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INFINITE LIFETIME FOR THE STARLIKE DYNAMICS
IN HELE-SHAW CELLS

BJÖRN GUSTAFSSON, DMITRI PROKHOROV, AND ALEXANDER VASIL’EV

(Communicated by Juha M. Heinonen)

Abstract. One of the “folklore” questions in the theory of free boundary
problems is the lifetime of the starlike dynamics in a Hele-Shaw cell. We prove
precisely that, starting with a starlike analytic phase domain Ω0, the Hele-
Shaw chain of subordinating domains Ω(t), Ω0 = Ω(0), exists for an infinite
time under injection at the point of starlikeness.

1. Introduction

We consider the flow of a viscous fluid in a plane Hele-Shaw cell under injection
through a unique well which can be placed at the origin. Suppose that at the
initial time the phase domain Ω0 occupied by the fluid is simply connected and
bounded by a smooth analytic curve Γ0. The evolution of the phase domains Ω(t),
Ω(0) = Ω0, is described by an auxiliary conformal mapping f(ζ, t), f(ζ, 0) = f0(ζ),
of the unit disk U = {ζ, |ζ| < 1} onto Ω(t), Γ(t) = ∂Ω(t), normalized by f(0, t) = 0,
f ′(0, t) > 0. Here we denote the derivatives by f ′ = ∂f/∂ζ, ḟ = ∂f/∂t, and t is a
time parameter. This mapping satisfies the equation

(1.1) Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
= 1, ζ = eiθ,

under a suitable rescaling. L. A. Galin [4] and P. Ya. Polubarinova-Kochina [11, 12]
first derived the equation (1.1) and stimulated deep investigations in the complex
variable approach to free boundary problems (see, e.g., [9, 20] and the references
therein).

By a classical solution in the interval t ∈ [0, T ) to the equation (1.1) we mean a
map f(ζ, t) that is conformal and univalent as a function of ζ in a neighbourhood
of the closure Ū of the unit disk U and C1 with respect to t in [0, T ) (one-sided at
0). These assumptions about the classical solution can be found, e.g., in [14].

One of the main features of the solution to the equation (1.1) is that, starting
with an analytic boundary Γ0, we obtain a one-parameter (t) chain of classical
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solutions f(ζ, t) that exists during a period t ∈ [0, T ), developing possible cusps or
double points on the boundary Γ(t), Γ(0) = Γ0, at a blow-up time T . It is known
[21] that the classical solution exists and is unique locally in time. Recently, in
[14], it became clear that this model could be interpreted as a particular case of
the abstract Cauchy problem; thus, the classical solvability (locally in time) may
be proved using the nonlinear abstract Cauchy-Kovalevskaya Theorem. We also
mention here that the problem is Hadamard well-posed in our case [3].

The problem of estimating T is of primary importance. One of the “folklore”
questions is the lifetime of the starlike dynamics in a Hele-Shaw cell. The majority
of investigators believe that this lifetime is infinite in the case of a starlike initial
domain whereas some of them do not. Our aim is to settle this question. A domain
Ω ⊂ C, 0 ∈ Ω, is said to be starlike (with respect to the origin) if each ray starting
at the origin intersects Ω in a set that is either a line segment or a full ray. If
a function f(ζ) maps U onto a domain that is starlike, f(0) = 0, then we say
that f(ζ) is a starlike function. We denote the class of starlike functions by S∗.
A criterion for a function f(ζ), ζ ∈ U , f(0) = 0, f ′(0) > 0, to be starlike is the
following inequality:

(1.2) Re
ζf ′(ζ)
f(ζ)

> 0, ζ ∈ U.

This standard criterion can be found, e.g., in [5, 2, 7, 13].
We prove rigorously (Theorem 3.4) that, starting with a smooth analytic starlike

phase domain Ω0, the Hele-Shaw chain of subordinating domains Ω(t) exists as a
classical solution for an infinite time under injection.

2. Monotone change of strong α-starlikeness

The class S∗ is a union of classes S∗α of so-called strongly starlike functions
of order α, 0 < α ≤ 1, defined by D. A. Brannan and W. E. Kirwan [1] and
J. Stankiewicz [19]. A function f : U → C, f(0) = 0, f ′(0) > 0, is said to be from
S∗α if for all ζ ∈ U ,

(2.1)
∣∣∣ arg

ζf ′(ζ)
f(ζ)

∣∣∣ < α
π

2
.

This class of functions is characterized as follows. Every level line f(reiθ), θ ∈
[0, 2π), f ∈ S∗α, is reachable from outside by the radial angle π(1−α). We will call
the images of the unit disk under functions from S∗α strongly starlike of order α as
well. Clearly, S∗ = S∗1 .

We prove that, starting with a phase domain Ω0 that is strongly starlike of order
α and bounded by an analytic curve, we obtain a subordination chain of domains
Ω(t) (and functions f(ζ, t)) strongly starlike of order α(t) with a decreasing order
α(t).

Theorem 2.1. Let f0 ∈ S∗α, α ∈ (0, 1], be analytic and univalent in a neighbour-
hood of Ū . Then the classical solution f(ζ, t) to the Polubarinova-Galin equation
(1.1) forms a subordination chain of strongly starlike functions of order α(t) with
a strictly decreasing α(t) during the time of existence.

Proof. Let T be such that the classical solution f(ζ, t) exists during the time t ∈
[0, T ), T > 0. Since all functions f(ζ, t) have analytic univalent extension into a
neighbourhood of Ū during the time of the existence of the classical solution to
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(1.1), their derivatives f ′(ζ, t) are continuous and do not vanish in Ū . Moreover,
f(ζ, t) are starlike in U (see [8, 20]). Therefore, there exists α(t), 0 < α(t) ≤ 1,
such that f(ζ, t) ∈ S∗α(t) and f(ζ, t) 6∈ S∗α(t)−ε for any ε > 0.

Let us fix t0 ∈ [0, T ) and consider the set A of all points ζ, |ζ| = 1, for which
| arg ζf ′(ζ,t0)

f(ζ,t0) | = απ/2. First, we deal with the subset A+ of A where

(2.2) arg
ζf ′(ζ, t0)
f(ζ, t0)

=
απ

2
.

The sets A+ and A− = A \A+ are closed and do not intersect. One of the sets A+

and A− is allowed to be empty. Without loss of generality, we suppose that A+ 6=
Ø. For any point ζ ∈ A+, we have

(2.3) Im
ζf ′(ζ, t0)
f(ζ, t0)

> 0.

The argument arg ζf ′(ζ,t0)
f(ζ,t0) attains its maximum on ζ ∈ ∂U at the points of A+.

Therefore,
∂

∂ θ
arg

eiθf ′(eiθ, t0)
f(eiθ, t0)

= 0, ζ = eiθ ∈ A+.

The argument arg reiθf ′(reiθ,t0)
f(reiθ,t0)

, eiθ ∈ A+, attains its maximum on r ∈ [0, 1] at
r = 1. Hence,

∂

∂ r
arg

reiθf ′(reiθ , t0)
f(reiθ, t0)

∣∣∣∣
r=1

≥ 0.

We calculate

(2.4) Re
[
1 +

ζf ′′(ζ, t0)
f ′(ζ, t0)

− ζf ′(ζ, t0)
f(ζ, t0)

]
= 0,

(2.5) Im
[
1 +

ζf ′′(ζ, t0)
f ′(ζ, t0)

− ζf ′(ζ, t0)
f(ζ, t0)

]
≥ 0,

where ζ ∈ A+.
Let us represent the derivative

(2.6)
∂

∂t
arg

ζf ′(ζ, t)
f(ζ, t)

= Im
∂

∂t
log

f ′(ζ, t)
f(ζ, t)

= Im

(
∂
∂tf
′(ζ, t)

f ′(ζ, t)
−

∂
∂tf(ζ, t)
f(ζ, t)

)
.

Now we differentiate the Polubarinova-Galin equation (1.1) with respect to θ as

(2.7) Im
(
f ′(ζ, t)

∂

∂t
f ′(ζ, t) − ζf ′(ζ, t)ḟ(ζ, t)− ζ2f ′′(ζ, t)ḟ(ζ, t)

)
= 0, ζ = eiθ.

This equality is equivalent to

|f ′(ζ, t)|2Im

(
∂
∂tf
′(ζ, t)

f ′(ζ, t)
−

∂
∂tf(ζ, t)
f(ζ, t)

)

= Im
[
ζf ′(ζ, t)ḟ(ζ, t)

((
ζf ′′(ζ, t)
f ′(ζ, t)

)
− ζf ′(ζ, t)

f(ζ, t)
+ 1

)]
.
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Substituting (1.1) and (2.4) in the latter expression, we have

∂

∂t
arg

ζf ′(ζ, t)
f(ζ, t)

∣∣∣
ζ∈A+,t=t0

=
−1

|f ′(ζ, t0)|2 Im
(
ζf ′(ζ, t0)
f(ζ, t0)

+
ζf ′′(ζ, t0)
f ′(ζ, t0)

)
.

The right-hand side of this equality is continuous on A+ and strictly negative
because of (2.3) and (2.5). Therefore,

max
ζ∈A+

∂

∂t
arg

ζf ′(ζ, t)
f(ζ, t)

∣∣∣
t=t0

= −δ < 0.

There exists a neighborhood A+(δ) on the unit circle of A+ such that A+(δ) and
A− do not intersect and

∂

∂t
arg

ζf ′(ζ, t)
f(ζ, t)

∣∣∣
ζ∈A+(δ),t=t0

< − δ
2
.

There is a positive number σ such that

max
ζ∈∂U\A+(δ)

arg
ζf ′(ζ, t)
f(ζ, t)

∣∣∣
t=t0

=
απ

2
− σ.

We choose such s > 0 that

(i) t0 + s < T ;

(ii)
∂

∂t
arg

ζf ′(ζ, t)
f(ζ, t)

∣∣∣
ζ∈A+(δ)

< 0, t ∈ [t0, t0 + s];

(iii) max
ζ∈∂U\A+(δ)

arg
ζf ′(ζ, t)
f(ζ, t)

≤ απ

2
− σ

2
, t ∈ [t0, t0 + s].

The condition (ii) implies that

arg
ζf ′(ζ, t)
f(ζ, t)

<
απ

2
, t ∈ (t0, t0 + s], ζ ∈ A+(δ).

Thus, the condition (iii) yields

α+(t) := max
ζ∈∂U

arg
ζf ′(ζ, t)
f(ζ, t)

<
απ

2
= α(t0), for all t ∈ (t0, t0 + s].

This means that α+(t) is strictly decreasing in [0, T ).
If the set A− 6= Ø, then we can define the function

α−(t) := − min
ζ∈∂U

arg
ζf ′(ζ, t)
f(ζ, t)

.

Similar argumentation shows that α−(t) is strictly decreasing.
If A− = Ø (or A+ = Ø), then α(t) = α+(t) (or = α−(t)) for t ∈ [t0, t0 + s], s

sufficiently small.
We set the function α(t) = max{α+(t), α−(t)} in the case A+ 6= Ø and A− 6=

Ø. This function α(t) is strictly decreasing, and the proof is complete. �

We remark that a similar result, with estimates of α(t), has been independently
obtained by O. Kuznetsova [10].
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3. Infinite lifetime

In this section first we will prove that if the classical solution to (1.1) exists during
the time interval [0, T ), then the limiting function lim

t→T−0
f(ζ, t) ≡ f(ζ, T ) is analytic

in some neighbourhood of the unit disk U . Here the limit is taken with respect to
the uniform convergence on compacts of the unit disk U . It exists because f(ζ, t)
is a subordination chain, and due to the Carathéodory Kernel Theorem. Then we
will obtain the main result about the infinite lifetime.

Lemma 3.1. Let the classical solution to (1.1) exist during the time interval [0, T ),
0 < T < ∞, Ω(t) = f(U, t), and let the initial function f(ζ, 0) be analytic and
univalent in a neighbourhood of the closure of the unit disk U . Then, there is η > 0
such that the function f(ζ, t) is analytic in U1+η = {ζ : |ζ| < 1+η} for all t ∈ [0, T ],
univalent in U , and possibly f(ζ, T ) has a vanishing derivative at some points of
the unit circle ∂U or is not univalent on ∂U . It follows that Ω(T ) ≡ f(U, T ) is
a simply connected domain with an analytic boundary Γ(T ) = ∂Ω(T ) with possible
analytic singularities in the form of finitely many cusps and double points.

Proof. By the Carathéodory Kernel Theorem the domain

Ω(T ) =
⋃

t∈[0,T )

Ω(t)

is just the same as in the formulation of the lemma, and Ω(T ) is a simply connected
domain.

It is well known (see, e.g., [6, 15, 16]) and easily verified directly that for any
analytic and integrable function Φ in Ω(T ) the identity

(3.1)
∫∫
Ω(t)

Φ(z)dσz =
∫∫
Ω(0)

Φ(z)dσz + 2πtΦ(0)

holds for t ∈ [0, T ). We note also that since the normal velocity on the bound-
ary never vanishes, we have the strict monotonicity of the subordination chain of
domains:

(3.2) Ω(s) ⊂ Ω(t) for s < t and s, t ∈ (0, T ).

Letting t→ T , we see that (3.1) and (3.2) hold for t = T , i.e., for Ω(T ) as well.
In order to give a rigorous proof of the statement about the properties of f(ζ, T )

we analytically extend the mapping f(ζ, T ) following the scheme proposed in [6,
Theorem 9]; see also [17, Theorem 1.7]. Let us choose the function Φ(z) = (z−w)−1

for w 6∈ Ω(t), t ∈ (0, T ], in (3.1). This gives

(3.3) χ̂Ω(t) = χ̂Ω(0) + 2πtδ̂,

where

µ̂(w) = − 1
π

∫∫
Ω(t)

dµ(z)
z − w

denotes the Cauchy transformation of a measure µ, normalized so that ∂µ̂/∂ w̄ =
µ(w), χ stands for the characteristic function of the corresponding domain, and δ
is the Dirac distribution.
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We define a function S(z, t) by

S(z, t) = z̄ − χ̂Ω(t)(z) + χ̂Ω(0)(z) +
2t
z

for z ∈ Ω(t)\Ω(0), for each t ∈ (0, T ] . Then S(z, t) as a function of z is continuous
in Ω(t) \ Ω(0), analytic in Ω(t) \ Ω(0) (one easily calculates that ∂S/∂ z̄ = 0),
and S(z, t) = z̄ on Γ(t) = ∂Ω(t) by (3.3). Thus, S(z, t) is a one-sided Schwarz
function of Γ(t) [16, 18]. The transformation z 7→ S(z, t) is a one-sided reflection
over Γ(t), which we will use to extend f(ζ, t), t ∈ (0, T ]. Let us fix t ∈ (0, T ]. We
set r(t) = maxz∈∂Ω(0) |f−1(z, t)| and consider a point ζ, r(t) < |ζ| < 1. The point
1/ζ̄ is its reflection through ∂U .

We define the function f(ζ, t) in a neighbourhood of the unit circle 1 < |ζ| <
1/r(t) outside U by f(1/ζ̄, t) ≡ S(f(ζ, t), t). This defines f analytically in the
annulus 1 < |ζ| < 1/r(t). Across ∂U we have a certain form of continuity because
of the continuity of S(z, t). Indeed, as |ζ| → 1 with ζ ∈ U we have

(3.4) |f(ζ, t)− f(1/ζ̄, t)| = |f(ζ, t)− S(f(ζ, t), t)| → 0,

where z = S(z, t) on Γ(t), and therefore, given ε > 0, we have |z − S(z, t)| < ε for
z ∈ Ω(t) in some neighbourhood of Γ(t). By now the function f(ζ, t) is defined in U
as well as in the annulus 1 < |ζ| < 1/r(t), and hence, almost everywhere in the disk
|ζ| < 1/r(t). Let us prove that the distributional derivative ∂f(ζ, t)/∂ζ̄ vanishes in
|ζ| < 1/r(t), using (3.4). Obviously, we must verify this across the circle |ζ| = 1.
Given a test function ϕ with compact support in |ζ| < 1/r(t), we have

〈∂f
∂ζ̄
, ϕ〉 = −

∫∫
C

f(ζ, t)
∂ϕ

∂ζ̄
dσζ

= − 1
2i

∫∫
U

f(ζ, t)
∂ϕ

∂ζ̄
dζ̄dζ − 1

2i

∫∫
|ζ|>1

f(ζ, t)
∂ϕ

∂ζ̄
dζ̄dζ

= − 1
2i

lim
ε↓0

 ∫
|ζ|=1−ε

f(ζ, t)ϕ(ζ) dζ −
∫

|ζ|=1+ε

f(ζ, t)ϕ(ζ) dζ


= − 1

2i
lim
ε↓0

∫
|ζ|=1−ε

(f(ζ, t)− f(1/ζ̄, t))ϕ(ζ) dζ = 0.

In the above curve integrals we take the counterclockwise direction on the circles.
Thus, the function f(ζ, t) is analytic in the disk |ζ| < 1/r(t).

For any pair of numbers s, t such that 0 < s < t ≤ T , we have that the function
h(ζ, s, t) ≡ f−1(f(ζ, s), t) maps the unit disk into itself and h(0, s, t) ≡ 0. A simple
application of the Schwarz Lemma to the function h shows that

f−1(Ω(0), t) ⊂ Ur(s).

Therefore, r(t) ≤ r(s). For a sufficiently small ε > 0 we choose δ such that the
solution f(ζ, t) is analytic in the disk U1+ε for any t ∈ [0, δ). Then we define

η = min
(
ε,

1
r(δ)

− 1
)
.
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Thus, we have defined the function f(ζ, t) in the disk U1+η for all t ∈ [0, T ]. To get
a pointwise definition of f on the circle |ζ| = 1 one may use the Cauchy integral
formula for the disk |ζ| < 1 + η/2. This finishes the proof of the lemma. �

Lemma 3.2. Let f0 ∈ S∗ be analytic and univalent in a neighbourhood of the
closure Ū of the unit disk U . If the solution f(ζ, t) to the Polubarinova-Galin
equation (1.1) exists during the time interval [0, T ), then it forms a subordination
chain of starlike functions such that the limiting domain Ω(T ) has a smooth analytic
boundary.

Proof. By the assumptions on f0 the initial domain Ω(0) has a smooth analytic
boundary and the solution f(ζ, t) to (1.1) exists locally in time t ∈ [0, s). The
function f0 ∈ S∗α for some α ∈ (0, 1]. The function f(ζ, t) belongs to the class
S∗α(t) with α(t) < 1 for any t ∈ (0, s), due to Theorem 2.1. Therefore, we can prove
Lemma 3.2 choosing f(ζ, t) with some t ∈ (0, s) as an initial mapping, f(ζ, t) ∈ S∗α(t)

with α(t) < 1. We prove that ∂Ω(T ) does not contain a cusp or a double point on
its boundary.

Define the limiting function f(ζ, T ) = lim
t→T−0

f(ζ, t), where the limit is taken

locally uniformly in U . The function f(ζ, T ) is univalent, strongly starlike of order
α(T ) = lim

t→T−0
α(t) < 1, and has a continuous extension on Ū . According to the

geometric characterization of the class S∗α(T ), the boundary of the domain Ω(T ) =
f(U, T ) is reachable by the radial external angles π(1−α), which implies that there
is no cusp or double point on the boundary of Ω(T ). This completes the proof. �

Lemma 3.3. Let f(ζ, t) be the classical solution to the equation (1.1) that exists
during the time interval [0, T ) with a starlike initial mapping f0 as in Lemma 3.2.
Then, there exists ε > 0 such that the classical solution exists during the time
interval [0, T + ε).

Proof. The limiting domain Ω(T ) is simply connected and has an analytic boundary.
The limiting mapping f(ζ, T ) is analytic in a neighbourhood of Ū by Lemma 3.1
and strongly starlike of order α(T ) < 1 by Lemma 3.2. Therefore, there exists an
η > 0 such that f(ζ, T ) is starlike and univalent in the disk |ζ| < 1 + η. Let us
construct the subordination chain of mappings f2(ζ, t) satisfying the Polubarinova-
Galin equation (1.1) with the initial data f2(ζ, 0) ≡ f(ζ, T ). The classical solution
exists and is unique locally in time, say t ∈ [0, ε). Moreover, we have

lim
t→T−0

f(ζ, t) = lim
t→0+0

f2(ζ, t) = f(ζ, T )

and
lim

t→T−0
f ′(ζ, t) = lim

t→0+0
f ′2(ζ, t) = f ′(ζ, T )

locally uniformly in U1+η. We rewrite the equation (1.1) in U using the Schwarz
kernel as

ḟ(ζ, t) = ζf ′(ζ, t)
1

2π

2π∫
0

1
|f ′(eiθ, t)|2

eiθ + ζ

eiθ − ζ dθ, t ∈ [0, T ), |ζ| < 1.

A similar equation is valid for the chain f2(ζ, t) in the time interval [0, ε). Taking
the limit in the above equation as t → T − 0 we observe that there exists the
one-sided limit ḟ(ζ, T − 0). Similarly, the one-sided limit ḟ2(ζ, 0 + 0) exists, and
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they are equal. Let us define f(ζ, t) ≡ f2(ζ, t − T ) in the interval t ∈ [T, T + ε).
The above observations yield that the function thus extended is continuous in the
interval t ∈ [0, T + ε), analytic, univalent and starlike in some neighbourhood of
Ū . Moreover, it is differentiable at the point t = T , and being extended onto the
unit circle, satisfies the equation (1.1). Thus, it is a unique classical solution in the
interval t ∈ [0, T + ε), and the lemma is proved. �

Theorem 3.4. Starting with a starlike phase domain Ω0 with an analytic boundary,
the lifetime of the classical Hele-Shaw starlike dynamics Ω(t) is infinite.

Proof. Indeed, if the classical solution exists during the finite interval t ∈ [0, T ) and
does not exist in t ∈ [T, T + ε) for any ε > 0, then this contradicts Lemma 3.3. �
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