V (v2&—v2). In practical
fuzzy logic, t(F) = max(t(v1),1 —t(v1)) and

t(G) = max[t(F), min(t(ve), 1 — t(ve))].

26

If t(vy) > 0.5, then ¢(F) > t(vy) > 0.5. If t(vy) < 0.5, then 1 — t(vy) > 0.5 and
therefore, ¢(F') > 1 —t(vy1) > 0.5. So, in both possible cases, t(F) > 0.5.

Similarly, one can easily prove that in all possible cases, min(t(vz),1 — t(vz)) < 0.5.
Therefore, min(t(¢(v2),1 —t(v2)) < 0.5 < ¢(F), and

t(G) = max[t(F), min(t(vy), 1 — t(vy))] = t(F).

So, t(F') = t(G) for all t.

On the other hand, the formulas F' and G are already in the irreducible DNF form,
so from the fact that F' and G are different, we can (using Lemma 11 from the Proof of
Theorem 1) conclude that F' is not equivalent to G in practical fuzzy logic. Q.E.D.

7.3. Proof of Theorem 2

Similarly to the proof of Theorem 1, since every formulas can be reduced to an irreducible
one by equivalent transformations, it is sufficient to prove the desired result for irreducible

formulas F' and G.

So, let us assume that F' and G are both irreducible. Then, F = C; V ...V (C,,, and
Gis C] V..V ! for some m and n, where C; and C} are conjunctions. We have already
proved in the proof of Theorem 1 (to be more precise, in the proof of its Lemma 11), that
an irreducible formula G has exactly m answer sets Wy, ..., W/ . where W]’ is a set of all
literals from the conjunction C}. We have also proved that F' is true in W iff at least one
of the conjunctions from F' consists of literals from W. So, for irreducible formulas F' and
G, the fact that F is a consequence of G in logic programming, i.e., that F' is true for all

answer sets of (G, can be reformulated as follows:

For every conjunction C! from G, there exists a conjunction C; from F such that C} is a
superset of C;.

Let us show that this condition is indeed equivalent to F' being a consequence of GG in the
sense of practical fuzzy logic.

o First, let us prove that if the logic programming condition is satisfied, then F' is a
consequence of G is the sense of logic programming, i.e., that t(F) > t(G). Let us
prove that t(F) > t7(G) (for t~, the proof is similar). Indeed, since G = C}V...vC! .
we have t7(G) = max(¢1(C}),...,tT(C.,)). For every i from 1 to m, there exists a
conjunction C; from F' that is a subset of C. Therefore, we have one of the two cases:

e either C] = Cj, or
o O] = C;&ak...&b for some literals a, ..., b.
In both cases, we can get some bounds on t*(C!):
e in the first case, t1(C!) =t7(C;);
e in the second case, t7(C!) = min(t*(C;),t*(a),...) <tT(C).
So, in both cases, tT(C!) < tt(C;). Since F = Cy V ...V C,, we have t7(F) =
max(tT(Cy),...,t7(Cy)), and therefore, t+(C;) < tT(F). So, for every ¢ from 1 to m,
tH(ChH < t7(C;) < tT(F). Hence, tT(G) = max(tT(C}),....tT(C},)) < tT(F).

27

e Let us now prove that if t(F) > t(G) for all initial practical fuzzy truth value as-

signments t, then the logic programming condition holds, i.e., for every conjunction
C! from G, there exists a conjunction C; from F for which C] is a superset of Cj.
To prove it, let us fix ¢, and for that conjunction C!, let us choose the same truth
assignment that we have used in the proof of Lemma 11 (from the proof of Theorem
1):
e if a variable vy belongs to C!, and its negation —v; does not belong to C}, then
we take t(vg) = [1,1].
e if a literal —wy belongs to C!, and its negation vy does not belong to C!, then we
take t(vg) = [0, 0].
e if both a variable vy and its negation —vy belong to C!, then we take t(vy) = [0, 1].
e if neither a variable v, nor its negation —wy, belong to C!, then we take t(vy) =
[0.5,0.5].
With this choice, as in the proof of Lemma 11, ¢7(C!) = 1, and therefore, t1(G) = 1.
Since F is a consequence of G in practical fuzzy logic, we can conclude that t*(F) >
tt(F) = 1. Since tT is a number from the interval [0,1], we can thus conclude
that tT(F) = 1. Since t*(F) is the maximum of n numbers t*(C;), one of these n
numbers must be equal to 1. Let us assume that t(Cj) = 1. Since C; = a&...&b,
we have t1(C;) = min(t*(a),...,tT(b)). The minimum of several numbers t*(a), ...,
t*(b) is equal to 1. Therefore, each of these numbers is equal to 1. So, t7(a) = 1 for
all literals from the conjunction C;. But according to our choice of t, t*(a) =1 iff a
belongs to C! (else, tT(a) = 0 or = 0.5). Hence, we can conclude that every literal
from C; belongs to C}, i.e., that C] is indeed a superset of C;. Q.E.D.

Acknowledgments. This work was partially supported by NSF grants No. CDA-9015006
and No. EEC-9322370, and by a NASA grant No. NAG 9-757. The authors are thankful to
Michael Gelfond, Slava Nesterov, Daniel G. Schwartz, Ronald Yager, and to the anonymous
referees for their important attention and help.

1.

Ot

REFERENCES

H. R. Berenji, “Fuzzy logic controllers”, In: An Introduction to Fuzzy Logic Applica-
tions in Intelligent Systems (R. R. Yager, L. A. Zadeh. eds.), Kluwer Academic Publ.,
1991.

. D. Dubois and H. Prade, Fuzzy sets and systems: theory and applications, Academic

Press, N.Y., London, 1980.

D. Dubois and H. Prade, Possibility theory. An approach to computerized processing
of uncertainty, Plenum Press, N.Y. and London, 1988.

C. Elkan, “The paradoxical success of fuzzy logic”, Proceedings of AAAI-93, American
Association for Artificial Intelligence 1993 Conference, 698-703 (reprinted in IEEFE
Ezpert. Intelligent Systems and Theiwr Applications, August 1994, 3-8).

C. Elkan et al, “Fuzzy Logic Symposium”, IEEE Ezpert, August 1994.
B. R. Gaines, “Precise past, fuzzy future”, Intl. J. of Man-Machine Studies, 19,
117-134 (1983).

28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Gelfond and H. Przymusinska, “Definitions in epistemic specifications”, In: A.
Nerode, Wiktor Marek, V. S. Subrahmanian, Logic Programming and Non-Monotonic
Reasoning, Proc. of the 1st Intl. Workshop, 1991, pp. 245-259.

J. A. Goguen, “The logic of inexact reasoning”, Synthese, 19, 325-373 (1969);
reprinted in D. Dubois, H. Prade, and R. Yager (eds.), Reading in Fuzzy Sets for
Intelligent Systems, Morgan Kaufmann, San Mateo, CA, 1994, 417-441.

I. R. Goodman and H. T. Nguyen, Uncertainty models for knowledge-based systems,
North Holland, Amsterdam, 1985.

H. M. Hersch and A. Caramazza, “A fuzzy-set approach to modifiers and vagueness
in natural languages”, J. Exp. Psychol.: General, 105, 254-276 (1976).

A. Kandel and G. Langholtz (Eds.), Fuzzy Control Systems, CRC Press, Boca Raton,
FL, 1994.

O. Kosheleva and V. Kreinovich, “One more potential application of symbolic com-
putations: interval logic”, Abstracts of the International Conference on Interval and
Computer-Algebraic Methods in Science and Engineering (Interval’94), St. Peters-
burg, Russia, March 7-10, 1994, 143-146.

B. Kosko, “Fuzziness vs. probability”, Intl. J. of General Systems, 17, No. 2-3,
211-240 (1990).

V. Kreinovich et al, “What non-linearity to choose? Mathematical foundations of
fuzzy control,”, Proceedings of the 1992 International Conference on Fuzzy Systems

and Intelligent Control, Louisville, KY, 1992, 349-412.

C.-C. Lee, “Fuzzy logic in control systems: fuzzy logic controller”, IEEE Transactions

on Systems, Man and Cybernetics, 20 (2), 404-435 (1990).

H. T. Nguyen, “A note on the extension principle for fuzzy sets”, J. Math. Anal. and
Appl., 64, 359-380 (1978).

H. T. Nguyen, “Some mathematical tools for linguistic probabilities”, Fuzzy Sets and

Systems, 2, 53-65 (1979).

H. T. Nguyen, Lecture Notes on Fuzzy Logic, LIFE, Tokyo Institute of Technology,
1993.

H. T. Nguyen and V. Kreinovich, “On Logical Equivalence in Fuzzy Logic”, Sixth
International Fuzzy Systems Association World Congress, San Paulo, Brazil, July
22-28, 1995 (to appear).

H. T. Nguyen, V. Kreinovich, and D. Tolbert, “A measure of average sensitivity for
fuzzy logics”, International Journal on Uncertainty, Fuzziness, and Knowledge-Based

Systems, 2, No. 4 361-375 (1994).

29

21. H. T. Nguyen, M. Sugeno, R. Tong, and R. Yager (eds.), Theoretical aspects of fuzzy
control, J. Wiley, N.Y., 1995.

22. G. C. Oden, “Integration of fuzzy logical information”, Journal of Ezperimental Psy-
chology: Human Perception Perform., 3 (4), 565-575 (1977).

23. A. Ramer and V. Kreinovich, “Information complexity and fuzzy control”, Chapter
4 in: A. Kandel and G. Langholtz (Eds.), Fuzzy Control Systems, CRC Press, Boca
Raton, FL, 1994, 75-97.

24. D. G. Schwartz, “The case for an interval-based representation of linguistic truth”,

Fuzzy Sets and Systems, 17, 153-165 (1985).

25. D. G. Schwartz, “Axioms for a theory of semantic equivalence”, Fuzzy Sets and Sys-

tems, 21, 319-349 (1987).

26. M. H. Smith and V. Kreinovich, “Optimal strategy of switching reasoning methods in
fuzzy control”, Chapter 6 in H. T. Nguyen, M. Sugeno, R. Tong, and R. Yager (eds.),
Theoretical aspects of fuzzy control, J. Wiley, N.Y., 1995, 117-146.

27. M. Sugeno, (editor), Industrial applications of fuzzy control, North Holland, Amster-
dam, 1985.

28. L. Zadeh, “Fuzzy sets”, Information and control, 8, 338-353 (1965).

29. H. J. Zimmerman, “Results of empirical studies in fuzzy set theory”, In: G. J. Klir

(ed.), Applied General System Research, Plenum, N. Y., 1987, 303-312.

APPENDIX
TWO POSSIBLE DEFINITIONS OF INTERVAL-VALUED FUZZY LOGIC

In justifying Definition 3.5, we used the same idea as in Definitions 2.3 or 3.2: if we want
to estimate the degree of belief in F&G, then the only information that we have available
for that estimation is:

o the degree of belief in F', and

o the degree of belief in G.
These formulas can be actually related (e.g., G can coincide with —F), but we are not
using any information about this relation.

In Section 3.1, we have shown that if we know the relation between F' and G then
we can get an estimate for the expert’s degree of belief in t(F&G) that is better than the
result of applying an operation min. Indeed, this operation min describes an “average”
meaning of &, and in specific cases, another operation may be a better fit. Similarly, we
can show that if we know the relationship between F' and G, then we can get a better
estimate for the interval of possible degrees of belief than by applying Definition 3.5. Let
us describe this idea in some detail.

If we know the intervals t(vy),...,t(vy), then, for an arbitrary formula F, we can
define an interval t(F') as follows (we use different notations to avoid confusion with t(F)).
Namely, for each set of values t(vy) € t(v1),...,t(vy) € t(vy,), we could apply Definition

30

3.2, and get the value ¢(F'). Thus, we define a function with n inputs t(vy),...,t(v,), and
an output ¢(F'). Let us denote this function by fr(t(v1),...,t(vy)).

For example, if the formula F' is vy V —wy, then ¢(F) = max(t(v1),1 — #(v1)), and
therefore, for this formula F', fr(t(v1)) = max(t(vy),1 — t(v1)).

We can then take the set of all possible values ¢(F') that result from this procedure
as t(F). In other words, we can define t(F) as an image of the intervals t(v;) under the
mapping fr: t(F) = {fr(t(vi),....,t(va)) [t(v1) € t(v1), ..., t(vy,) € t(vy)}.

The point that we want to make is that thus defined interval function t is different
from the above-defined function t(F'). As an example, we can take the same formula
F = vy V —w; that we used to illustrate this new notion, with t(v;) = [0,1]. In this case:

o Definition 3.5 leads to:

o t(-wy)=1—t(vy)=1-00,1]=[1-1,1-0] =]0,1].
e t(F) = max(t(vy),t(—v1)) = max([0,1],[0,1]) = [0, 1].

e On the other hand, the alternative definition described in this comment will lead to
defining E(F) as the set of all values of the function fr(t(vy)) = max(t(vy),1 —t(v1))
for all t(vy) € [0,1]. To describe this set of values, let us consider two cases: t(vy) > 0.5
and t(vy) < 0.5.

o If t(vy) > 0.5, then 1 — ¢(vy) < 0.5 and therefore, t(vy) > 1 — #(vy) and
fr(t(v1)) = max(t(vy),1 — t(vy)) = t1. Therefore, when t(vy) € [0.5, 1], then the
function fp(t(v1)) takes the values from the interval [0.5,1].

o If t(vy) < 0.5, then 1 — ¢(vy) > 0.5 and therefore, t(vy) < 1 — #(vy) and
fr(t(v1)) = max(t(v1),1 —t(v1)) = 1 — t(vy). Therefore, when t(vy) € [0,0.5),
then the function fr(t(vy)) takes the values from the interval (0.5, 1].

The complete image is equal to the union of these two sets, ie., to fr([0,1]) =

fr([0,0.5)) U fr([0.5,1]) = (0.5,1] U [0.5,1] = [0.5,1]. This image is exactly the set

t(F) = fr(t(vi) = fr([0,1]). So, we see that this set is different from the interval

t(F) =[0,1].

The reason for this difference, as we have already mentioned, is as follows. Our formula F
is the result of applying V to formulas G = vy and H = —wv;. For each of these component
formulas G and H, both definitions lead to the same result: t(G) = t(G) = [0,1], and
t(H) =t(H) = [0,1]. However:

e To compute t, we can only use the intervals t(G) and t(H), and we cannot use the
fact that G and H are actually related (H is a negation of). Since we cannot use
this additional information, and the only “information” that we can use is that both
t(G) € t(G) and t(H) € t(H) can be arbitrary numbers from the interval [0,1]. No
wonder that as a result, we also only get a conclusion that ¢(F') can be an arbitrary
number from [0,1]. In other words, we use here the formula

t(F) = {max(t1,t2) | t1 € t(G), 12 € t(H)}.

e When we compute E(F), we actually take this additional information into considera-
tion, because we only consider the set of all the values max(#1,t3) for which both t;
and t2 can be simultaneously represented as ¢(G) and t(H) for some t. In our case,

31

this can only happen when ¢, = 1 — ¢;. For example, we do not include the value 0.4
into the set t(F) because, although in principle, 0.4 can be represented as max(t,,t;)
for some t; € [0,1] = t(G) and t2 € t(H), but it can never be represented in this
manner for any to = 1 — 5.

32

