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Abstract

Absolute and relative perturbation bounds are derived for angles between invariant
subspaces of complex square matrices, in the two-norm and in the Frobenius norm. The
absolute bounds can be considered extensions of Davis and Kahan’s sin 0 theorem to
general matrices and invariant subspaces of any dimension. The relative bounds are the
most general relative bounds for invariant subspaces because they place no restrictions
on the matrix or the perturbation. When the perturbed subspace has dimension one, the
relative bound is implied by the absolute bound. © 2000 Elsevier Science Inc. All rights
reserved.
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1. Introduction

The goal is to derive bounds on the angle between an invariant subspace of a
complex square matrix and a perturbed subspace. Two types of bounds will be
derived, absolute and relative.
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Example 1. Let

a
A= b
c

be a diagonal matrix of order 3 with distinct eigenvalues a, b and c¢. An
eigenvector associated with eigenvalue ¢ is (0 0 l)T, where the superscript de-
notes the transpose.

Let

a € ¢
A+E = b €
c

be a perturbed matrix with the same eigenvalues as 4. An eigenvector of 4 + E;
associated with eigenvalue c is

€ € € T
) = 1),
(c —a (c —-b + c—b
The difference between exact and perturbed eigenvector depends on ¢/(c — a)

and ¢/(c — b). This suggests that the sine of their angle can be bounded in
terms of

1£1]]/ min{|e — al,|c — B[}, (1.1)
as ||| = O(e]).
Now consider the perturbed matrix
a ae ae
A +E2 = b b€ s
¢

again with the same eigenvalues as 4. An eigenvector of 4 + E, associated with
eigenvalue c¢ is

€a eb 1 eb 1
c—al\c—b>b c—b>b '

The difference between the two eigenvectors depends on ea/(c —a) and
eb/(c — b). This suggests that the sine of their angle can be bounded in terms of

_(lc—d| |c—b]
A7'E mm{ [ a|’|c }, 1.2

as ||4™ Ex|| = O(e]).
The bound (1.1) is an absolute bound and min{|c — a|, |c — b|} is an absolute
eigenvalue separation, while (1.2) is a relative bound and
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min{Ic—al c—bl}
lal " 1B

is a relative eigenvalue separation.

For a perturbed matrix 4 + E we derive absolute and relative bounds on the
angle between a true and a perturbed subspace, in the two-norm and in the
Frobenius norm. The absolute bounds contain ||E|| and an absolute separation,
while the relative bounds contain ||[47'E|| and a relative separation. This
means, absolute bounds measure sensitivity with regard to perturbations E,
while the relative bounds measure sensitivity with regard to perturbations
A~'E. The estimates provided by the two types of bounds can be very different.
Which bound to use depends on the matrix and on the perturbation.

Among relative bounds for subspaces, the bounds presented here are the
most general because they place no restriction on the original matrix 4 (other
than non-singularity), the perturbation E, or the dimensions of the subspaces.
They demonstrate the following:

1. Relative bounds for invariant subspaces always exist, for any non-singular
matrix 4 and any perturbation E. In this sense relative bounds appear to
be no more special than absolute bounds.

2. When the perturbed eigenspace has dimension one, the relative bound can
be derived from the absolute bound. Hence relative bounds are not neces-
sarily stronger than absolute bounds.

After stating the problem in Section 2, we derive in Section 3 absolute and
relative bounds that make no reference to any basis, and we show that the
absolute bound implies the relative bound when the perturbed subspace has
dimension one. In Section 4 the bounds are expressed in terms of subspace
bases. In Section 5 diagonalizable matrices are considered and the separations
are expressed in terms of eigenvalues.

Notation. / is the identity matrix; || - ||, is the two-norm; || - || the Frobenius
norm; and || - || stands for both norms. The conjugate transpose of a matrix A4
is A*; and A' is its Moore—Penrose inverse. The condition number with respect
to inversion of a full-rank matrix Y is x(Y) = ||Y ||| Y],

2. Statement of the problem
Let 4 be a complex square matrix. A subspace .¥ is an invariant subspace of

A if Ax € & for every x € & [7, Section 1.1; 14, Section 1.3.4]. Applications
involving invariant subspaces are given in [7].
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Let the perturbed matrix 4 4+ E have an invariant subspace.¥, whose di-
mension may be different from that of . The gap or distance between ¥ and
& is defined as [2, p. 202; 7, Section 13.1] [|Py — 13||, where Py is the orthogonal
projector onto ., and P is the orthogonal projector onto . In the two-norm
one has [2, Exercise VII.1.11; 19, Section 1]

1Py — P, = |[PP,
where P is the orthogonal projector onto .%’*. In the Frobenius norm [2, p. 202]
implies
|

This means, to bound |[Py, —P| it suffices to bound |PP|. When
dim(S) = dim(.%), the singular values of PP are the sines of the principal an-
gles between . and & [8, Section 12.4.3; 14, Theorem 1.5.5]. Therefore we set
(see also [19, Section 1])

P, — Bl = 2|PP|}2 + dim (8) — dim ().

sin ® = PP.

The goal in this paper is to bound || sin ©||, where || - || is the two-norm or the
Frobenius norm.

3. Bounds without subspace bases

Absolute and relative perturbation bounds are derived for invariant sub-
spaces of complex square matrices. The purpose is to show that there are
bounds that make no reference to subspace bases and to provide a unifying
framework for all subsequent bounds.

Since #* is an invariant subspace of 4* [14, Theorem V.1.1], the associated
projector P satisfies [7, (1.5.5); 9, Theorem 5.8.4]

PA=PAP, (A+E)P=P(4+E)P. (3.1)

The absolute bound is expressed in terms of an absolute separation between
Aand A + E,
abssep = abssep, 4,5y = min [|PAZ — Z(4 + E)P||.
’ |Z|=1,PzP=2

Theorem 3.1. If abssep > 0 then
|l sin ©|| < ||E||/abssep.

Proof. Let X be a matrix whose columns span ¥, 50 & = range(X). Then there
exists a unique matrix B such that [14, Theorem 1.3.9]
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(A +E)X = XB.

Multiply on the left by P and on the right by X' and use the fact that P = X X'
[14, Theorem III.1.3], then

—PEP = PAP — PXBX" = PAP — P(4 + E)P.
From (3.1) follows

—PEP = PAsin © — sin ©(4 + E)P,
and sin © = Psin ©@P implies

|E| = ||PEP|| = abssep|| sin O] O

The relative bound is expressed in terms of a relative separation between A
and 4 + E,

relsep = relsepy, 4,z = HZanl’li’IZleZ |PA™' (PAZ — Z(4 + E)P)|,

provided A is non-singular.

Theorem 3.2. If A is non-singular and relsep > 0 then
|| sin @] < ||47'E|| /relsep.

Proof. As in the proof of Theorem 3.1, (4 +E)X XB for some B, and
P = XX'. Multiply (4 + E)X = XB on the left by PA~! and on the right by X,

—PA'EP = PP — PAT'XBX' =sin® — PA™' (4 + E)P.
Then (3.1) implies
—PAT'EP = sin® — PA"'sin@(4 + E)P
=PA"'PAsin @ — PA"'sin@(4 + E)P
= PA™'(PAsin @ — sin ©(4 + E)P)

and sin © = Psin ©@P implies
|A7'E|| = |PAT'EP|| > relsep||sin®|. O

Theorem 3.2 shows that relative subspace perturbation bounds exist for any
non-singular matrix.

It is now shown that the absolute bound implies the relative bound when the
perturbed subspace has dimension one. Since X consists of only one column,
and B is a scalar one can write instead
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(A +E)% = Jx.
Using P = xx*/%*%, (3.1) and PZP = Z one can express Theorem 3.1 as

sin O < ||E||/abssep, where abssep = ”r;l”gll |P(4 —iDZ|,

and Theorem 3.2 as

sin @ < ||47'E||/relsep, where relsep = HZl’IlHIEll |PA~" (4 — AD)Z|.

Theorem 3.3. If ¥ has dimension one then Theorem 3.1 implies Theorem 3.2.
Proof. (4 + E)& = /% implies (4 + E)% = %, where
A= )ZA’I, E=-A"'E.

Note that 4 and 4 + E are associated with the same projectors P and P, re-
spectively, as 4 and 4 + E.

Theorem 3.1 implies Theorem 3.2 because applying the absolute bound to
(A + E)x = 1- % yields the relative bound. In particular, the norm in abssep is

IP(4 = 1-1)Z|| = |IPGA™ = 1)Z|| = ||PA™ (4 - iD)Z]],
which is equal to the norm in relsep. O

Since the relative bound is derived by means of the absolute bound one
cannot necessarily conclude that relative perturbation bounds are stronger
than absolute bounds. However there are classes of matrices and perturbations
where relative bounds can be much sharper than absolute bounds.

Example 2. Consider a special case of Example 1, where

10+
A= 2.10°* . k>0.
10%,

Suppose ¥ = range(1 OAO)T is approximated by the subspace associated with
the smallest eigenvalue 4 = 107 of

107*
A+E= | €l0F 2.107%
el0F  €l0F 10%,
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where € > 0. In this case

0 0 0 0 0
S+ =range| 1 0], 2=[0 1 0
0 1 0 0 1
The absolute bound contains
A 0 0 0
PA—)=10 107+ 0

0 0 10F — 107*
Hence in the two-norm abssep ~ 107*. Since ||E||, &~ €10*, the absolute bound is
|| sin @||, < ||E||,/abssep ~ e10%*.

In contrast, the relative bound contains

A 0 0 0
PA'NA4—-i)=|0 ! 0
0 0 1—-10%

Hence in the two-norm relsep ~ 1. Since ||[A7'E||, ~ ¢, the relative bound is
|| sin @, < ||[47"E||,/relsep = .

In this case the relative bound is sharper by a factor of 10* than the absolute
bound.

4. Bounds with subspace bases

The absolute and relative bounds from the previous section are expressed in
terms of subspace bases. R
Let Y and X be respective bases for .+ and ., that is,

9+ = range(Y), Yy =1, Y*'4 = BY*
for some B, and

& =range(X), X'X=1I, (A+E)X =XB

for some B; Let Y = OR and X = OR be OR decompositions where the columns
of Q and Q are orthonormal bases for .#* and %, respectively. Then

04 = (RBR)Q",  (4+E)Q = O(RBR™). (4.1)
The absolute separation is expressed in terms of

abssep(F, G) = HI?HIPI IFZ — ZG||,
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which is the same as the separation defined in [14, Theorem V.2.1]. The fol-
lowing bound shows that this separation is weaker than the corresponding
separation abssep in Section 3.

Theorem 4.1. In Theorem 3.1
abssep > abssep(R*BR*,RBR™"),

hence

|| sin ©|| < ||E||/abssep(R~*BR*, RBR™").

Proof. Let Z; attain the minimum in abssep, i.e.,
abssep = ||PAZy — Zy(A + E)P||, ||Z|| =1, PZP = Z,.
Then P = 00", P = Q0" and (4.1) imply
abssep = [|Q(R~"BR")Q'Zy — ZQ(RBR™)Q |
= [[(R"BR")(Q"Z0) — (Q"ZoQ)(RBR™)||.
From ||0*Z0|| = ||PZyQ|| = || Zy]| = 1 follows
abssep > abssep(R*BR*,RBR™"). [

The relative separation is expressed in terms of

relsep(F, G) = Hrg‘ig \F~'(FZ — ZG)||.

Again, this separation is weaker than the corresponding separation relsep in
Section 3, as the result below shows.

Theorem 4.2. In Theorem 3.2
relsep > relsep(R™*BR*,RBR™"),

hence
| sin @ < ||[47'E||/relsep(R*BR*, RBR™").
Proof. The proof is similar to that of Theorem 4.1. O
For instance, in the special case when the columns of ¥ and X are already

orthonormal one can choose R =  and R = I, and the bounds in Theorems 4.1
and 4.2 simplify,
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|| sin ©|| < ||E||/abssep(B,B), ||sin@| < ||47'E||/relsep(B, B).

A result in the same spirit as the absolute bound is [14, Theorem V.2.1].

To prepare for the next section, we remove information about the basis from
the separation. Let x(F) = ||F||,||F~!||, be a two-norm condition number with
respect to inversion. Since

abssep(B, B)

abssep(R"BR*,RBR™") > A
K(Y)r(X)

[14, p. 245, Problem 1], one gets
|| sin @ < k(Y)x(X)||E||/abssep(B, B). (4.2)

Similarly,

L Isep(B, B
relsep(R~BR', RER1) > "SP(B:5)
K(Y)K(X)

leads to

|| sin @] < x(Y)x(X)||4'E|| /relsep(B, B). (4.3)

5. (Partially) diagonalizable matrices

The bounds (4.2) and (4.3) are expressed in terms of eigenvalues. K
Let 4 and 4 + E be partially diagonalizable, in the sense that B and B are
diagonal. To make this clear, write

Y'A=AY*, (A+E)X =XA,
with 4 and A diagonal. We use the notation
A=

min |1 — /| and min -
JeAied se el |/“|

9

where the minima range over all diagonal elements 4 of 4 and all diagonal
elements /4 of A.
Inequalities (4.2) and (4.3) readily lead to Frobenius norm bounds.

Theorem 5.1. If A and A are diagonal then

Isin @] < x(Y)K(X)||E]l/ min |2— .
reAled
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If, in addition, A is non-singular, then

. , A=
I5in @]y < K(NKCOAEll/ min L=
JeAjed |;u|

Proof. The absolute bound follows from the fact that [14, p. 245, Problem 3] .

abssepg(4, 4) = min |2 — A,
red,leA

see also [14, p. 245, Problem 4]. With regard to the relative bound,

. 2 A
- 2 . 2 . 2
2424 = 3 =2 el > min 1212
implies
) V)
relsepp(4,4) = min | | . O
JeAied |/1|

In the particular case when dim (&) = 1, the absolute bound in Theorem 5.1
reduces to [6, Theorem 3.1].

One can convert the Frobenius norm bounds in Theorem 5.1 to the two-
norm. Let n be the order of 4 and use the fact that ||E||x < v/&||E||, [8, (2.3.7)].

Corollary 5.2. If A and A are diagonal then

Isin @], < v/ak(Y)k(X)|E|l,/ min |4 — .
reA e

If, in addition, A is non-singular, then

|4 —J
T

Isin @], < v/nk(Y)k(X)[|4"El|,/ min
AeA, e

The absolute bound above is essentially [17, Theorem 2.2].
The factor 4/n can be removed if the eigenvalues are more strongly sepa-
rated. Set

8, = max{min || — max ||, min || — max .
reA Jed JcA reA

}

and

5, = max { min,e 4 |A| — max;_; [A| min;_; |A] — max;c, |4] }

minleA |)| ’ l’l’lil’lie/i |)t|

In this case (4.2) and (4.3) imply the following two-norm bounds.
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Theorem 5.3. If 6, > 0 then
I'sin O], < k(Y )r(X)[|E[],/d-
If, in addition, A is non-singular, then
| sin O], < (V)47 /5,

When A4 and 4 + E are normal, the above absolute bound represents one of
Davis and Kahan’s sin § Theorems [3, Section 6; 4, Section 2].

Quite a few relative bounds have been derived for invariant eigenspaces of
Hermitian matrices and Hermitian perturbations, for instance [1,5,10-13,
15,16,18]. For particular perturbations these bounds can be tighter than the ones
presented here because they exploit the Hermitian structure, and many are in-
variant under congruence transformations and grading. However, the bounds
here are the most general because they place no restrictions on the original matrix
A or the perturbation E, and they are simple and easy to interpret.

In the context of multiplicative perturbations, where the perturbed matrix is
expressed as D;AD,, relative two-norm perturbation bounds for invariant
subspaces of diagonalizable matrices are derived in [6].
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