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Abstract

This paper is motivated by work on Specker spaces and a recent article of the authors on
of α-quotients. Hereα denotes an uncountable regular cardinal or else∞, indicating no cardina
constraint whatsoever. All spaces are compact Hausdorff, and for the most part zero-dimensi

Three strains of the “α-Specker” condition are studied: strong, weak, and one in between wh
not qualified. One of the main results characterizes these conditions, for eachα and each spaceX, in
terms of the containment ofC(X) in the ring ofα-quotients ofS(KαX), where the latter denotes th
algebra of continuous functions with finite range, defined on an appropriate coverKαX of X.

“Weakly c+-Specker” is equivalent to “Specker”. The paper examines theω1-Specker conditions
proving that “weaklyω1-Specker” and “ω1-Specker” are equivalent. In fact, it is shown thatX is
weaklyω1-Specker if and only if for eachf ∈ C(X) there is a Baire setB with meagre complemen
such thatf (B) is countable.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion of a Specker space, over which continuous real valued functions are d
constant, first appeared in [25] and [31], and then received a concerted amount of at
in [4,24] and also [5]. Here we get into the subject of dense constancies, with card
constraints. Some of the motivation for this investigation comes from [14], wher
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designated unit, is described using countable partitions by Baire sets.
All topological spaces are Tychonoff.βX is the Stone–̌Cech compactification ofX.

C(X) will denote, as usual, the ring of all continuous real valued functions on the s
X, which is regarded as a lattice-ordered ring with the standard pointwise operati
addition, multiplication, supremum and infimum. Of some importance in any convers
about Archimedean-groups isD(X), the lattice of all continuous functionsf on X with
values in the extended real numbersR∪{±∞}, for whichf −1

R is a dense subset ofX. In
order forD(X) to be a group under pointwise addition some assumptions need to be
aboutX; we need not consider this issue here.

Let us now recall the concept of a Specker space.

Definition 1.1. First recall (from [4]) that a spaceX is aDC-space if for eachf ∈ C(X)

there is a quasi-partition ofX by open sets(Uλ)λ∈Λ—that is to say, a family of open se
which are pairwise disjoint so that the union is dense inX—such thatf is constant when
restricted to eachUλ. We say thatX is Specker if it is a DC-space with a clopenπ -base.
(A family B of nonempty open sets inX is called aπ -base if for each nonempty ope
setV there is aU ∈ B such thatU ⊆ V .) If X is Specker then for eachf ∈ C(X) the
quasi-partition referred to above may be chosen so that eachUλ is clopen.

We generalize the notion of a Specker space, by placing cardinality constraints
quasi-partitions referred to above. A number of the hulls in the theory of Archime
-groups play an important role.

Throughout the paper,α stands for an uncountable regular cardinal, or else the sy
∞, which may be thought of in this context as a symbol larger than all cardinals, a
indicating the case in which no cardinality restrictions are placed.

Definition & Remarks 1.2. The ambient category in this discussion isW , the category o
Archimedean-groups with designated weak order unit, and the-homomorphisms which
preserve the designated units.

(a) First, by anextension in W we mean the containment of oneW -objectA in another,
B, so that the inclusion mapping is aW -morphism; we denote this byA � B.

Recall that the extensionA � B is essential if for each 0< b ∈ B there is ana ∈ A and a
positive integern, such that 0< a � nb. For a givenW -objectA, eA denotes the maximum
essential extension ofA in W ; see [6]. We call this theessential hull of A. p(α), c(α) and
l(α), stand for the operators which construct theα-projectable hull, the conditionalα-
completion and the lateralα-completion, respectively. All of these are extensions ins
the essential hull. Let us now recall how these hulls are obtained.

(b) Let A be aW -object andS ⊆ A. S⊥ stands for the polar ofS. We explain, briefly:
recall thatP ⊆ A in aW -objectA is apolar if P = S⊥ whereS ⊆ A and

S⊥ ≡ {
a ∈ A: |a| ∧ |s| = 0, ∀s ∈ S

}
.

For C(X) the polars may be viewed as follows; letS ⊆ C(X). Let

Ŝ =
⋃{

coz(f ): f ∈ S
}
.
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ThenS⊥⊥ = {h ∈ C(X): coz(h) ⊆ clX Ŝ}, while S⊥ = {g ∈ C(X): coz(g) ∩ Ŝ = ∅}.
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We shall observe the notational conventions established in [12] and [15
a ∈ S⊥⊥ + S⊥ we may expressa = a[S] + a[S⊥], uniquely, with a[S] ∈ S⊥⊥ and
a[S⊥] ∈ S⊥. a[S] will be referred to as theprojection of a on S.

Recall thatA is α-projectable if for each subsetS of size< α, A = S⊥⊥ + S⊥. (On this
occasion let us also considerω; “ω-projectable”is “projectable”:A = a⊥⊥ + a⊥, for each
a ∈ A.)

Now, let us begin withp(α): if A is aW -object,p(α)A is obtained through a transfini
construction:

(i) p1(α)A is the -subgroup ofeA generated by alla[S], ranging over alla ∈ A and
S ⊆ A, with |S| < α.

(ii) If γ is an ordinal> 1,

pγ (α)A = p1(α)

( ⋃
β<γ

pβ(α)A

)
.

For some ordinalγ , pγ (α)A = pγ ′
(α)A, for all γ ′ > γ . This isp(α)A.

(c) Here we elect to describe the other two hulls for objects which are alreadα-
projectable, because it is easier to do. This will suffice, for now; we have occas
refer to the construction ofl(α) in Remark 2.12.

Let A stand for anα-projectableW -object.

l(α)A+ =
{∨

i

xi : 0 � xi ∈ A, i �= i ′ �⇒ xi ∧ xi′ = 0, i ∈ I, |I | < α

}
,

c(α)A+ =
{∨

i

xi : 0� xi ∈ A, {xi: i ∈ I } is A-bounded,|I | < α

}
.

To conclude our introduction, let us review the Yosida representation. We refe
reader to [18] for more details.

Definition & Remarks 1.3. A stands for aW -object. Y A is the set of values of th
designated unite, that is to say, the set of all the convex-subgroups ofA which are
maximal with respect to not containinge. Relative to the hull-kernel topologyY A is a
compact Hausdorff space; this is well known.Y A is theYosida space of A.

If X is any compact Hausdorff space andG ⊆ D(X) is a sublattice containing th
constant 1, thenG is a W -object in D(X) if G is an-group and(f +g)(x) = f (x)+g(x),
for eachx ∈ U , whereU is a dense open subset off −1

R ∩ g−1
R.

Now back to ourW -objectA with designated unite; here is a formulation of the Yosid
Representation Theorem:

There is a W -object A′ in D(Y A) and a W -isomorphism θ : A → A′ such that θ(e) = 1,
which separates the points of Y A; (that is, so that if x �= y in Y A, then there is an a ∈ A

such that θ(a)(x) �= θ(a)(y)).
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Y A is unique in the sense that if X is a compact Hausdorff space, and φ : A → B

an

n

ull

erms
ussed
rking

ig-
is a W -isomorphism of A onto the W -object B in D(X), such that φ(e) = 1 and
φ separates the points of X, then there is a homeomorphism τ : X → Y A such that
θ(a)(τ (x)) = φ(a)(x), for each x ∈ X and each a ∈ A.

The Yosida Representation is functorial. To see this the reader should note that ifg : A → B

is aW -morphism, then there is induced a continuous functionYg : Y B → Y A, such that
θB(g(a))(x) = θA(a)(Yg(x)), for eacha ∈ A andx ∈ Y B.

Remark 1.4. Some properties of hulls might be kept in mind. LetA be aW -object.

(a) p(α)A � c(α)A ∩ l(α)A [15].
(b) c(α)l(α) = l(α)c(α). This is the hull for the class ofW -objects which are both

conditionally and laterallyα-complete [15, Theorem 4.1].
(c) If A is projectable thenY A is zero-dimensional. (This is well known; we leave it as

exercise to the reader.)
(d) Yp(α)A is α-disconnected, that is, every union of fewer thanα cozerosets has ope

closure [12, Corollary 2.4].
(e) D(Yp(α)A) is a group, and aW -object, and the uniform closure of the divisible h

of l(α)A [15, Theorem 5.5(b)].

In the next section we shall define one of the principal “Specker” conditions in t
of the ring ofα-quotients. Rather than give a general review of the concept, as disc
in [17], we shall appeal directly to Theorem 5.4 of that paper, which gives a wo
definition of the ring of quotients we want.

Definition & Remarks 1.5. (a) Recall some common notation first. In general, ifH is a
filter base of dense subsets of the spaceX, we useC[H] to denote the direct limit

C[H] ≡ lim−→ C(U), U ∈H,

with the understanding that the bonding maps are the restrictionsC(U) → C(V ), with
V ⊆ U in H.

In the sequelGα(X) stands for the filter base of all denseα-cozerosets ofX. (An
α-cozeroset is a union of fewer thanα cozerosets.)

(b) Suppose thatA is an Archimedeanf -ring with identity, and regard 1 as the des
nated unit. For each dense open subsetU of Y A, let AU be the subring ofC(U) defined
by the following condition:f ∈ AU ⇐⇒ f ∈ C(U) and, for eachx ∈ U there exists a
neighborhoodV ⊆ U of x anda, b ∈ A such that, for eachy ∈ V ,

f (y) = a(y)

b(y)
.

Now put

QαA ≡ lim−→ AU

(
U ∈ Gα(Y A)

)
,
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and it is understood, once more, that the bonding maps of the above direct limit are the
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restrictionsAU → AV , whenV ⊆ U in Gα(Y A). This is the ring ofα-quotients, which is
studied extensively in [17] and also in [27].

(c) We spell out what the description in (a) reduces to forC(X), with X compact
Hausdorff. Quite simply,

QαC(X) = C
[
Gα(X)

]
[17, Proposition 5.7].

We record the following special case forα = ω1. The reader is reminded thatqA

denotes the classical ring of quotients of the ringA.

Proposition 1.6 [17, Proposition 5.8].For any space X,

Qω1C(X) = qC(X) = C
[
Gω1(X)

]
.

This concludes our introduction and general review.

2. Various α-Specker conditions

We remind the reader thatα stands for a regular, uncountable cardinal, or the sym
∞. In this section,X denotes a compact Hausdorff space, unless the contrary is stat
we have already indicated, in considering Specker conditions linked to cardinal bou
number of subtleties appear, and at least three natural generalizations of Specker
deserve some attention.

Definition & Remarks 2.1. (a) A spaceX is weakly α-Specker if it has a clopenπ -base and
for eachf ∈ C(X) there is a quasi-partition{Vi : i ∈ I } of X by open sets with|I | < α such
thatf restricted to eachVi is constant. Observe immediately that ifα < α′ are cardinals
then any weaklyα-Specker space is weaklyα′-Specker.

By dropping the “clopenπ -base” provision, one gets a definition of what proba
ought to be called aweakly DC(α)-space; we will not explore this concept here.

Suppose thatX is a Specker space; letf ∈ C(X) andK be a quasi-partition by clope
sets such thatf |K is constant, for eachK ∈ K. Now letK′ be the quasi-partition define
as follows:K ∈ K′ if and only if K is the union of allC ∈ K which have the same imag
underf . This is indeed a quasi-partition byopen sets, and it should be clear that|K′| � c,
wherec stands for the cardinality of the continuum. Thus,X is weaklyc+-Specker. (Note
α+ denotes the successor cardinal ofα.)

We emphasize:

“Specker”and “weakly c+-Specker”are equivalent.

(b) X is α-Specker if C(X) � l(α)S(X). (Recall thatS(X) stands for the subalgebra
C(X) consisting of all continuous functions of finite range.) As with the previous Spe
condition,α < α′ implies that anyα-Specker space is alsoα′-Specker.

We have not been able to settle whether “weaklyc+-Specker” implies “c+-Specker”.
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(c) We say that a spaceX is strongly α-Specker if C(X) ⊆ QαS(X). In 2.2 we give an
y

s
need

um
ection.
d

e

te
d,

,

e
on

plies

at
example showing that, for eachα, there is a space which isα+-Specker but not strongl
α+-Specker. In particular then, “c+-Specker” does not imply “stronglyc+-Specker”.

As the terms suggest, “stronglyα-Specker” implies “α-Specker”, and the latter implie
“weakly α-Specker”, in turn. To get on with the proofs of these and other results, we
to describe the ring ofα-quotients ofS(X), using the description in 1.5(b).

As we shall see, the weak Specker condition is connected to the absoluteEX of the
space of discourseX, while the “middle” Specker condition is connected to the minim
α-disconnected cover. We shall have more to say about minimum covers in the next s

Section 5 concentrates on the caseα = ω1. For now, by way of illustration, let us recor
some basic features ofQω1S(X), from §5 of [17].

Remark 2.2. Recall thatX is an almost P -space provided it has no proper dens
cozerosets. Proposition 5.10 of [17] states thatQω1S(X) = S(X) precisely whenX is
an almostP -space. Thus, whenX = αD, the one-point compactification of the discre
spaceD, thenQω1S(αD) = S(αD) if and only if D is uncountable. On the other han
Qω1S(αN) = C(N) = QS(αN). In particular, note that

Qω1S(αN) > qS(αN) = S(αN).

Now let D be uncountable andλD be the space obtained by adjoining a pointλ to D,
whose neighborhoods are the subsets containingλ, having a countable complement inD.
Then note thatl(ω1)S(αD) = S(βλD). The point is thatC(αD) � l(ω1)S(αD), so that
αD is ω1-Specker, but it is not stronglyω1-Specker.

More precisely, if|D| = α+, then αD, being ω1-Specker, isα+-Specker. However
any quasi-partition by clopen sets ofαD must have sizeα+, and soαD is not strongly
α+-Specker, as Proposition 2.3 will presently demonstrate.

Here is the description ofQαS(X), with X zero-dimensional, following 1.5(b). Not
that sinceX is assumed to be zero-dimensional, the continuous step functionsX
separate the points ofX, whenceY S(X) = X.

Proposition 2.3. Suppose X is zero-dimensional. Then the following are equivalent for a
function f ∈ C(X).

(a) f ∈ QαS(X).
(b) There is a family K of fewer than α clopen sets, such that,

⋃
K is dense and, for each

K ∈ K, f |K ∈ S(K).
(c) There is a quasi-partition K by clopen sets, with |K| < α, such that f |K is constant,

for each K ∈K.

Proof. The equivalence of (a) and (b) comes from Theorem 5.4 of [17]. (c) clearly im
(b), and as to the reverse, suppose there is a familyK of clopen sets, of size< α, whose
union is dense, and such thatf |K ∈ S(K), for eachK ∈K. Refining, we may assume th
the members ofK are pairwise disjoint andf |K is constant, for eachK ∈K. ✷
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At last, here is one of the expected implications between Specker conditions.
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Corollary 2.4. Let X be zero-dimensional.

(a) X is strongly α-Specker if and only if (c) in Proposition 2.3holds for each f ∈ C(X).
(b) If X is strongly α-Specker then it is also α-Specker.

Proof. (a) is obvious from Proposition 2.3. As to (b), observe thatQαS(X) � l(α)S(X):
using Proposition 2.3(c), iff ∈ QαS(X), andK is a quasi-partition which witnesses th
according to (c) of the proposition, one easily checks thatf is the supremum (in th
essential hull ofS(X)) of the step functionsgK defined bygK(x) = f (x), if x ∈ K, while
gK(x) = 0, otherwise. This says thatf ∈ l(α)S(X). ✷
Remark 2.5. The weakα-Specker condition is “internal”, in the sense that it is articula
in the definition in terms of quasi-partitions of subsets of the space. Now Propositio
affords, likewise, an internal description of the strongα-Specker condition. We have n
been able to find such an internal condition for the unqualifiedα-Specker condition, excep
for the two extreme cases,ω1 and∞. In the first case, it will be shown—Corollary 5.6—
that “weaklyω1-Specker” and “ω1-Specker” mean the same thing; as forα = ∞, the three
Specker conditions are equivalent.

Here is an immediate consequence of Proposition 2.3.

Corollary 2.6. Suppose that X is zero-dimensional, with a dense discrete subset of size α.
Then X is strongly α+-Specker.

Remark 2.7. The situation in the preceding corollary is limiting, in the sense that ifX is
the one-point compactification of a discrete setD, with |D| = α, then, as has already be
argued before,X is not stronglyα-Specker.

Next, we single out some special situations, both of which are obvious consequen
Proposition 2.3. Recall that a space isextremally disconnected if the closure of any open
set is open. A (not necessarily compact) spaceX is a P -space if the family of open sets
is closed under countable intersection. It is well known thatX is aP -space if and only if
every zeroset ofX is open [8, 14.28].

Corollary 2.8.

(a) If X is extremally disconnected and weakly α-Specker, then it is also strongly
α-Specker.

(b) If Y is a P -space, then βY is strongly c+-Specker.

Proof. (a) is evident from Proposition 2.3. As to (b),f ∈ C(βY ), thenf |Y induces the
partition of Y {f −1{r}: r ∈ R}, which consists of clopen sets and has cardinal� c. The
closures of the members of such a partition ofY form a quasi-partition ofβY . ✷
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Example 2.9. Note that if |D| = ω1, andD is discrete, thenβD is stronglyc+-Specker,

n 2.3.
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but notω1-Specker in any of its flavors, on account of Corollary 2.8.

Of some importance in the next section is the following consequence of Propositio

Proposition 2.10. For each zero-dimensional space X, QαS(X) is projectable.

Proof. Suppose thatf, g ∈ QαS(X), and suppose thatKf andKg are quasi-partitions b
clopen sets, with|Kf |, |Kg| < α that witness, respectively, this membership. Consider
family L of all K ∩ L, with K ∈ Kf andL ∈Kg . This defines a quasi-partition by clop
sets with fewer thanα sets. We proceed to writef = f [g] + f [g⊥]. These components o
f are to be defined, piecewise, on

⋃
L. Putf [g](x) = f (x), provided thatx ∈ K ∩L, with

K ∈ Kf andL ∈ Kg , andL such that the constantg|L �= 0.f [g](x) = 0, if x ∈ K ∩L, with
K ∈ Kf andL ∈ Kg , andL such thatg|L = 0. f [g⊥] ≡ f − f [g]. Since the members o
Kf and those ofKg are pairwise disjoint these elements are unambiguously defined
they are continuous on

⋃
L, because those members are clopen sets. It should be e

thatf [g] ∈ g⊥⊥ andf [g⊥] ∈ g⊥. ✷
Remark 2.11. One cannot conclude from Proposition 2.10 thatQαS(X) is α-projectable.
Consider the example in Remark 2.2: letD be an uncountable discrete set. As indica
in 2.2,Qω1S(αD) = S(αD). This is notω1-projectable; for ifN is any countably infinite
subset ofD and

P = {
f ∈ S(αD): f (d) = 0, ∀d ∈ D \ N

}
,

thenP is anω1-polar which is not a summand.

Finally, in this section, we should like to record an observation about condition (
Proposition 2.3 which we find intriguing.

Remark 2.12. For any cardinalα and anyW -object A, the construction ofl(α) goes
through a transfinite iteration, the first step of which isl1(α)A, the -subgroup ofeA

generated by the suprema of all pairwise disjoint subsetsS ⊆ A, such that|S| < α. With
this in mind, (c) in Proposition 2.3, may be interpreted as saying thatf ∈ l1(α)S(X). Thus,
QαS(X) � l1(α)S(X).

In the next section we review the matter of covers of compact spaces. The an
of these covers gives some insight into the relationship between the various S
conditions; we shall express this in terms of the containment ofC(X) in QαS(KαX),
whereKαX is a particular minimum cover ofX (Theorem 4.7).

3. Minimum covers

Once more, in this section, all spaces are assumed to be compact and Hausdo
review the aspects of the theory of minimum covers with specified conditions tha
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be needed further on in the paper. The work of Gleason marks the origin of this subject;
vering
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the reader may read about this in Chapter 10 of [30]. For general information on co
classes, see also [10] and [29].

Definition & Remarks 3.1. (a) Suppose thatf : Y → X is a continuous surjection.f
is said to beirreducible if X is not the image of a proper closed subset ofY . It is
well known that if f is irreducible then for each open setU ⊆ Y there is an open se
V ⊆ X such thatf −1V is dense inU . Also if f is irreducible then it induces a Boolea
isomorphism fromR(X), the algebra of regular closed sets ofX, onto R(Y ), by the
assignmentA �→ clY f −1(intX A).

Now fix the spaceX. Let Cov(X) denote the set of all irreducible surjectionsf : Y → X,
modulo the equivalence relation defined byf ∼ f ′ (wheref ′ : Y ′ → X is an irreducible
surjection) if there is a homeomorphismh : Y → Y ′ such thatf ′ · h = f . It is convenient,
especially where the notation is concerned, to identify an irreducible surjection
its equivalence class in Cov(X); we believe that no confusion will ensue from th
identification.

One can partially order Cov(X) by settingf � g (with f : Y → X andg : Z → X) if
there is a continuous surjectiong∗ : Z → Y (necessarily irreducible) such thatf · g∗ = g.

(b) Suppose thatT is a class of spaces which is closed under formation
homeomorphic copies.T is called acovering class if, for each spaceX, the set Cov(X)∩T
has a minimum.

We briefly review some well-known covering classes next, in the context of m
general, cardinal-related properties. We give appropriate references as we go.

Definition & Remarks 3.2. Let X be a space, andα be a regular uncountable cardin
or else∞. We review the concept of a quasiFα-space. The reader is referred to [3] f
additional discussion of the material reviewed here.

Suppose thatf : Y → X is an irreducible surjection. We say thatf is α-irreducible if
for eachα-cozerosetU in Y there is anα-cozerosetV in X such thatf −1V is dense inU .
On the other hand, we say thatX is aquasi Fα-space if every denseα-Lindelöf subspace
of X is C∗-embedded. (Z ⊆ X is α-Lindelöf if every open cover ofZ has a subcover o
fewer thanα sets.)

Theorems 4.9 and 4.11 of [3] assert the following:

For each compact Hausdorff space X there is an α-irreducible surjection
qα : qFαX → X, with qFαX a quasi Fα-space, least among g : Z → X in Cov(X) with
Z quasi Fα . Thus, the class of quasi Fα-spaces is a covering class. We refer to qFαX

as the minimum quasiFα- coverof X.

Whenα = ω1 we have the quasiF -spaces. These have received considerable atten
and the reader is referred to [7] and [19]; for a treatment of the same subject fro
ideal-theoretic point of view, see [21]. Whenα = ∞ we have the extremally disconnect
spaces. The existence of theqF∞- cover was established by Gleason; it is commonly ca
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the absolute of a spaceX, and denotedEX. The reader is referred to [30]. A different
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7],
development of the absolute may be found in [10].

There is an annoying gap in our understanding of quasiFα-spaces for cardinalα > ω1.
The following observation records what we know about the matter.

Remark 3.3. The definition of a quasiF -space, traditionally, is that every dense cozero
is C∗-embedded. By Theorem 3.6 of [9], it then follows that every dense Lindelöf subs
is alsoC∗-embedded. For a regular cardinalα > ω1, it is not known whether every dens
α-Lindelöf subspace ofX is C∗-embedded, if it assumed that every denseα-cozeroset ofX
has this property. The reader is referred to the related discussion in §6 of [3], concern
difficulties in obtaining the quasiFα-cover as a space of ultrafilters, for cardinalsα > ω1.

If X is assumed to be zero-dimensional then Theorem 7.4 of [17] characteriz
Yosida space of a certain subalgebra ofQαS(X), as the minimumα-cloz cover. The
discussion now turns toα-cloz spaces.

Definition & Remarks 3.4. (a) In [20] the authors introduce the concept of a cloz sp
we explain the term. For nowX is compact and Hausdorff, but not necessarily ze
dimensional. First, recall that a cozerosetU is said to becomplemented if there is a
cozerosetV such thatU ∩ V = ∅ andU ∪ V is dense inX. ThenX is called acloz space
if every complemented cozeroset has clopen closure. Generalizing now, with the symα

used as above, we say that anα-cozerosetU is α-complemented if there is anα-cozeroset
V , disjoint fromU , such thatU ∪ V is dense inX. Observe that theω1-complemented
ω1-cozerosets are none other than the complemented cozerosets.

X is anα-cloz space if every α-complementedα-cozeroset has clopen closure. No
that the∞-cloz spaces are again the extremally disconnected ones. “ω1-cloz” is “cloz”.

(b) Using, essentially, the argument in Theorem 3.4 of [20], one can prove thX

is an α-cloz space if and only if every denseα-cozerosetU of X is 2-embedded; that
is, every continuous function ofU into the two-element discrete space can be exten
continuously to a 2-valued function onX. This gives us Proposition 3.5 below, which
already mentioned in the comments of 3.5, [11].

(c) General considerations, discussed by Vermeer in [29], show that the class ofα-cloz
spaces is a covering class. It can be shown by techniques from [20], using the
7α(X) consisting of the closures ofα-complementedα-cozerosets ofX, that a model of
the minimumα-cloz cover,CzαX, of a spaceX may be constructed. Theorem 7.4, [1
presents an alternate approach.

Proposition 3.5. Every quasi Fα-space is α-cloz. Conversely, in every zero-dimensional
α-cloz space every dense α-cozeroset is C∗-embedded.

We resume the discussion ofα-cloz spaces.
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Remark 3.6. For any commutative ringA, let Qs
αA denote the subalgebra ofQαA gen-
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erated byA and the idempotents ofQαA. This subalgebra is described in Proposition
of [17] as follows;E(A) stands for the algebra of idempotents ofA:

Qs
αA =

{
n∑

i=1

aiei : ai ∈ A, ei ∈ E(QαA)

}
.

Theorem 3.7. Suppose that X is zero-dimensional. Then CzαX is zero-dimensional as
well, and

CzαX = Y QαS(X).

Proof. By Proposition 2.10,QαS(X) is projectable, and hence its Yosida space is z
dimensional by Remark 1.4(c). Now Theorem 7.4 and Corollary 7.5 in [17] insure th

CzαX = Y Qs
αS(X) = Y QαS(X),

and we emphasize that it is the zero-dimensionality ofY QαS(X) which furnishes us with
the second identity above.✷

We close the section with a retrospective of the state of affairs regarding the Y
space of the ringQαS(X).

Proposition 3.8. Assume here that X is zero-dimensional. Then

CzαX = Y Qs
αS(X) = Y QαS(X) � qFαX. (†)

We distinguish the following special situations:

(i) For α = ∞: we get identities throughout in (†), and Cz∞X = EX, while Q∞ = Q,
where QA denotes the maximum ring of quotients of A.

(ii) For α = ω1: any zero-dimensional cloz space is quasi F [20, Corollary 3.5(b)]. Thus,
Czω1X = Y Qω1S(X) = qF X.

Proof. It is just the inequality in(†) that needs explaining. On the one hand, [17, Co
lary 7.2] tells us thatY QαS(X) is anα-cloz space. Then, as a consequence of Theorem
of [3], it is enough to show that the inclusionS(X) � QαS(X) induces anα-irreducible
surjectionY QαS(X) → X. The α-irreducibility comes out of the first paragraph in t
proof of Theorem 3.4 in [17], which shows the following: ifb ∈ QαA (for any semiprime
ring A), thenb⊥⊥ = ∨

i∈I b⊥⊥
i , for somebi ∈ A, with |I | < α. ✷

4. Uniformly complete lateral completions

In this section we examine the relationship between theα-Specker condition and it
weak counterpart. This discussion is facilitated by an investigation of when the va
lateral completions are uniformly complete. The assumptions about the symbolα are as
earlier in the paper. Without mention to the contrary, all spaces are compact and Hau
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Definition & Remarks 4.1. The W -object A is called aUL(α)-object (or said tobe
this

at
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e

,
. Thus,

By
note
UL(α)) if l(α)A is uniformly complete. Here are some preliminary remarks about
concept.

(a) (Theorem 5.5(b), [15]) IfA is a divisibleW -object, thenA is aUL(α) object if and
only if l(α)A = l(α)c(α)A, that is, if and only ifc(α)A � l(α)A. (We will devote most of
the discussion in the sequel to divisibleW -objects.)

(b) Recall that thef -ring A satisfies thebounded inversion property if a � 1 implies
thata is invertible.bA denotes the ring of quotients ofA defined by

bA ≡ {a/s: a, s ∈ A, s � 1}.
Indeed,bA � qA. The operatorb is functorial, defining a monoreflection, although th
will not come into play. Now, if the Archimedeanf -ring A satisfies the bounded inversio
property, thenA is UL(∞) if and only if QA, the maximum ring of quotients, is uniform
complete. This is so becauseb · l(∞) = l(∞) · b = Q in Arf; see [16], Theorem 1.3. Th
commuting of the operators for arbitraryα will be discussed elsewhere.

We note thatA = C(X) is aUL(∞)-object precisely when the underlying spaceX is a
uniform quotients space, as discussed in [23].

(c) Let us also briefly consider the antithesis of divisibility. TheW -objectA is singular
if the designated unite is singular, which is to say thata ∧ (e − a) = 0, for each 0� a � e.
ThenA is singular and laterallyα-complete if and only ifY A is α-disconnected andA =
D(Y A,Z) [13, Theorem 7.4]. Moreover, any singularW -object is uniformly complete
as any uniformly Cauchy sequence is eventually constant, and therefore converges
every singular object isUL(α).

The following motivates studying theα-projectableUL(α)-objects first.

Proposition 4.2. A is UL(α) if and only if p(α)A is UL(α).

Proof. l(α)A = l(α)p(α)A (1.4). ✷
We identifyY (p(α)S(X)) next.

Remark 4.3. Recall thatX is α-disconnected if everyα-cozeroset has clopen closure.
Vermeer’s principles the class ofα-disconnected spaces is also a covering class. We de
the minimumα-disconnected cover ofX by EαX, and note thatE∞ = E, while Eω1X is
the basically disconnected cover.

The next proposition gives two models forEαX.

Proposition 4.4. For any W -object A, Yp(α)A = EαY A. In particular, if X is zero-
dimensional, we have that

EαX = Yp(α)C(X) = Yp(α)S(X).

Proof. From Remark 1.4(d),Yp(α)A is α-disconnected; this means thatEαY A �
Yp(α)A.
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On the other hand, the Yosida representation together with the observation that

o

f the
D(EαY A) is α-projectable, produces the embeddings

A � p(α)A � D(EαY A),

from which we extract the dual of the second inclusion:

Y D(EαY A) = EαY A → Yp(α)A,

which establishes thatYp(α)A � EαY A and proves the first assertion.
The second assertion is an immediate consequence of the first.✷

Corollary 4.5. Suppose that X is zero-dimensional. If S(X) is a UL(α)-object then
l(α)S(X) = D(EαX).

Proof. From [15, Theorem 5.5(b)], and the preceding proposition we deduce that

c(α)l(α)S(X) = D(EαX).

By the comments in 4.1(a), we have that

l(α)S(X) = D(EαX). ✷
Now here is the tie-in with the Specker conditions.

Theorem 4.6. Suppose that X is zero-dimensional. Then the following are equivalent
statements.

(i) S(X) is UL(α).
(ii) S(EαX) is UL(α).
(iii) EαX is α-Specker.
(iv) C(X) is UL(α) and X is α-Specker.

Proof. To begin, observe that ifS(X) is UL(α), thenX is α-Specker. For, according t
Corollary 4.5,

D(EαX) = l(α)S(X) � l(α)C(X) = D(EαX).

Thus,C(X) � l(α)S(X) andX is α-Specker.
Next, we note thatS(EαX) = p(α)S(X), so thatS(EαX) � l(α)S(X). Thus,l(α)S(X)

= l(α)S(EαX); this makes it clear that (i) and (ii) are equivalent. The first paragraph o
proof tells us that (ii) implies (iii).

Assuming (iii), we have the following:

C(X) � c(α)C(X) = C(EαX) � l(α)S(EαX) = l(α)S(X) � l(α)C(X), (∗)

whenceC(X) is UL(α), andX is α-Specker, which proves (iv).
Finally, with (iv) we have the following inclusions:

C(X) � l(α)S(X) = l(α)S(EαX) � l(α)C(X) = D(EαX).

Applying l(α) to the above string of inclusions, we get thatl(α)S(X) = D(EαX), whence
S(X) is UL(α). This proves that (iv) implies (i), and finishes the proof.✷
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To conclude this section, we give the promised characterization of theα-Specker

(c)

,
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conditions in terms ofα-quotients, from which it easily follows that “α-Specker” implies
“weakly α-Specker”.

Theorem 4.7. Suppose that X is zero-dimensional.

(a) For each α � α′, QαS(Eα′X) = l(α)S(Eα′X).
(b) X is strongly α-Specker if and only if C(X) � QαS(CzαX).
(c) X is α-Specker if and only if C(X) � QαS(EαX).
(d) X is weakly α-Specker if and only if C(X) � QαS(EX).

Thus, a zero-dimensional α-Specker space is necessarily weakly α-Specker.

Proof. (a) From Corollary 3.11 of [15] we may conclude thatl(α)S(Eα′X) =
l1(α)S(Eα′X), becauseS(Eα′X) is α-projectable; then apply either Proposition 2.3
or 2.12.

(b) All the idempotents ofQαS(X) reside in S(CzαX), and conversely. Thus
S(CzαX) � QαS(X), and thereforeQαS(CzαX) = QαS(X). Now apply Proposi-
tion 2.3(c).

(c) In (a) takeα = α′, and observe, as in the proof of Theorem 4.6, thatl(α)S(X) =
l(α)S(EαX).

(d) It should be clear thatX is weaklyα-Specker precisely when, for eachf ∈ C(X),
there is a quasi-partitionS by regular closed sets, with|S| < α, such that for eachB ∈ S,
f |B = rB ∈ R, identically. Now leteX : EX → X stand for the irreducible surjection o
the absoluteEX ontoX. As pointed out in, 3.1(a),eX induces a Boolean isomorphism
the algebraR(EX) of regular closed subsets ofEX ontoR(X). SinceEX is extremally
disconnected,R(EX) is just the algebra of clopen sets.

Now if f ∈ C(X) has an associated quasi-partitionS as specified above, then

e−1
X S ≡ {

e−1
X B: B ∈ S

}
is a quasi-partition by clopen subsets ofEX, and f = ∨

B∈S rBχ
e−1

X B
. That is to say,

f ∈ l(α)S(EX) = QαS(EX). The converse is just as easy, and we leave it to the read
The final claim is then, indeed, obvious.✷
We conclude this section with some comments on the heels of Theorem 4.7.

Remarks 4.8. (a) In [11] the author defines the notion of anα-fraction dense space; for
compact spaces,X is α-fraction dense if and only ifCzαX = EX. Evidently, if X is
α-fraction dense and zero-dimensional it is weaklyα-Specker if and only if it is strongly
α-Specker.

(b) AssumeX is zero-dimensional. If everyα-cozeroset ofX is α-complemented the
CzαX = EαX, and so, ifX is α-Specker, then it is also stronglyα-Specker.

(c) In Corollary 5.6 it is shown that a weaklyω1-Specker space isω1-Specker.
About α = ∞ we have already remarked (2.5). Whether “weaklyα-Specker” implies
“α-Specker” for allα is an open question. Evidently, ifX is weakly α-Specker and



A.W. Hager, J. Martinez / Topology and its Applications 131 (2003) 57–77 71

EαX = EX thenX is α-Specker; this includes all spaces for which every Borel set dif-
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fers from anα-Borel set by a meagre set. (Anα-Borel set is a member of theσ -algebra
generated by theα-cozerosets.)

5. ω1-Specker conditions

In this section we examine theω1-Specker conditions. Unless the contrary is specifi
all spaces here are assumed to be compact, Hausdorff and zero-dimensional. The
culminating result is that any weaklyω1-Specker space isω1-Specker. By contrast, reca
that if D is any uncountable discrete space, thenαD, the one-point compactification ofD,
is anω1-Specker space that is not stronglyω1-Specker (Remark 2.2).

We begin with a characterization of stronglyω1-Specker spaces which uses Propo
tion 2.3. We leave the details to the reader.

Proposition 5.1. For a space X the following are equivalent.

(a) X is strongly ω1-Specker.
(b) For each f ∈ C(X) there is a quasi-partition by clopen sets {Vn: n ∈ N} such that

f |Vn is constant, for each n ∈ N.
(c) Qω1S(X) = qC(X).

Next, we aim for an internal characterization of theω1-Specker condition. We firs
review some material which describes a construction ofl(ω1)A in terms of Baire sets. Th
principal references here are [2] and [14]. We sketch the basic references on epicom
from [2], leaving it to the interested reader to appeal to that article for more detail
term “σ -ideal” refers to an-ideal which is closed under existing countable suprema
infima.

Definition & Remarks 5.2. Suppose thatX is a compact Hausdorff space, but n
necessarily zero-dimensional.

(a) A Baire set is a member ofB(X), theσ -subalgebra of subsets ofX generated by
the zerosets ofX. M(X) denotes theσ -ideal of all meagre sets. (Recall thatM ∈ B(X)

is meagre if it is a countable union of nowhere dense sets.)B(X) stands for the algebr
of all Baire functions: the real-valued functionsf on X for which f −1I is a Baire set, for
each intervalI in R. M(X) is the-ideal andσ -ideal of all functionsf ∈ B(X) such that
coz(f ) is meagre.

(b) TheW -objectB is calledepicomplete (in W ) if it has no properW -epimorphic
extensions. It is shown in [1] thatB is epicomplete if and only ifB is isomorphic to some
D(Y ), with Y compact and basically disconnected. Then in [2] the following are ca
out: for aW -objectA, let

N(A) ≡
{

f ∈ B(Y A): coz(f ) ⊆
⋃
n

a−1
n

({±∞}), for somea1, a2, . . . ∈ A

}
.
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This is aσ -ideal inB(Y A), and the construct
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βA ≡ B(Y A)/N(A)

is the epicomplete monoreflection ofA in W [2, §5].
SinceN(A) ⊆ M(Y A), there is the quotient

hA : βA → B(Y A)/M(Y A) ≡ λA,

and λA is the uniqueessential epicompletion ofA [2, §9]. It then follows easily tha
λA = D(Eω1A).

(c) Next, we recall from [14] a construction of the laterallyσ -complete (i.e.,l(ω1)-
complete) monoreflection,σA, of theW -objectA. First,Bω,A(Y A) consists, by definition
of thosef ∈ B(Y A) for which there is a countable set{Yn}n∈N ⊆ B(Y A), with Yn ∩ Ym =
∅, for n �= m, andY A = ⋃

n Yn, and there is also a sequencea1, a2, . . . in A, for which
f |Yn = an|Yn , for eachn ∈ N.

Then

σA = Bω,A(Y A)/
(
Bω,A(Y A) ∩ N(A)

)
� βA [14, §4].

Next, observe thatl(ω1)A � λA and that the embeddingA � l(ω1)A has a unique
extension toσA. Moreover, the class ofl(ω1)-completeW -objects is closed unde
formation of images underW -morphisms. It then follows that

hA(σA) = l(ω1)A = Bω,A(Y A)/
(
Bω,A(Y A) ∩ M(Y A)

)
.

For eachf ∈ B(Y A) abbreviatehA(f + N(A)) = f̄ . We then havef̄ ∈ l(ω1)A if and
only if there are countably many pairwise disjoint Baire sets inY A, say Y1, Y2, . . .

such thatY A = ⋃
n Yn, and a meagre setM in Y A, and alsoa1, a2, . . . ∈ A, such that

f |Yn\M = an|Yn\M , for eachn ∈ N.

The comments in 5.2 apply immediately to give, first, a description of the eleme
l(ω1)S(X), and then a characterization ofω1-Specker spaces. Note thatY S(X) = X, for
each zero-dimensionalX.

In the results that follow, all spaces are once again compact and zero-dimensio
announced at the start of this section.

Lemma 5.3. For each f ∈ B(X), f̄ ∈ l(ω1)S(X) precisely when there exist pairwise
disjoint Baire sets Y1, Y2, . . . such that X = ⋃

n Yn, and a meagre set M such that f |Yn\M

is constant, for each n ∈ N.

Recall that a Baire set iscomeagre if its complement is meagre.

Theorem 5.4. The following are equivalent.

(a) X is ω1-Specker.
(b) For each f ∈ C(X) there is a countable set of pairwise disjoint Baire sets Y1, Y2, . . .

such that
⋃

n Yn is comeagre and f |Yn is constant.
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(c) For each f ∈ C(X) there is a countable set of pairwise disjoint zerosets Y1, Y2, . . .
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such that
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n Yn is comeagre and f |Yn is constant.
(d) For each f ∈ C(X) there is a comeagre Baire set B ⊆ X such that f (B) is countable.

Proof. That (a) is equivalent to (b) is immediate from Lemma 5.3, and that (c) im
(d) is obvious. Suppose (b) holds andf ∈ C(X); pick Y1, Y2, . . . , a sequence of Baire se
witnessing (b) forf , then it is clear thatZn = f −1f (Yn), defines the sequence of zeros
we want.

Finally, suppose that each continuous real-valued function onX has countable range o
a suitable comeagre Baire set. Letf ∈ C(X), andM be a meagre set such thatf (X \ M)

is countable. Enumerate these images:{r1, . . . , rn, . . .}, and letZn = f −1{rn}. Then the
(Zn)n∈N form a sequence of disjoint zerosets, and lettingYn = Zn \ M, we get a partition
M, Y1, . . . , Yn, . . . by Baire sets which witnesses the stipulations of the lemma forf . Thus,
f̄ ∈ l(ω1)S(X), and we have shown that (d) implies (a).✷

For our first corollary to Theorem 5.4, recall that a spaceX is scattered if every
nontrivial closed subspace ofX contains an isolated point. Note that a compact Hausd
scattered space is necessarily zero-dimensional.

The equivalence of (a) and (d) in Corollary 5.5 may be found in [26].

Corollary 5.5. Every compact Hausdorff, scattered space is ω1-Specker. In fact, the
following are equivalent for a space X.

(a) X is scattered.
(b) For each f ∈ C(X) there is a partition of X by countably many Baire sets Y1, Y2, . . .

such that f |Yn is constant.
(c) For each f ∈ C(X) there is a partition of X by countably many zerosets Y1, Y2, . . .

such that f |Yn is constant.
(d) f (X) is countable, for each f ∈ C(X).

Finally, if X is also an almost P -space, it is ω1-Specker if and only if it is scattered.

Proof. It suffices to establish the equivalence of (b), (c) and (d) in the corollary. Now
is obtained from (b) in the same manner as indicated in the proof of Theorem 5.4 f
corresponding implication. The implications (c)⇒ (d)⇒ (b) are obvious.

In particular, it is clear that a scattered space isω1-Specker. To conclude, ifX is
ω1-Specker and almostP , then there are no nonempty meagre sets, proving thatX is
scattered. ✷

At last we have the result advertised at the beginning of this section.

Corollary 5.6. Every weakly ω1-Specker space is ω1-Specker.

Proof. Suppose thatX is weaklyω1-Specker, and letf ∈ C(X). Since there is a countab
quasi-partition by open setsV1, . . . , Vn, . . . such thatf |Vn is constant, there is also
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quasi-partition by the zerosetsZn ≡ f −1f (Vn), and it is obvious thatf |Zn is constant.
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Thus, sinceM = X \ (
⋃

n Zn) is a meagre Baire set, we have satisfied the condition
Theorem 5.4. Thus,f ∈ l(ω1)S(X) and we are done.✷

We close out the section with a number of special observations. Recall that a Tyc
spaceX is cozero complemented if every cozeroset is complemented. In this case (witX

not necessarily zero-dimensional) we have thatqF X = Eω1X (see [19]). Recall thatwith
the assumption of zero-dimensionality we also haveCzX = qF X (3.8(ii)). We then have
the following consequence of Theorem 4.7—which, admittedly, could have been
immediately after that result.

Proposition 5.7. Suppose X is cozero complemented. Then if X is ω1-Specker it is also
strongly ω1-Specker.

Remarks 5.8. This list ought to kill off a number of conjectures.

(i) A strongly ω1-Specker space need not be scattered: think ofβN. In fact, any
compactification ofN is stronglyω1-Specker.

(ii) Scattered spaces need not be stronglyω1-Specker: just look atαD, with D discrete
and uncountable. This also shows that cozero complementarity cannot be drop
Proposition 5.7.

(iii) Call a spaceX cozero scattered if for eachf ∈ C(X) there is a dense cozerosetV

such thatf (V ) is countable. It is not hard to see that any stronglyω1-Specker spac
is cozero scattered; clearly every scattered space is cozero scattered. Theo
also shows that every cozero-scattered space isω1-Specker.αD (with D discrete and
uncountable) is scattered, and therefore cozero scattered, but not stronglyω1-Specker.
We do not know whetherω1-Specker spaces are necessarily cozero scattered.

(iv) A strongly ω1-Specker space need not have countable cellularity: take the t
ordered spaceω1 + 1 of all ordinals not exceedingω1, with the interval topology
Proposition 5.1 shows this space is stronglyω1-Specker. (Note:X hascountable
cellularity if every family of pairwise disjoint nonempty open sets is countable.)
If X does have countable cellularity then all threeω1-Specker conditions coincide
asX is then necessarily cozero complemented. In fact, ifX has countable cellularit
these conditions hold if and only ifX is Specker.

6. Remnants

Again in this section, all spaces are assumed to be compact, Hausdorff and
dimensional, unless the contrary is stipulated. Note thatα denotes, as before, a
uncountable, regular cardinal or else the symbol∞. In (a) of Proposition 6.1 below th
regularity of the cardinal will be used. As the omission is rather conspicuous, let us
in advance that we have no counterpart to the content of the proposition for the “m
α-Specker condition.
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Proposition 6.1. Suppose g : Y → X is an irreducible surjection. Then we have:
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(a) If Y is strongly α-Specker and g is α-irreducible, then X is also strongly α-Specker.
(b) If Y is weakly α-Specker then X is as well.

Proof. We prove (a), leaving the proof of (b) to the reader, as it is very similar.
Suppose thatY is stronglyα-Specker andf ∈ C(X); thenf ·g ∈ C(Y ), and so there is

quasi-partitionK of Y by fewer thanα clopen sets—Proposition 2.3—such that(f · g)|K
is constant, for eachK ∈ K. Now sincef is α-irreducible, there is, for eachK ∈ K, an
α-cozerosetVK of X, such thatf −1VK is dense inK. Then it is easy to see that th
(VK)K∈K form a quasi-partition by fewer thanα α-cozerosets ofX, so thatf |VK is
constant. AsX is zero-dimensional, andα is regular, one may refine theseVK once again
and obtain a quasi-partition of size< α by clopen sets ofX, such thatf is constant on
each member. This means thatX is stronglyα-Specker. ✷

The following corollary stands in analogy to Theorem 4.6.

Corollary 6.2. If qFαX is strongly α-Specker, then so is X. Likewise, if EX is weakly
α-Specker, the same is true of X.

The converses of the statements in Corollary 6.2 are intriguing, but are le
be discussed elsewhere. Now, in conclusion, we have a comment about extr
disconnectedω1-Specker spaces under certain set-theoretic assumptions.

Lemma 6.3. If X is a compact strongly ω1-Specker space and K is regular closed in X,
then K too is strongly ω1-Specker.

Proof. Suppose thatf ∈ C(K). Note thatK = clX V , for a suitable open setV . (Evidently,
we assume thatK andV are nonempty, as there is nothing to prove otherwise.) Nowf has
a continuous extension tog ∈ C(X). On account of Proposition 5.1(b), there is a counta
quasi-partition ofX by clopen setsUn (n ∈ N) such thatg|Un is constant. Note thatV must
intersect the union of theUn. Enumerate the indicesi1, . . . , ik, . . . for which V ∩ Uik �= ∅.
It is then easy to check that theWk = K ∩ Uik form a quasi-partition by clopen subsets
K, and thatf |Wk is constant. This shows thatK is stronglyω1-Specker. ✷

We need a lemma which refers to Souslin lines. For background on Souslin line
their existence, we refer the reader to [22,28].

Lemma 6.4. The existence of an extremally disconnected, ω1-Specker space without
isolated points is equivalent to that of a Souslin line.

Proof. This follows from Remark 1.7 of [4], as an extremally disconnected,ω1-Specker
space necessarily has countable cellularity.✷

These lemmas then produce the following curious outcome.
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Proposition 6.5. Suppose that no Souslin line exists. Then any extremally disconnected
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space which is ω1-Specker is homeomorphic to βN.

Proof. First, as the cellularity ofX is countable,X is stronglyω1-Specker, owing to
Proposition 5.7. There must be an isolated point inX, owing to Lemma 6.4, and the subs
N of all isolated points is countable. Now the setU = X \ clX N is open and therefor
extremally disconnected.Y = clX U is its Stone–̌Cech compactification and it is a regu
closed subset ofX. Thus, by Lemma 6.3,Y too is stronglyω1-Specker. AsY is extremally
disconnected and has no isolated points, this amounts to a contradiction, unlessU = ∅, in
which caseX = clX N ∼= βN, as promised. ✷
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