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1. Introduction

If a function / analytic in A = {zeC:|z|<l} has a nontangential limit as z->e'e, then
lim,..!-(1 -r)f'(rei9)=0 [7, p. 181). It follows that this limit is zero for almost all 0 for a
number of classes of functions including the set H°° of bounded analytic functions. In
this paper we prove that this result for H°° is sharp in a strong sense.

If / is also univalent in A, then the growth of / ' is much more restricted. In
particular, such a function satisfies limr^1-(l— r)"f'(re*)=0 for almost all 6 for each
a>0 [1]. The sharp result of this kind was proved by N. G. Makarov in [5].

We consider the same problem for a function subordinate to a univalent function. If
/ and F are analytic functions, then / is called subordinate to F provided that there is
an analytic function 4> so that 0(0)=0, |0(z)|<l for |z|<l and f = F-(j>. We show that if
/ is subordinate to a univalent function F, then limr^1-(l —r)p/<p)(rel6) = 0 for almost all
0(p=l,2,...). We also show that this result is sharp. When p = l this is strikingly
different from the sharp result for univalent F in [5].

In the last part of this paper, we construct examples to show that certain estimates on
the radial growth and variation of bounded analytic functions and their higher
derivatives are sharp. If / is analytic in A and satisfies |/(z)|^M for |z|<l, then [3,
p. 330]

for \z\ < 1. Equality holds in (1) at z = z0 only for the functions

where |y4| = M.

Let M(r,/)=maX|Z|=r|/(z)| whenever / is analytic in {z:|z|^r}. If /eff°° then (1)
holds and this implies
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for p = 1,2,... and 0 < r < 1. It follows directly from (3) that

\ \f(p)(xeie)\dx= *
°[ l o g rb} if p=

(4)

Since equality in (1) occurs only for different functions for different values of z0 it is not
clear whether there is a bounded analytic function having the growth exhibited by the
right hand sides of (3) or (4) as r-»l.

In [4] it was shown that there is an / e # ° ° for which limr^1-(l-r)M(r,/ ' )>0. We
give two examples which are quite different from each other and verify that the growth in
(3) and (4) can be attained. In fact there is an / e H°° for which limr_ t - (1 - r)"M(r,f{p)) > 0 for

2. Radial growth

The argument given in [7, p. 181-182] can be applied to the Cauchy formula for /<p)

to show that if/ has a nontangential limit as z-*eie, then limr_1-(l —r)p/(p)(rcl9)=0 for
p = l,2,... . This implies that if /eH<° then limr^1-(l-r)p/(' ' )(re'e)=0 for almost all 0
and for every p. We next prove that this result is sharp in the following sense.

Theorem 1. Let ebe a positive nonincreasing function on (0,1) such that limr_ t - e(r)=0.
Then there is a function f that is bounded and analytic in A for which

for p= 1,2,... .

Proof. It suffices to show that such a function / exists which has the following
property: there is a sequence {rk} such that 0grJt<l,limt_0Orlk = l and for every 6 and
every p,

d-rkr\f\rke">)\^ (6)

for all sufficiently large values of k. It is clear that (6) implies (5) by first applying (6)
with e replaced by y/e.

Let

£lz'" (7)
n=i n
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where {An} is a strictly increasing sequence of positive integers, suitably selected in terms
of e in a manner described below. For any choice of {An} it follows that

|/(z)|*£ 1 for 1^1
n=l »

and hence / is a bounded analytic function.
The sequence {AB} can be defined so that the following three inequalities hold for all

positive integers k:

A* + 1 ^ 2 ; (8)

y 1 ) (10)

for n = l,2,...,k. As we show, each of (8), (9) and (10) are conditions which can be
inductively satisfied so that at any stage in the induction the next term in the sequence
{An} is permitted to take on all arbitrarily large values; thus there is a sequence
satisfying all three conditions. This claim is clear for (8). The same is the case for (9)
because £ is nonincreasing and limr_1-e(r)=0. The numbers on the right hand side of
(10) form a finite set and thus (10) holds for all large values of Ak+1, given XltX2,...Ak-

Let rn = 1 — (1/An) for n = 1,2,..., and let k be any positive integer. Then

(11)

where

^•^•)q-(p-t))r > e ,v .- , , (.2)

and

c £ w,-i> .u.-(P-.))(r><T,-,
* l 1

We are only interested in fc large and so assume that At>p. Also the sum in (12) takes
place for values of n for which kn^p.
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Inequality (10) and the fact that {&„} is increasing imply that

(fc-1)2
A 1 V*-'|

,

Hence

| l 2 P[2^~3
3 )At_1(At-1- l) . . . (At_1-(p-l)) . (15)

Inequality (8) implies that (A^-j/A^-^O as fe-»oo. From this, (13) and (15) it follows
that (/l/B)->0 as fc->oo. Therefore,

\A\^\\B\ (16)

for all large k.
The function y = xpa* for x>0, where p>0 and 0 < a < l , is increasing for 0 < x < x o

and decreasing for x>x 0 where xo= — (p/loga). Since

¥3
as k-*ao and

log)

for large k (because of (8)), the largest value of

occurs when n = k+1. Hence, for all large k, (14) yields

n=*+l

~ f+i n2 \ V
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+i n

**+l

Therefore, for all large k,

ICIS« ( )

Let /*k=(A4+1/Ak). Then (8) implies that / i^A^fc . Hence (17) shows that

for all large fc. Since

/ 1V4 1
1-— ->- and limn«a"=0

V K) e

whenever q>0 and 0<a< 1, it follows that

Id
-p-1—>0 as k-»oo.

Comparing this with (13), we conclude that C/B-*0 as k-*co. Therefore for large k

|C|£i|B|. (18)

From (11), (16), (18) and (13) we find that for all large k,

where

<4)'
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Since ak-*\/e as fc->oo, a*^i for large k. This, (9) and (19) yields the inequality (6).

The next result gives the sharp radial growth of the derivatives of a function
subordinate to a univalent function. Again the exceptional sets are of measure zero.

Theorem 2. Suppose that the function f is subordinate to some function which is
analytic and univalent in A. Then, for every positive integer p,

lim (l-r)"p"\reie)=0 (20)

for almost all 6.
Also, let e be a positive nonincreasing function on (0,1) such that limr-,1-e(r)=0. Then

there is a function f which is subordinate to some function analytic and univalent in A for
which (5) holds for every positive integer p.

Proof. If F is analytic and univalent in A, then F belongs to the Hardy class H" for
every q<% [2, p. 50]. This fact and Littlewood's inequality [2, p. 10] imply that if / is
subordinate to such an F then feHq for q<\. Therefore / has a nontangential limit as
z-*e'e for almost all 6 [2, p. 17]. From our observations made earlier, this implies (20)
for almost all 9 and for p = 1,2,... .

To see that (5) holds for a suitable /, let / be the function described by Theorem 1
and let F(z) = Mz where M = sup{|/(z)|:|z|<l}. Since /(0)=0, / is subordinate to F and
by Theorem 1, (5) holds for every positive integer p.

3. Radial variation

We next show that (3) and (4) are sharp. We present two examples of bounded
analytic functions having such "maximal" growth. The reason for including both is their
quite different character.

Theorem 3. There are positive constants Ap and a function f that is bounded and
analytic in A such that

{\-rYM{r,f^)^Ap (21)

for all r, 0 < r < l and for p=l,2,... .
For each 6e[0,2n) there exists a function f that is bounded and analytic in A such that

lim J l-r- )l/'ixe'Ydx[>0 (22)

for X = l/p and

Urn {(l-rr^fl/^xe^dxLo (23)

for A>l/p and p=l,2,... .
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Proof. For |z|<l, let /(z)=(l— z)'=exp(ilog(l-z)) where the logarithm is the
principal branch. Since

| a rg ( l - z ) |< | for |z|<l, e'"12 <\f{z)\<e'12 for |z|<l.

Hence / is a bounded, analytic function and |/(z)| ̂  A for \z\ < 1 where A > 0. Now for
p= 1,2,... we have

/•(„>/ s / ( Z )
j y~, - p ( l - z ) '

where a.^=0, and thus

where Ap = \ap\A > 0. Therefore,

A
) =

p

(1-r)"'

and this proves (21).
From (24) we obtain

This implies (22) and (23) for 0=0. To see that (22) and (23) hold for any 0, it suffices to
replace f by g where g{z) = f(e~iez) since |g(p)(xci9)| = |/<p)(x)|.

When p= l and A = l, the precise value of f/0\f
(p\x)\ydx for the function /(z)=(l-z) f

can be obtained in the following way. As x increases over the interval [0, r], i log (1 — x)
varies on the negative imaginary axis in a monotonic way from 0 to ilog(l — r). Thus
f(x) varies along the unit circle clockwise starting at 1 and with an angular change
equal to log(l—r). Hence the length of the curve w = /(x), 0^x = r, equals log(1/1—r),
that is

Our second example is an infinite Blashke product which satisfies (22) and (23) for
p= l andA^l. Forn = l ,2, . . . letan=l-(l/2")andlet

^-ArS <25)

for \z\ = 1. Since ££L i (1 - \an\) < + oo, / is analytic in A and |/(z)| < 1 for |z| < 1. Let
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1. . . 3 1 f o r " = 1 > 2 > - •

Let k be any positive integer. As x varies on the interval [a*,a»+i], f(x) varies from 0 to
0 and passes through f(rk). Hence the length of the curve w = / (x) ,a t ^xga k + 1 , is at
least 2|/(rt)|. This is the same as

J \f'(x)\dx^2\f(rk)\.

Next we show that l / f o ^ X for k = l,2,... where

We note that A > 0. If k < n then r̂  < an and it is easy to show that

If k^n then r t>an and it follows that

- n + l

i-n+1•

These inequalities imply that

k

n = l

an-rk

\-anrk

00

n n + i
"n-rk

Since \f(rk)\^A, (26) implies that

|dx̂ J|/'(x)|rfx = "f 7'|/'(

log 2}

Thus

n - 1

* = 1

1 —
+C

(26)

(27)

for constants B and C where B>0.
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Suppose that | g r < l . Then rn^r^rn+1 for some n. Hence (1— r)/(l — O ^ , and thus
(27) implies that

r
1 —T

Therefore (22) holds with k=p= 1.
Now suppose that y> 1. Holder's inequality implies that

J l/'(

and hence

/<"«+l \lM/«.+ l \1-(1M)

J \f\xfdxj ( j dxj

"1

Since J j + 1 | / ' (x) |^x^ JS;+1 |/'(x)|Adx this shows that

Twd^ <28)

where XA>0. Assume that { f g r < l . Then r n + 1 g r g r n + 2 for some n and thus (1—r)/
( l - O ^ i Therefore, (28) implies that

o

This yields (23) when p = 1.
We thank W. Rudin for the suggestion of looking at the function given in (25).
It is also possible to use infinite Blaschke products with appropriately chosen

uniformly separated zeros to obtain for each p a bounded analytic function / satisfying
Iimr_>1-(1—r)pAf(r,/(p))>0. The argument is similar to that given for the example (25)
and depends on the fact that for such a function (1 — Izl2)"]/^^)! ^ J3p(l — |/(z)|2) where
Bp>0 [6,p.9]. These examples do not prove (21). They can be used to prove (22) and
(23) for pSi2 and 2.^.1. The argument uses the previous inequality and the inequality

-J|/<">(x)|dx.
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