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Abstract

This paper is motivated by work on Specker spaces and a recent article of the authors on the ring
of a-quotients. Herex denotes an uncountable regular cardinal or etseindicating no cardinal
constraint whatsoever. All spaces are compact Hausdorff, and for the most part zero-dimensional.

Three strains of theo-Specker” condition are studied: strong, weak, and one in between which is
not qualified. One of the main results characterizes these conditions, for @cheach spacg, in
terms of the containment @f(X) in the ring ofa-quotients ofS (K, X), where the latter denotes the
algebra of continuous functions with finite range, defined on an appropriate Egvenof X.

“Weakly ¢t -Specker” is equivalent to “Specker”. The paper examinesih&pecker conditions,
proving that “weaklyw1-Specker” and &1-Specker” are equivalent. In fact, it is shown tfiats
weakly wq-Specker if and only if for eaclf € C(X) there is a Baire s&8 with meagre complement
such thatf (B) is countable.
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1. Introduction

The notion of a Specker space, over which continuous real valued functions are densely
constant, first appeared in [25] and [31], and then received a concerted amount of attention
in [4,24] and also [5]. Here we get into the subject of dense constancies, with cardinality
constraints. Some of the motivation for this investigation comes from [14], where the
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laterally o-complete reflection inW, the category of all Archimedeafrgroups with
designated unit, is described using countable partitions by Baire sets.

All topological spaces are Tychonof8.X is the Stone€ech compactification oX.
C(X) will denote, as usual, the ring of all continuous real valued functions on the space
X, which is regarded as a lattice-ordered ring with the standard pointwise operations of
addition, multiplication, supremum and infimum. Of some importance in any conversation
about Archimedea#-groups isD(X), the lattice of all continuous functiongon X with
values in the extended real numb&rs {+o0}, for which f 1R is a dense subset &f. In
order forD(X) to be a group under pointwise addition some assumptions need to be made
aboutX; we need not consider this issue here.

Let us now recall the concept of a Specker space.

Definition 1.1. First recall (from [4]) that a spac¥ is a DC-space if for each f € C(X)
there is a quasi-partition of by open setsU, ), s—that is to say, a family of open sets
which are pairwise disjoint so that the union is dens& #r-such thatf is constant when
restricted to eacly, . We say thatX is Specker if it is a DC-space with a clopen-base.
(A family B of nonempty open sets iX is called ar-base if for each nonempty open
setV there is aU € B such thatU € V.) If X is Specker then for eacfi € C(X) the
quasi-partition referred to above may be chosen so thatE€achclopen.

We generalize the notion of a Specker space, by placing cardinality constraints on the
quasi-partitions referred to above. A number of the hulls in the theory of Archimedean
£-groups play an important role.

Throughout the papes, stands for an uncountable regular cardinal, or else the symbol
oo, which may be thought of in this context as a symbol larger than all cardinals, and as
indicating the case in which no cardinality restrictions are placed.

Definition & Remarks 1.2. The ambient category in this discussiori¥s the category of
Archimedeart-groups with designated weak order unit, andéfteomomorphisms which
preserve the designated units.

(a) First, by arextensionin W we mean the containment of oMé-objectA in another,
B, so that the inclusion mapping isV-morphism; we denote this by < B.

Recall that the extensiof < B is essential if for each O< b € B thereisam € A and a
positive integer, such that O< a < nb. For a givenW-objectA, eA denotes the maximum
essential extension of in W; see [6]. We call this thessential hull of A. p(«), c¢(@) and
I(a), stand for the operators which construct thgrojectable hull, the conditionai-
completion and the lateral-completion, respectively. All of these are extensions inside
the essential hull. Let us now recall how these hulls are obtained.

(b) Let A be aW-object andS € A. St stands for the polar of. We explain, briefly:
recall thatP C A in a W-objectA is apolar if P = S+ whereS € A and

St={aeA:lalAls|=0, Vs € S}.
For C(X) the polars may be viewed as follows; et C(X). Let

S=|J{coz f): fes}.
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Thenstt = {h € C(X): cozh) C cly S}, while S1 = {g € C(X): cozg) NS =¢}.

We shall observe the notational conventions established in [12] and [15]. If
ae St + 5t we may express: = a[S] + a[S*], uniquely, with a[S] € S*+ and
al[S+] e S*t. a[S] will be referred to as thprojection of @ on .

Recall thatA is a-projectableif for each subses of size< «, A = St + §1. (On this
occasion let us also consider “ w-projectable’is “projectable”: A = a+ + a*, for each
acA)

Now, let us begin withp(«): if A isaW-object,p(«)A is obtained through a transfinite
construction:

(i) pl(@)A is the ¢-subgroup ofeA generated by alk[S], ranging over alu € A and
S C A, with |S] < «.
(ii) If y is an ordinak 1,

P’ (@A = p%a)( Ur’ (oe)A).

B<y

For some ordinay, p¥ (@)A = py/(ot)A, forall y’ > y. Thisis p(a)A.

(c) Here we elect to describe the other two hulls for objects which are already
projectable, because it is easier to do. This will suffice, for now; we have occasion to
refer to the construction df«) in Remark 2.12.

Let A stand for anx-projectableW -object.

l(a)A+={\/x,-: O<xi€A,i#i'=xiAxy=0,iel, || <a},

1

c(@)AT = {\/x,-: 0<x;€A, {x;:iel}is A-bounded|I| <oe}.

1

To conclude our introduction, let us review the Yosida representation. We refer the
reader to [18] for more details.

Definition & Remarks 1.3. A stands for aW-object. YA is the set of values of the
designated unit, that is to say, the set of all the convéxsubgroups ofA which are
maximal with respect to not containing Relative to the hull-kernel topology A is a
compact Hausdorff space; this is well knowd is the Yosida space of A.

If X is any compact Hausdorff space a6dC D(X) is a sublattice containing the
constant 1, they isa W-objectin D(X) if G isan¢-group and f +g)(x) = f(x)+g(x),
for eachx € U, whereU is a dense open subset 1R N g~ 1R.

Now back to ouW -objectA with designated unit; here is a formulation of the Yosida
Representation Theorem:

Thereisa W-object A’ in D(Y A) anda W-isomorphismé: A — A’ suchthat6(e) =1,
which separatesthe pointsof Y A; (that is, sothat if x £ y in Y A, thenthereisana € A
such that 6 (a)(x) # 6(a)(y)).
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Y A is unique in the sense that if X is a compact Hausdorff space, and ¢: A — B
is a W-isomorphism of A onto the W-object B in D(X), such that ¢(¢) = 1 and
¢ separates the points of X, then there is a homeomorphism z: X — Y A such that
O(a)(t(x))=¢(a)(x),foreachx € X andeacha € A.

The Yosida Representation is functorial. To see this the reader should notegthati$ B
is a W-morphism, then there is induced a continuous funclignY B — Y A, such that
05 (g(a))(x) =04(a)(Yg(x)), for eacha € A andx € Y B.

Remark 1.4. Some properties of hulls might be kept in mind. l4&ebe aW-object.

(@) p(@)A <cl@)ANl(a)A [15].

(b) c(@)l(a) = l(@)c(x). This is the hull for the class oW-objects which are both
conditionally and laterallyg-complete [15, Theorem 4.1].

(c) If Ais projectable theiy A is zero-dimensional. (This is well known; we leave it as an
exercise to the reader.)

(d) Yp(a)A is a-disconnected, that is, every union of fewer thagozerosets has open
closure [12, Corollary 2.4].

(e) D(Yp(a)A) is a group, and & -object, and the uniform closure of the divisible hull
of [(w)A [15, Theorem 5.5(b)].

In the next section we shall define one of the principal “Specker” conditions in terms
of the ring ofa-quotients. Rather than give a general review of the concept, as discussed
in [17], we shall appeal directly to Theorem 5.4 of that paper, which gives a working
definition of the ring of quotients we want.

Definition & Remarks 1.5. (a) Recall some common notation first. In generat{ifs a
filter base of dense subsets of the spZceve useC[H] to denote the direct limit

C[’H]EIiLn)C(U), UeH,

with the understanding that the bonding maps are the restricigt'y — C(V), with
VCUinH.

In the sequelg, (X) stands for the filter base of all densecozerosets ofX. (An
a-cozeroset is a union of fewer tham cozerosets.)

(b) Suppose that is an Archimedeary-ring with identity, and regard 1 as the desig-
nated unit. For each dense open sulisetf Y A, let Ay be the subring o (U) defined
by the following condition:f € Ay <= f € C(U) and, for eachx € U there exists a
neighborhood/ C U of x anda, b € A such that, for each € V,

_aw
b(y)
Now put

QaAE”_)mAU (U ega(YA))’

f»
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and it is understood, once more, that the bonding maps of the above direct limit are the
restrictionsAy — Ay, whenV C U in G, (Y A). This is the ring ofx-quotients, which is
studied extensively in [17] and also in [27].

(c) We spell out what the description in (a) reduces to @gX), with X compact
Hausdorff. Quite simply,

0.C(X)=C[Gu(X)] [17, Proposition 5.7]

We record the following special case far= w1. The reader is reminded thatd
denotes the classical ring of quotients of the ring

Proposition 1.6 [17, Proposition 5.8]For any space X,
0w, C(X) =qC(X) = C[Gwy (X)].

This concludes our introduction and general review.

2. Various a-Specker conditions

We remind the reader that stands for a regular, uncountable cardinal, or the symbol
oo. In this section X denotes a compact Hausdorff space, unless the contrary is stated. As
we have already indicated, in considering Specker conditions linked to cardinal bounds, a
number of subtleties appear, and at least three natural generalizations of Specker spaces
deserve some attention.

Definition & Remarks2.1. (a) A spaceX is weakly o-Specker if it has a clopenr-base and
foreachf € C(X) thereis a quasi-partitiofV;: i € I} of X by open sets with/| < « such
that f restricted to eacly; is constant. Observe immediately thatif< o’ are cardinals,
then any weaklyr-Specker space is weakdy/-Specker.

By dropping the “clopent-base” provision, one gets a definition of what probably
ought to be called aeakly DC («)-space; we will not explore this concept here.

Suppose thak is a Specker space; l¢te C(X) and/C be a quasi-partition by clopen
sets such thaf | is constant, for eaclt € K. Now let X’ be the quasi-partition defined
as follows:K € K’ if and only if K is the union of allC € K which have the same image
underf. This is indeed a quasi-partition mpen sets, and it should be clear tHat'| < c,
wherec stands for the cardinality of the continuum. Thi¥sis weaklyct-Specker. (Note:
o™ denotes the successor cardinadof

We emphasize:

“Specker”and “weakly ¢*-Speckerare equivalent.

(b) X is a-Specker if C(X) <I(x)S(X). (Recall thatS(X) stands for the subalgebra of
C(X) consisting of all continuous functions of finite range.) As with the previous Specker
condition,a < o’ implies that anyx-Specker space is alsd-Specker.

We have not been able to settle whether “weaklySpecker” implies ¢+-Specker”.
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(c) We say that a spack is strongly «-Specker if C(X) C Q,S(X). In 2.2 we give an
example showing that, for each there is a space which is"-Specker but not strongly
a™-Specker. In particular theng*-Specker” does not imply “strongly"-Specker”.

As the terms suggest, “stronglySpecker” implies &-Specker”, and the latter implies
“weakly a-Specker”, in turn. To get on with the proofs of these and other results, we need
to describe the ring af-quotients ofS(X), using the description in 1.5(b).

As we shall see, the weak Specker condition is connected to the abgotutd the
space of discours¥, while the “middle” Specker condition is connected to the minimum
a-disconnected cover. We shall have more to say about minimum covers in the next section.

Section 5 concentrates on the case w1. For now, by way of illustration, let us record
some basic features @f,,, S(X), from 85 of [17].

Remark 2.2. Recall thatX is an almost P-space provided it has no proper dense
cozerosets. Proposition 5.10 of [17] states thaf S(X) = S(X) precisely whenX is

an almostP-space. Thus, wheN = a D, the one-point compactification of the discrete
spaceD, thenQ,, S(a«D) = S(aD) if and only if D is uncountable. On the other hand,
00, S(@N) = C(N) = 0S(@N). In particular, note that

Qu, S(@N) > gS(aN) = S(aN).

Now let D be uncountable antlD be the space obtained by adjoining a padirib D,
whose neighborhoods are the subsets containjiaving a countable complementin
Then note that(w1)S(aD) = S(BAD). The point is thatlC(aD) < l(w1)S(aD), so that
aD is w1-Specker, but it is not strongly1-Specker.

More precisely, if|D| = «™, thenaD, beingwi-Specker, isu*-Specker. However,
any quasi-partition by clopen sets @D must have sizer™, and souD is not strongly
at-Specker, as Proposition 2.3 will presently demonstrate.

Here is the description of,S(X), with X zero-dimensional, following 1.5(b). Note
that sinceX is assumed to be zero-dimensional, the continuous step functior’§ on
separate the points of, whenceY S(X) = X.

Proposition 2.3. Suppose X is zero-dimensional. Then the following are equivalent for a
function f € C(X).

(@) f € 0uSX).

(b) Thereisa family /C of fewer than o clopen sets, such that, ) K is dense and, for each
K ek, flg € S(K).

(c) Thereisa quasi-partition /C by clopen sets, with || < «, such that f|x is constant,
for each K € K.

Proof. The equivalence of (a) and (b) comes from Theorem 5.4 of [17]. (c) clearly implies
(b), and as to the reverse, suppose there is a fakhityf clopen sets, of size: o, whose
union is dense, and such thAftx € S(K), for eachK € K. Refining, we may assume that
the members ok are pairwise disjoint and | is constant, foreack € £. O
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At last, here is one of the expected implications between Specker conditions.
Corollary 2.4. Let X be zero-dimensional.

() X isstrongly o-Specker if and only if (c) in Proposition 2.3holdsfor each f € C(X).
(b) If X isstrongly a-Specker then it is also a-Specker.

Proof. (a) is obvious from Proposition 2.3. As to (b), observe atS(X) < l(@)S(X):
using Proposition 2.3(c), if € 0, S(X), andX is a quasi-partition which witnesses this,
according to (c) of the proposition, one easily checks thas the supremum (in the
essential hull of5(X)) of the step functiongk defined bygk (x) = f(x), if x € K, while
gk (x) =0, otherwise. This says thgte [(x)S(X). O

Remark 2.5. The weakx-Specker condition is “internal”, in the sense that it is articulated

in the definition in terms of quasi-partitions of subsets of the space. Now Proposition 2.3
affords, likewise, an internal description of the strangpecker condition. We have not
been able to find such an internal condition for the unqualiii®pecker condition, except

for the two extreme cases; andoo. In the first case, it will be shown—Corollary 5.6—
that “weaklyw1-Specker” and w1-Specker” mean the same thing; asdoe oo, the three
Specker conditions are equivalent.

Here is an immediate consequence of Proposition 2.3.

Corollary 2.6. Supposethat X is zero-dimensional, with a dense discrete subset of size «.
Then X is strongly o™ -Specker.

Remark 2.7. The situation in the preceding corollary is limiting, in the sense thit i$
the one-point compactification of a discrete Betwith | D| = «, then, as has already been
argued beforeX is not stronglyx-Specker.

Next, we single out some special situations, both of which are obvious consequences of
Proposition 2.3. Recall that a spacesxtremally disconnected if the closure of any open
set is open. A (not necessarily compact) spacis a P-space if the family of open sets
is closed under countable intersection. It is well known tkidas a P-space if and only if
every zeroset oKX is open [8, 14.28].

Corollary 2.8.

(@) If X is extremally disconnected and weakly «-Specker, then it is also strongly
a-pecker.
(b) If Y isa P-space, then Y isstrongly ¢*-Specker.

Proof. (a) is evident from Proposition 2.3. As to (b),e C(8Y), then f|y induces the
partition of Y {f~{r}: r € R}, which consists of clopen sets and has cardinal The
closures of the members of such a partitiorydbrm a quasi-partition oBY. O
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Example 2.9. Note that if|D| = w1, and D is discrete, theB D is stronglyc™-Specker,
but notw;-Specker in any of its flavors, on account of Corollary 2.8.

Of some importance in the next section is the following consequence of Proposition 2.3.
Proposition 2.10. For each zero-dimensional space X, Q. S(X) is projectable.

Proof. Suppose thaf, ¢ € 0, S(X), and suppose thdt ; and/C, are quasi-partitions by
clopen sets, withiCr|, |K¢| < o that witness, respectively, this membership. Consider the
family £ of all K N L, with K € K¢ andL € IC,. This defines a quasi-partition by clopen
sets with fewer than sets. We proceed to writé = f[g] + f[g~]. These components of

f are to be defined, piecewise, phl. Put f[g](x) = f(x), provided thak € K N L, with

K € Ky andL € IC;, andL such that the constapt; # 0. f[gl(x) =0, if x e KN L, with

K € Ky andL € K,, andL such thatg|, =0. f[g*]= f — flg]. Since the members of

K s and those ofC, are pairwise disjoint these elements are unambiguously defined, and
they are continuous opJ £, because those members are clopen sets. It should be evident
that f[g] e gt and f[gt]egt. O

Remark 2.11. One cannot conclude from Proposition 2.10 tBatS(X) is a-projectable.
Consider the example in Remark 2.2: Ietbe an uncountable discrete set. As indicated
in 2.2, 04, S(aD) = S(aD). This is notw;-projectable; for ifN is any countably infinite
subset ofD and

P={feS@D): f(d)=0, ¥de D\N},

then P is anwj-polar which is not a summand.

Finally, in this section, we should like to record an observation about condition (c) in
Proposition 2.3 which we find intriguing.

Remark 2.12. For any cardinakx and anyW-object A, the construction of (@) goes
through a transfinite iteration, the first step of whichiigx)A, the ¢-subgroup ofeA
generated by the suprema of all pairwise disjoint sub$etsA, such thatS| < «. With
this in mind, (c) in Proposition 2.3, may be interpreted as sayingfthait! («)S(X). Thus,
QuS(X) <IH@)S(X).

In the next section we review the matter of covers of compact spaces. The analysis
of these covers gives some insight into the relationship between the various Specker
conditions; we shall express this in terms of the containmer@ @) in Q,S(KyX),
whereK, X is a particular minimum cover of (Theorem 4.7).

3. Minimum covers

Once more, in this section, all spaces are assumed to be compact and Hausdorff. We
review the aspects of the theory of minimum covers with specified conditions that will
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be needed further on in the paper. The work of Gleason marks the origin of this subject;
the reader may read about this in Chapter 10 of [30]. For general information on covering
classes, see also [10] and [29].

Definition & Remarks 3.1. (a) Suppose thaf :Y — X is a continuous surjectionyf

is said to beirreducible if X is not the image of a proper closed subsetYoflt is
well known that if f is irreducible then for each open sBtC Y there is an open set
V C X such thatf~1V is dense inU. Also if f is irreducible then it induces a Boolean
isomorphism fromR(X), the algebra of regular closed sets Xf onto R(Y), by the
assignmenti — cly f~1(inty A).

Now fix the spac&X . Let Cou X) denote the set of all irreducible surjectiofisY — X,
modulo the equivalence relation defined py~ f’ (where f/: Y’ — X is an irreducible
surjection) if there is a homeomorphigmY — Y’ such thatf’ - h = f. It is convenient,
especially where the notation is concerned, to identify an irreducible surjection with
its equivalence class in C@¥); we believe that no confusion will ensue from this
identification.

One can partially order C@X) by settingf < g (with f:Y — X andg:Z — X) if
there is a continuous surjecti@ri: Z — Y (necessarily irreducible) such that g* = g.

(b) Suppose that7 is a class of spaces which is closed under formation of
homeomorphic copie§. is called acovering classif, for each spacé, the set CoyX)N7T
has a minimum.

We briefly review some well-known covering classes next, in the context of more
general, cardinal-related properties. We give appropriate references as we go.

Definition & Remarks 3.2. Let X be a space, and be a regular uncountable cardinal,
or elseco. We review the concept of a quagj-space. The reader is referred to [3] for
additional discussion of the material reviewed here.

Suppose thaf : Y — X is an irreducible surjection. We say thatis «-irreducible if
for eacha-cozeroset in Y there is anv-cozeroseV in X such thatf ~1V is dense irt/.
On the other hand, we say th#tis aquas F,-space if every densex-Lindel6f subspace
of X is C*-embedded.Z C X is a-Lindel6f if every open cover oZ has a subcover of
fewer thanx sets.)

Theorems 4.9 and 4.11 of [3] assert the following:

For each compact Hausdorff space X there is an «-irreducible surjection
qo:qFyX — X, with g F, X aquas F,-space, leastamong g: Z — X in Cov(X) with
Z quasi F,. Thus, the class of quasi F,-spacesis a covering class. We refer to g F X
asthe minimumquasiF,- coverof X.

Whena = w1 we have the quadi-spaces. These have received considerable attention,
and the reader is referred to [7] and [19]; for a treatment of the same subject from an
ideal-theoretic point of view, see [21]. When= co we have the extremally disconnected
spaces. The existence of €, - cover was established by Gleason; itis commonly called
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the absolute of a spaceX, and denotedz X. The reader is referred to [30]. A different
development of the absolute may be found in [10].

There is an annoying gap in our understanding of qligsspaces for cardinal > w1.
The following observation records what we know about the matter.

Remark 3.3. The definition of a quask’-space, traditionally, is that every dense cozeroset

is C*-embedded. By Theorem 3.6 of [9], it then follows that every dense Lindel6f subspace
is alsoC*-embedded. For a regular cardinal w1, it is not known whether every dense
a-Lindeldf subspace o is C*-embedded, if it assumed that every demsmzeroset ok

has this property. The reader is referred to the related discussion in 86 of [3], concerning the
difficulties in obtaining the quadi, -cover as a space of ultrafilters, for cardinals w1.

If X is assumed to be zero-dimensional then Theorem 7.4 of [17] characterizes the
Yosida space of a certain subalgebra@fS(X), as the minimumx-cloz cover. The
discussion now turns t@-cloz spaces.

Definition & Remarks 3.4. (a) In [20] the authors introduce the concept of a cloz space;
we explain the term. For now is compact and Hausdorff, but not necessarily zero-
dimensional. First, recall that a cozerodétis said to becomplemented if there is a
cozeroseV suchthaty NV =@ andU U V is dense inX. ThenX is called acloz space

if every complemented cozeroset has clopen closure. Generalizing now, with the symbol
used as above, we say that@tozerosel is a-complemented if there is anx-cozeroset

V, disjoint from U, such thatU U V is dense inX. Observe that the;-complemented
w1-cozerosets are none other than the complemented cozerosets.

X is ana-cloz space if every a-complemented-cozeroset has clopen closure. Note
that theco-cloz spaces are again the extremally disconnected onestlbz” is “cloz”.

(b) Using, essentially, the argument in Theorem 3.4 of [20], one can proveXthat
is an«-cloz space if and only if every densecozerosetU of X is 2-embedded; that
is, every continuous function df into the two-element discrete space can be extended
continuously to a 2-valued function oxi. This gives us Proposition 3.5 below, which is
already mentioned in the comments of 3.5, [11].

(c) General considerations, discussed by Vermeer in [29], show that the clasdax
spaces is a covering class. It can be shown by techniques from [20], using the family
Iy (X) consisting of the closures efcomplemented-cozerosets ok, that a model of
the minimuma-cloz cover,Cz, X, of a spaceX may be constructed. Theorem 7.4, [17],
presents an alternate approach.

Proposition 3.5. Every quas F,-space is a-cloz. Conversely, in every zero-dimensional
a-cloz space every dense «-cozeroset is C*-embedded.

We resume the discussion @fcloz spaces.
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Remark 3.6. For any commutative ring\, let 03 A denote the subalgebra ¢f, A gen-
erated byA and the idempotents @, A. This subalgebra is described in Proposition 3.9
of [17] as follows;E(A) stands for the algebra of idempotents4of

n
0SA= Zaiei: ai €A, e; € E(QqA) .
i=1

Theorem 3.7. Suppose that X is zero-dimensional. Then Cz, X is zero-dimensional as
well, and

CzaX =Y Qo S(X).

Proof. By Proposition 2.100Q,S(X) is projectable, and hence its Yosida space is zero-
dimensional by Remark 1.4(c). Now Theorem 7.4 and Corollary 7.5 in [17] insure that

CzaX =Y Q5S(X) = ¥ QuS(X),

and we emphasize that it is the zero-dimensionality ¢, S(X) which furnishes us with
the second identity above.o

We close the section with a retrospective of the state of affairs regarding the Yosida
space of the ring), S(X).

Proposition 3.8. Assume here that X is zero-dimensional. Then
Czg X =YQ585(X) =Y Q0,S(X) < qFuX. (M
W distinguish the following special situations:

(i) For o = oco: we get identities throughout in (1), and Czo X = EX, while O = O,
where Q A denotes the maximumring of quotientsof A.

(i) For o = w1 any zero-dimensional cloz spaceisquas F [20, Corollary 3.5(b)] Thus,
Czn X =Y Q0,,S(X) =qFX.

Proof. Itis just the inequality in(t) that needs explaining. On the one hand, [17, Corol-
lary 7.2] tells us that 0, S(X) is ana-cloz space. Then, as a consequence of Theorem 4.9
of [3], it is enough to show that the inclusidhi(X) < Q,S(X) induces anx-irreducible
surjectionY Q,S(X) — X. The a-irreducibility comes out of the first paragraph in the
proof of Theorem 3.4 in [17], which shows the followingdite QA (for any semiprime

ring A), thenb+ =\/,, b+, for someb; € A, with || <. O

4. Uniformly complete lateral completions

In this section we examine the relationship betweendtgpecker condition and its
weak counterpart. This discussion is facilitated by an investigation of when the various
lateral completions are uniformly complete. The assumptions about the sydrel as
earlier in the paper. Without mention to the contrary, all spaces are compact and Hausdorff.
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Definition & Remarks 4.1. The W-object A is called aU L(«)-object (or said tobe
UL () if I(a)A is uniformly complete. Here are some preliminary remarks about this
concept.

(a) (Theorem 5.5(b), [15]) IA is a divisibleW -object, thenA is aU L(«) object if and
only if I(e)A =Il(x)c(@)A, thatis, if and only ifc(x) A < I(x)A. (We will devote most of
the discussion in the sequel to divisité-objects.)

(b) Recall that thef-ring A satisfies thdounded inversion property if a > 1 implies
thata is invertible.b A denotes the ring of quotients dfdefined by

bA={a/s:a,s€A, s>1}.

Indeed,hA < gA. The operatob is functorial, defining a monoreflection, although that
will not come into play. Now, if the Archimedeaftring A satisfies the bounded inversion
property, them is U L(o0) if and only if O A, the maximum ring of quotients, is uniformly
complete. This is so becausel(co) =1(c0) - b = Q in Arf; see [16], Theorem 1.3. The
commuting of the operators for arbitragywill be discussed elsewhere.

We note thatA = C(X) is aU L(oc0)-object precisely when the underlying spacés a
uniform quotients space, as discussed in [23].

(c) Let us also briefly consider the antithesis of divisibility. THeobjectA is singular
if the designated unit is singular, which is to say thatA (e —a) =0, foreach (K a < e.
ThenA is singular and laterallg-complete if and only ifY A is a-disconnected and =
D(YA,Z) [13, Theorem 7.4]. Moreover, any singul®-object is uniformly complete,
as any uniformly Cauchy sequence is eventually constant, and therefore converges. Thus,
every singular object i&/ L(«).

The following motivates studying the-projectablel L («)-objects first.
Proposition 4.2. AisU L(«) ifand only if p(a)A isU L(«).
Proof. [(@)A =1l(x)p(a)A (1.4). O

We identify Y (p(a)S(X)) next.
Remark 4.3. Recall thatX is «-disconnected if everg-cozeroset has clopen closure. By
Vermeer’s principles the class @fdisconnected spaces is also a covering class. We denote
the minimume-disconnected cover of by E, X, and note thaE, = E, while E,,, X is
the basically disconnected cover.

The next proposition gives two models fBg X .

Proposition 4.4. For any W-object A, Yp(x)A = E,YA. In particular, if X is zero-
dimensional, we have that
Eq X =Yp(a)C(X) =Yp(a)S(X).

Proof. From Remark 1.4(d)Yp(x)A is a-disconnected; this means th&i, YA <
Yp(a)A.
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On the other hand, the Yosida representation together with the observation that
D(EyY A) is a-projectable, produces the embeddings

A< p(a)A < D(EyYA),
from which we extract the dual of the second inclusion:
YD(E,YA)=E.YA— Yp(@)A,

which establishes thatp(«)A < E, Y A and proves the first assertion.
The second assertion is an immediate consequence of the first.

Corollary 4.5. Suppose that X is zero-dimensional. If S(X) is a UL(«x)-0object then
l(@)S(X) =D(EqX).

Proof. From [15, Theorem 5.5(b)], and the preceding proposition we deduce that
ca)l(x)S(X) = D(EyX).

By the comments in 4.1(a), we have that
H(a)S(X) = D(EyX). O

Now here is the tie-in with the Specker conditions.

Theorem 4.6. Suppose that X is zero-dimensional. Then the following are equivalent
statements.

() S(X)isUL(x).
(i) S(ExX)isUL(x).
(i) EquX isa-Specker.
(iv) C(X)isUL(x) and X is a-Specker.

Proof. To begin, observe that §(X) is UL(«), thenX is a-Specker. For, according to
Corollary 4.5,

D(EyX) =1()S(X) <1(@)C(X) = D(EyX).
Thus,C(X) <Il(@)S(X) andX is a-Specker.

Next, we note thas(E, X) = p()S(X), so thatS(E,X) < [(a)S(X). Thus,/(a)S(X)
=I1(x)S(EyX); this makes it clear that (i) and (ii) are equivalent. The first paragraph of the
proof tells us that (i) implies (iii).

Assuming (i), we have the following:

C(X) <c(@C(X) =C(EaX) S UH@)S(Eq X) =) S(X) < U()C(X), (%)
whenceC (X) is U L(a), andX is a-Specker, which proves (iv).
Finally, with (iv) we have the following inclusions:
C(X) <Ua)S(X) =l(a)S(Ea X) < (a)C(X) = D(Eq X).

Applying /(«) to the above string of inclusions, we get that) S(X) = D(E, X), whence
S(X) isUL(w). This proves that (iv) implies (i), and finishes the proofa
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To conclude this section, we give the promised characterization otxtBgecker
conditions in terms of-quotients, from which it easily follows that*Specker” implies
“weakly a-Specker”.

Theorem 4.7. Supposethat X is zero-dimensional.

(@) Foreacha <o/, Oy S(EyX) =1(a)S(Ey X).

(b) X isstrongly a-Specker if and only if C(X) < Qg S(Czq X).
(c) X isa-Specker ifandonlyif C(X) < QyS(EyX).

(d) X isweakly a-Specker if and only if C(X) < QS(EX).

Thus, a zero-dimensional «-Specker space is necessarily weakly «-Specker.

Proof. (&) From Corollary 3.11 of [15] we may conclude thatx)S(EyX) =
Ya)S(E, X), becauseS(E, X) is a-projectable; then apply either Proposition 2.3(c)
or2.12.

(b) All the idempotents ofQ,S(X) reside in S(CzyX), and conversely. Thus,
S(CzyX) < QqS(X), and thereforeQy,S(Czq X) = QqS(X). Now apply Proposi-
tion 2.3(c).

(c) In (a) takea = &', and observe, as in the proof of Theorem 4.6, fli@jS(X) =
[(@)S(Ey X).

(d) It should be clear thaX is weaklya-Specker precisely when, for eaghe C(X),
there is a quasi-partitiofi by regular closed sets, willy| < «, such that for eacl® € S,
flp =rp € R, identically. Now letey : EX — X stand for the irreducible surjection of
the absoluteE X onto X. As pointed out in, 3.1(aky induces a Boolean isomorphism of
the algebraR(E X) of regular closed subsets &fX ontofR(X). SinceE X is extremally
disconnectedR(E X) is just the algebra of clopen sets.

Now if f € C(X) has an associated quasi-partiti®mas specified above, then

ex'S=lex'B: BeS}
is a quasi-partition by clopen subsets BX, and f = \/z.g TBXe 1B That is to say,

fel()S(EX) = Q,S(EX). The converse is just as easy, and we leave it to the reader.
The final claim is then, indeed, obvioust

We conclude this section with some comments on the heels of Theorem 4.7.

Remarks 4.8. (a) In [11] the author defines the notion of arraction dense space; for
compact spacesy is a-fraction dense if and only iCz, X = EX. Evidently, if X is
a-fraction dense and zero-dimensional it is weaddppecker if and only if it is strongly
a-Specker.

(b) AssumeX is zero-dimensional. If every-cozeroset o is a-complemented then
Czy X = E4 X, and so, ifX is a-Specker, then it is also strongh¢Specker.

(c) In Corollary 5.6 it is shown that a weakly;-Specker space is1-Specker.
About « = o0 we have already remarked (2.5). Whether “weakkhBpecker” implies
“a-Specker” for allee is an open question. Evidently, X is weakly «-Specker and
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E,X = EX thenX is a-Specker; this includes all spaces for which every Borel set dif-
fers from anx-Borel set by a meagre set. (AnBorel set is a member of the-algebra
generated by the-cozerosets.)

5. w1-Specker conditions

In this section we examine the -Specker conditions. Unless the contrary is specified,
all spaces here are assumed to be compact, Hausdorff and zero-dimensional. The
culminating result is that any weakdy;-Specker space is1-Specker. By contrast, recall
that if D is any uncountable discrete space, théh the one-point compactification @f,
is anw1-Specker space that is not strongly-Specker (Remark 2.2).

We begin with a characterization of strongly-Specker spaces which uses Proposi-
tion 2.3. We leave the details to the reader.

Proposition 5.1. For a space X the following are equivalent.

(a) X isstrongly w1-Specker.

(b) For each f € C(X) thereis a quasi-partition by clopen sets {V,: n € N} such that
fv, isconstant, for eachn € N.

(©) 0w, S(X) =qC(X).

Next, we aim for an internal characterization of the-Specker condition. We first
review some material which describes a constructidii®f) A in terms of Baire sets. The
principal references here are [2] and [14]. We sketch the basic references on epicompletion
from [2], leaving it to the interested reader to appeal to that article for more detail. The
term “o-ideal” refers to arg-ideal which is closed under existing countable suprema and
infima.

Definition & Remarks 5.2. Suppose thatX is a compact Hausdorff space, but not
necessarily zero-dimensional.

(a) A Baire set is a member of3(X), the o-subalgebra of subsets &f generated by
the zerosets ok. M (X) denotes the -ideal of all meagre sets. (Recall thaM € B(X)
is meagre if it is a countable union of nowhere dense s8isX)) stands for the algebra
of all Baire functions: the real-valued functiong on X for which f~11 is a Baire set, for
each intervall in R. M(X) is the¢-ideal ands -ideal of all functionsf € B(X) such that
cozf) is meagre.

(b) The W-object B is calledepicomplete (in W) if it has no properW-epimorphic
extensions. It is shown in [1] tha is epicomplete if and only iB is isomorphic to some
D(Y), with Y compact and basically disconnected. Then in [2] the following are carried
out: foraW-objectA, let

N(A) = {f € B(Y A): coxf) C|_Ja, ({£o0}). for someas, az. ... € A}.

n
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This is ac-ideal in B(Y A), and the construct
BA=B(YA)/N(A)

is the epicomplete monoreflection afin W [2, 8§5].
SinceN(A) C M(Y A), there is the quotient

haiBA— B(YA)/M(YA)=2AA,

and AA is the uniqueessential epicompletion ofA [2, §9]. It then follows easily that
LA = D(Ey, A).

(c) Next, we recall from [14] a construction of the laterattycomplete (i.e./(w1)-
complete) monoreflection,A, of the W-objectA. First, B, 4 (Y A) consists, by definition,
of thosef € B(Y A) for which there is a countable sgf,},cy C B(Y A), with Y, NY,, =
@, forn #m, andYA = J, Y,,, and there is also a sequengga, ... in A, for which
fly, =anly,, for eactn e N.

Then

GA=Bya(YA)/(Boa(YANN(A) <BA [14,54)

Next, observe that(w1)A < AA and that the embedding < /(w1)A has a unique
extension too A. Moreover, the class of(w1)-complete W-objects is closed under
formation of images unddé¥ -morphisms. It then follows that

ha(oA) =1(w1)A = By, A(YA)/(Bu,a(YA) N M(Y A)).

For eachf € B(Y A) abbreviateh(f + N(A)) = f. We then havef € l(w1)A if and

only if there are countably many pairwise disjoint Baire setsYiA, say Y1, Yo, ...

such thatt A = J, ¥,,, and a meagre sé/ in YA, and alsoay, a, ... € A, such that
f|Yn\M = an|yn\M, for eachn € N.

The comments in 5.2 apply immediately to give, first, a description of the elements of
l(w1)S(X), and then a characterization @f-Specker spaces. Note thaf(X) = X, for
each zero-dimensional.

In the results that follow, all spaces are once again compact and zero-dimensional, as
announced at the start of this section.

Lemma 5.3. For each f € B(X), f € l(w1)S(X) precisely when there exist pairwise
digoint Baire sets Y1, Y», ... suchthat X = J,, ¥,, and a meagre set M such that f|y,\»
is constant, for eachn € N.

Recall that a Baire set omeagre if its complement is meagre.
Theorem 5.4. The following are equivalent.
(a) X isw1-Specker.

(b) For each f € C(X) thereis a countable set of pairwise digoint Baire sets Y1, Yo, . ..
suchthat |, Y, iscomeagreand f|y, is constant.
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(c) For each f € C(X) there is a countable set of pairwise digoint zerosets Yi, >, . ..
such that |_J,, ¥, iscomeagreand f|y, isconstant.
(d) For each f € C(X) thereisa comeagreBaireset B C X suchthat f(B) iscountable.

Proof. That (a) is equivalent to (b) is immediate from Lemma 5.3, and that (c) implies
(d) is obvious. Suppose (b) holds ayice C(X); pick Y1, Yo, ..., a sequence of Baire sets
witnessing (b) forf, thenitis clear thaZ, = f~1 f(Y,), defines the sequence of zerosets
we want.

Finally, suppose that each continuous real-valued functioki bas countable range on
a suitable comeagre Baire set. Lt C(X), andM be a meagre set such thatX \ M)
is countable. Enumerate these images:. .., ., ...}, and letZ, = f~1{r,}. Then the
(Z»)nen form a sequence of disjoint zerosets, and letlipg= Z,, \ M, we get a partition
M,Y1,...,Y,,...DbyBaire sets which withesses the stipulations of the lemmg faus,
f €l(w1)S(X), and we have shown that (d) implies (a)o

For our first corollary to Theorem 5.4, recall that a spates scattered if every
nontrivial closed subspace af contains an isolated point. Note that a compact Hausdorff
scattered space is necessarily zero-dimensional.

The equivalence of (a) and (d) in Corollary 5.5 may be found in [26].

Corollary 5.5. Every compact Hausdorff, scattered space is w1-Specker. In fact, the
following are equivalent for a space X.

(a) X isscattered.

(b) For each f € C(X) thereisa partition of X by countably many Baire sets Y1, Yo, ...
suchthat f1y, isconstant.

(c) For each f € C(X) there is a partition of X by countably many zerosets Y1, Y>, . ..
such that f|y, isconstant.

(d) f(X) iscountable, for each f € C(X).

Finally, if X isalso an almost P-space, it is w1-Specker if and only if it is scattered.

Proof. It suffices to establish the equivalence of (b), (c) and (d) in the corollary. Now, (c)
is obtained from (b) in the same manner as indicated in the proof of Theorem 5.4 for the
corresponding implication. The implications ) (d) = (b) are obvious.

In particular, it is clear that a scattered spacevisSpecker. To conclude, iX is
w1-Specker and almosk, then there are no nonempty meagre sets, proving Xhat
scattered. O

At last we have the result advertised at the beginning of this section.
Corollary 5.6. Every weakly w1-Specker spaceis w1-Specker.

Proof. Suppose thaX is weaklywi-Specker, and lef € C(X). Since there is a countable
quasi-partition by open set®y, ..., V,,... such thatf|y, is constant, there is also a
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quasi-partition by the zerose®, = f~1f(V,), and it is obvious thaif|z, is constant.
Thus, sinceM = X \ (U, Z,) is a meagre Baire set, we have satisfied the conditions of
Theorem 5.4. Thusf € l(w1)S(X) and we are done.O

We close out the section with a number of special observations. Recall that a Tychonoff
spaceX is cozero complemented if every cozeroset is complemented. In this case (#ith
not necessarily zero-dimensional) we have thBX = E,, X (see [19]). Recall thatith
the assumption of zero-dimensionality we also h@w& = ¢ F X (3.8(ii)). We then have
the following consequence of Theorem 4.7—which, admittedly, could have been stated
immediately after that result.

Proposition 5.7. Suppose X is cozero complemented. Then if X is w1-Specker it is also
strongly w1 -Specker.

Remarks5.8. This list ought to kill off a number of conjectures.

(i) A strongly wi-Specker space need not be scattered: think8if In fact, any
compactification oN is stronglyw1-Specker.

(i) Scattered spaces need not be stronglySpecker: just look a¥ D, with D discrete
and uncountable. This also shows that cozero complementarity cannot be dropped in
Proposition 5.7.

(iif) Call a spaceX cozero scattered if for each f € C(X) there is a dense cozerodét
such thatf (V) is countable. It is not hard to see that any stronglySpecker space
is cozero scattered; clearly every scattered space is cozero scattered. Theorem 5.4
also shows that every cozero-scattered spaee-iSpeckera D (with D discrete and
uncountable) is scattered, and therefore cozero scattered, but not stog+tghecker.

We do not know whethebn1-Specker spaces are necessarily cozero scattered.

(iv) A strongly wi-Specker space need not have countable cellularity: take the totally
ordered space; + 1 of all ordinals not exceeding1, with the interval topology.
Proposition 5.1 shows this space is stronghy+Specker. (NoteX has countable
cellularity if every family of pairwise disjoint nonempty open sets is countable.)

If X does have countable cellularity then all theeg Specker conditions coincide,
as X is then necessarily cozero complemented. In fack, ifas countable cellularity
these conditions hold if and only K is Specker.

6. Remnants

Again in this section, all spaces are assumed to be compact, Hausdorff and zero-
dimensional, unless the contrary is stipulated. Note thatlenotes, as before, an
uncountable, regular cardinal or else the symkolin (a) of Proposition 6.1 below the
regularity of the cardinal will be used. As the omission is rather conspicuous, let us admit
in advance that we have no counterpart to the content of the proposition for the “middle”
a-Specker condition.
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Proposition 6.1. Suppose g: Y — X isanirreducible surjection. Then we have:

(a) If Y isstrongly a-Specker and g is a-irreducible, then X isalso strongly «-Specker.
(b) If Y isweakly o-Specker then X isaswell.

Proof. We prove (a), leaving the proof of (b) to the reader, as it is very similar.
Suppose thal is stronglye-Specker ang’ € C(X); thenf-g € C(Y), and sothereisa
quasi-partition’C of Y by fewer thanx clopen sets—Proposition 2.3—such ti#t- g)|x
is constant, for eaclk € K. Now since f is a-irreducible, there is, for eack € K, an
a-cozerosetVx of X, such thatf 1V is dense inK. Then it is easy to see that the
(Vk)kex form a quasi-partition by fewer tham «-cozerosets ofX, so that f|y, is
constant. AsX is zero-dimensional, and is regular, one may refine the¥g once again,
and obtain a quasi-partition of size« by clopen sets o, such thatf is constant on
each member. This means ti#is stronglyx-Specker. O

The following corollary stands in analogy to Theorem 4.6.

Corollary 6.2. If gF,X is strongly a-Specker, then so is X. Likewise, if EX is weakly
a-Specker, the same istrue of X.

The converses of the statements in Corollary 6.2 are intriguing, but are left to
be discussed elsewhere. Now, in conclusion, we have a comment about extremally
disconnected1-Specker spaces under certain set-theoretic assumptions.

Lemma 6.3. If X isa compact strongly w1-Specker space and K isregular closed in X,
then K toois strongly w1-Specker.

Proof. Supposethaf € C(K). Note thatk = cly V, for a suitable open sét. (Evidently,

we assume tha andV are nonempty, as there is nothing to prove otherwise.) Mdws

a continuous extension e C(X). On account of Proposition 5.1(b), there is a countable
quasi-partition ofX by clopen set#/,, (n € N) such thai|y, is constant. Note thaf must
intersect the union of th&,,. Enumerate the indices, .. ., i, ... for which V. N U;, # 9.

It is then easy to check that tt, = K N U;, form a quasi-partition by clopen subsets of
K, and thatf|w, is constant. This shows that is stronglyw;-Specker. O

We need a lemma which refers to Souslin lines. For background on Souslin lines and
their existence, we refer the reader to [22,28].

Lemma 6.4. The existence of an extremally disconnected, w1-Specker space without
isolated pointsis equivalent to that of a Soudlin line.

Proof. This follows from Remark 1.7 of [4], as an extremally disconnectg&dSpecker
space necessarily has countable cellularity.

These lemmas then produce the following curious outcome.
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Proposition 6.5. Suppose that no Souslin line exists. Then any extremally disconnected
space which is w1-Specker is homeomorphicto SN.

Proof. First, as the cellularity ofX is countable X is strongly wi-Specker, owing to
Proposition 5.7. There must be an isolated point jrowing to Lemma 6.4, and the subset
N of all isolated points is countable. Now the €ét= X \ clx N is open and therefore
extremally disconnected. =clx U is its Stone€ech compactification and it is a regular
closed subset of . Thus, by Lemma 6.3/ too is stronglywi-Specker. A¥ is extremally
disconnected and has no isolated points, this amounts to a contradiction, lire@sin
which caseX = cly N = N, as promised. O
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